Citation: Hui Yuan, Guang-Tong Xu, Hui-Feng Li, Li-Jun Lu. Study of oxidic and sulfided selective hydrodesulfurization catalysts for gasoline using Raman spectroscopy[J]. Chinese Chemical Letters, ;2013, 24(12): 1041-1044. shu

Study of oxidic and sulfided selective hydrodesulfurization catalysts for gasoline using Raman spectroscopy

  • Corresponding author: Guang-Tong Xu, 
  • Received Date: 31 May 2013
    Available Online: 14 June 2013

  • A series of CoMo/Al2O3 catalysts for selective hydrodesulfurization (HDS) of gasoline were studied with Raman spectroscopy, a powerfulmethod that creates specific signals for the states and the distributions of oxidic precursors and sulfided active phases. The higher the Mo and Co, the lower the tetrahedrally coordinated molybdate, and the higher the polymolybdate. But the amount of polymolybdate decreased when CoMoO4 appeared. Cobalt-promoted polymolybdate was the precursor, and its relative content correlated well with the HDS selectivity. For sulfided catalysts, adding the cobalt-promoter led to local distortion-disorder of the MoS2 structure and the formation of a CoMoS phase. This method can provide important information for designing new industrial selective-HDS catalysts.
  • 加载中
    1. [1]

      [1] S. Bruneta, D. Meya, G. Perot, et al., On the hydrodesulfurization of FCC gasoline: a review, Appl. Catal. A: Gen. 278 (2005) 143-172.

    2. [2]

      [2] M.F. Li, H.F. Li, F. Jiang, et al., The relation between morphology of (Co)MoS2 phases and selective hydrodesulfurization for CoMo catalyst, Catal. Today 149 (2010) 35- 39.

    3. [3]

      [3] M.F. Li, H.F. Li, F. Jiang, et al., Effect of surface characteristics of different alumina on metal-support interaction and hydrodesulfurization activity, Fuel 88 (2009) 1281-1285.

    4. [4]

      [4] E. Payen, J. Grimblot, S. Kasztelan, Study of oxidic and reduced alumina-supported molybdate and heptamolybdate species by in situ laser Raman spectroscopy, J. Phys. Chem. 91 (1987) 6642-6648.

    5. [5]

      [5] C. Li, Identifying the isolated transition metal ions/oxides in molecular sieves and on oxide supports by UV resonance Raman spectroscopy, J. Catal. 216 (2003) 203- 212.

    6. [6]

      [6] S. Gonzalez-Cortes, T. Xiao, P.M. Costa, et al., Urea-organic matrix method: an alternative approach to prepare Co-MoS2/γ-Al2O3 HDS catalyst, Appl. Catal. A: Gen. 270 (2004) 209-222.

    7. [7]

      [7] Qiherima, H. Yuan, H.F. Li, et al., Investigation on the active phase of CoMo catalyst for selective HDS by low temperature in situ FT-IR, Chin. Chem. Lett. 22 (2011) 366-369.

    8. [8]

      [8] Qiherima, H. Yuan, Y.H. Zhang, et al., In situ FTIR and XPS study on selective hydrodesulfurization catalyst of FCC gasoline, Spectrosc. Spectral Anal. 31 (2011) 1752-1757.

    9. [9]

      [9] M. Gerhard, In situ Raman spectroscopy - a valuable tool to understand operating catalysts, J. Mol. Catal. A: Chem. 158 (2000) 45-65.

    10. [10]

      [10] G. Xiong, C. Li, Z. Feng, et al., Surface coordination structure of molybdate with extremely low loading on g-alumina characterized by UV resonance Raman spectroscopy, J. Catal. 186 (1999) 234-237.

    11. [11]

      [11] Z.B. Wei, C.D. Wei, Q. Xin, Study of the reducing and sulfiding process of Mosupported catalyst by in situ LRS, Acta Physico-Chem. Sin. 10 (1994) 402-408.

    12. [12]

      [12] T. Xiao, A.P. York, H. Al-Megren, et al., Preparation and characterization of bimetallic cobalt and molybdenum carbides, J. Catal. 202 (2001) 100-109.

    13. [13]

      [13] L. Le-Bihan, P. Blanchard, M. Fournier, et al., Raman spectroscopic evidence for the existence of 6-molybdoaluminate entities on an Mo/Al2O3 oxidic precursor, J. Chem. Soc. Faraday Trans. 94 (1998) 937-940.

    14. [14]

      [14] E. Payen, S. Kasztelan, S. Houssenbay, et al., Genesis and characterization by laser Raman spectroscopy and high-resolution electron microscopy of supported MoS2 crystallites, J. Phys. Chem. 93 (1989) 6501-6506.

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    6. [6]

      Hao LiHanzhi LuLinlin HuXueli ZhangHua ShaoFulun LiYanfei Shen . Dynamic surface-enhanced Raman spectroscopy-based metabolic profiling: A novel pathway to overcoming antifungal resistance. Chinese Chemical Letters, 2025, 36(7): 110342-. doi: 10.1016/j.cclet.2024.110342

    7. [7]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    9. [9]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    10. [10]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    11. [11]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    12. [12]

      Gen ZhangYing GuLin LiFuli MaDan YueXiaoguang ZhouChungui Tian . Anion-modulated HER and OER activity of 1D Co-Mo based interstitial compound heterojunctions for the effective overall water splitting. Chinese Chemical Letters, 2025, 36(7): 110110-. doi: 10.1016/j.cclet.2024.110110

    13. [13]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    14. [14]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    20. [20]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

Metrics
  • PDF Downloads(0)
  • Abstract views(924)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return