Citation: Shi-Ping Zhu, Wen-Ya Wang, Kun Fang, Zheng-Gang Li, Guo-Qiang Dong, Zhen-Yuan Miao, Jian-Zhong Yao, Wan-Nian Zhang, Chun-Quan Sheng. Design, synthesis and antifungal activity of carbazole derivatives[J]. Chinese Chemical Letters, ;2014, 25(2): 229-233. shu

Design, synthesis and antifungal activity of carbazole derivatives

  • Corresponding author: Wan-Nian Zhang,  Chun-Quan Sheng, 
  • Received Date: 29 August 2013
    Available Online: 9 October 2013

    Fund Project: This work was supported in part by the National Natural Science Foundation of China (No. 81222044) (No. 81222044) the 863 Hi-Tech Program of China (No. 2012AA020302) (No. 2012AA020302) Shanghai Rising-Star Program (No. 12QH1402600) (No. 12QH1402600)

  • The incidence of invasive fungal infections is increasing rapidly. Clinically available antifungal agents suffer from limited efficacy and severe resistance. There is an urgent need to discover antifungal lead compounds with novel chemical scaffold. On the basis of our previously identified tetrahydrocarbazole antifungal leads, the structure-activity relationship was further explored by modifying the scaffold and the side chains. Several targeted compounds showed potent activity against Candida species. Particularly, compound 13i showed better antifungal activity than the lead compound, which can be used as a good starting point for further optimization.
  • 加载中
    1. [1]

      [1] M.A. Pfaller, D.J. Diekema, Epidemiology of invasive candidiasis: a persistent public health problem, Clin. Microbiol. Rev. 20 (2007) 133-163.

    2. [2]

      [2] L. Ostrosky-Zeichner, A. Casadevall, J.N. Galgiani, et al., An insight into the antifungal pipeline: selected new molecules and beyond, Nat. Rev. Drug Discov. 9 (2010) 719-727.

    3. [3]

      [3] S.K. Fridkin, W.R. Jarvis, Epidemiology of nosocomial fungal infections, Clin. Microbiol. Rev. 9 (1996) 499-511.

    4. [4]

      [4] H.A. Gallis, R.H. Drew, W.W. Pickard, Amphotericin B: 30 years of clinical experience, Rev. Infect. Dis. 12 (1990) 308-329.

    5. [5]

      [5] D.J. Sheehan, C.A. Hitchcock, C.M. Sibley, Current and emerging azole antifungal agents, Clin. Microbiol. Rev. 12 (1999) 40-79.

    6. [6]

      [6] D.W. Denning, Echinocandins: a new class of antifungal, J. Antimicrob. Chemother. 49 (2002) 889-891.

    7. [7]

      [7] I.A. Casalinuovo, P. Di Francesco, E. Garaci, Fluconazole resistance in Candida albicans: a review of mechanisms, Eur. Rev. Med. Pharmacol. Sci. 8 (2004) 69-77.

    8. [8]

      [8] C. Sheng, W. Zhang, New lead structures in antifungal drug discovery, Curr. Med. Chem. 18 (2011) 733-766.

    9. [9]

      [9] W. Wang, G. Dong, J. Gu, et al., Structure-activity relationships of tetrahydrocarbazole derivatives as antifungal lead compounds, Med. Chem. Commun. 4 (2013) 353-362.

    10. [10]

      [10] X. Che, C. Sheng, W. Wang, et al., New azoles with potent antifungal activity: design, synthesis and molecular docking, Eur. J. Med. Chem. 44 (2009) 4218- 4226.

    11. [11]

      [11] Z. Jiang, Y. Wang, W. Wang, et al., Discovery of highly potent triazole antifungal derivatives by heterocycle-benzene bioisosteric replacement, Eur. J. Med. Chem. 64C (2013) 16-22.

    12. [12]

      [12] Z. Lv, C. Sheng, Y. Zhang, et al., Synthesis and in vitro antifungal activities of new 3- substituted benzopyrone derivatives, Bioorg. Med. Chem. Lett. 20 (2010) 7106- 7109.

    13. [13]

      [13] C. Sheng, X. Che, W. Wang, et al., Design and synthesis of novel triazole antifungal derivatives by structure-based bioisosterism, Eur. J. Med. Chem. 46 (2011) 5276- 5282.

    14. [14]

      [14] C. Sheng, X. Che, W. Wang, et al., Structure-based design, synthesis, and antifungal activity of new triazole derivatives, Chem. Biol. Drug. Des. 78 (2011) 309-313.

    15. [15]

      [15] C. Sheng, X. Che, W. Wang, et al., Design and synthesis of antifungal benzoheterocyclic derivatives by scaffold hopping, Eur. J. Med. Chem. 46 (2011) 1706- 1712.

    16. [16]

      [16] C. Sheng, S. Chen, H. Ji, et al., Evolutionary trace analysis of CYP51 family: implication for site-directed mutagenesis and novel antifungal drug design, J. Mol. Model. 16 (2010) 279-284.

    17. [17]

      [17] C. Sheng, H. Xu, W. Wang, et al., Design, synthesis and antifungal activity of isosteric analogues of benzoheterocyclic N-myristoyltransferase inhibitors, Eur. J. Med. Chem. 45 (2010) 3531-3540.

    18. [18]

      [18] C. Sheng, W. Zhang, H. Ji, et al., Structure-based optimization of azole antifungal agents by CoMFA, CoMSIA, and molecular docking, J. Med. Chem. 49 (2006) 2512- 2525.

    19. [19]

      [19] W. Wang, C. Sheng, X. Che, et al., Discovery of highly potent novel antifungal azoles by structure-based rational design, Bioorg. Med. Chem. Lett. 19 (2009) 5965-5969.

    20. [20]

      [20] W. Wang, C. Sheng, X. Che, et al., Design, synthesis, and antifungal activity of novel conformationally restricted triazole derivatives, Arch Pharm. (Weinheim) 342 (2009) 732-739.

    21. [21]

      [21] W. Wang, S. Wang, Y. Liu, et al., Novel conformationally restricted triazole derivatives with potent antifungal activity, Eur. J. Med. Chem. 45 (2010) 6020- 6026.

    22. [22]

      [22] Y. Xu, C. Sheng, W. Wang, et al., Structure-based rational design, synthesis and antifungal activity of oxime-containing azole derivatives, Bioorg. Med. Chem. Lett. 20 (2010) 2942-2945.

    23. [23]

      [23] J. Yao, H. Liu, T. Zhou, et al., Total synthesis and structure-activity relationships of new echinocandin-like antifungal cyclolipohexapeptides, Eur. J. Med. Chem. 50 (2012) 196-208.

    24. [24]

      [24] M. Desroses, K. Wieckowski, M. Stevens, et al., A microwave-assisted, propylphosphonic anhydride (T3P.(R).) mediated one-pot Fischer indole synthesis, Tetrahedron Lett. 52 (2011) 4417-4420.

    25. [25]

      [25] H. Gan, H. Liu, Y. Li, et al., Fabrication of polydiacetylene nanowires by associated self-polymerization and self-assembly processes for efficient field emission properties, J. Am. Chem. Soc. 127 (2005) 12452-12453.

  • 加载中
    1. [1]

      Yun-Feng LiuHui-Fang DuYa-Hui ZhangZhi-Qin LiuXiao-Qian QiDu-Qiang LuoFei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858

    2. [2]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    3. [3]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    4. [4]

      Anjing LiaoWei SunYaming LiuHan YanZhi XiaJian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094

    5. [5]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    6. [6]

      Haiying Jiang Liuhong Song Yangyang Cheng Kefen Yue Mingli Peng Huilin Guo . Ph―C≡C―Cu2.5的力致变色现象探究——推荐一个物理化学实验. University Chemistry, 2025, 40(8): 249-254. doi: 10.12461/PKU.DXHX202410003

    7. [7]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    8. [8]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    9. [9]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    10. [10]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    11. [11]

      Zhaoyue LüTiantian ChaiYichao JinXiao WangYe ZouLijiang ZhangJiankang FengMengtong ZhangShuo WangChichong LuGuofan Jin . Asymmetrical carbazole-benzonitrile-based TADF emitters designed by alternate donor-acceptor strategy. Chinese Chemical Letters, 2025, 36(6): 110817-. doi: 10.1016/j.cclet.2025.110817

    12. [12]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    13. [13]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    14. [14]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    15. [15]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    16. [16]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    17. [17]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    18. [18]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    19. [19]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    20. [20]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

Metrics
  • PDF Downloads(0)
  • Abstract views(1090)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return