Citation: Rupa Rani Dey, Siddhartha Sankar Dhar. Ammonium persulphate promoted synthesis of polyethylene glycol entrapped potassium tribromide and its application in acylation and bromination of some selective organic compounds[J]. Chinese Chemical Letters, ;2013, 24(10): 866-868. shu

Ammonium persulphate promoted synthesis of polyethylene glycol entrapped potassium tribromide and its application in acylation and bromination of some selective organic compounds

  • Corresponding author: Siddhartha Sankar Dhar, 
  • Received Date: 24 April 2013
    Available Online: 22 May 2013

    Fund Project:

  • In this study, a new method of synthesis of polyethylene glycol supported potassium tribromide (PEG KBr3) and its application in acylation and bromination reactions are reported. Ammonium persulphate oxidizes KBr to the corresponding tribromide which is entrapped by polyethylene glycol leading to stable PEG KBr3. The reagent is proved to be highly efficient for the acylation of variety of alcohols and bromination of activated aromatic substrates. Themethod is a mild, one pot reaction and involves no use of toxic reagents.
  • 加载中
    1. [1]

      [1] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and practice, Oxford University Press, New York, 1998.

    2. [2]

      [2] S. Wenda, S. Illner, A. Mell, et al., Industrial biotechnology—the future of green chemistry, Green Chem. 13 (2011) 3007-3047.

    3. [3]

      [3] C. Chiappe, E. Leandri, D. Pieraccini, Highly efficient bromination of aromatic compounds using 3-methylimidazolium tribromides as reagent/solvent, J. Chem. Soc. Chem. Commun. 45 (2004) 2536-2537.

    4. [4]

      [4] A.D. Jordan, C. Luo, A.B. Reitz, Efficient conversion of substituted aryl thioureas to 2-aminobenzothiazoles using benzyltrimethyl ammonium tribromides, J. Org. Chem. 68 (2003) 8693-8696.

    5. [5]

      [5] K. Ma, S. Li, R.G.Weiss, Stereoselective bromination reactions using tridecylmethylphosphonium tribromide in a "Stacked" reactor, Org. Lett. 10 (2008) 4155-4158.

    6. [6]

      [6] A.R. Hajipour, S.A. Pourmousavi, A.E. Ruoho, Benzyltriphenylphosphonium tribromide: a mild, regenerable and efficient reagent for the deprotection of dithioacetals, J. Sulfur Chem. 25 (2004) 401-405.

    7. [7]

      [7] V. Kavala, S. Naik, B.K. Patel, A new recyclable ditribromide reagent for efficient bromination under solvent free condition, J. Org. Chem. 70 (2005) 4267-4271.

    8. [8]

      [8] M. Dey, S.S. Dhar, M. Kalita, Novel methods of synthesis of quaternary ammonium tribromides and investigation of catalytic role of benzyltrimethyl ammonium tribromide in oxidation alcohols to carbonyl compounds, Synth. Commun. 43 (2013) 1734-1742.

    9. [9]

      [9] M. Dey, S.S. Dhar, Synthesis of quaternary tribromides: a novel green approach, Green Chem. Lett. Rev. 5 (2012) 639-642.

    10. [10]

      [10] R. Borah, A.J. Thakur, Green synthesis of tetraalkylammonium tribromide using cerium (IV) ammonium nitrate (CAN) as oxidant, Synth. Commun. 37 (2007) 933-939.

    11. [11]

      [11] U. Bora, M.K. Chaudhuri, S.S. Dhar, et al., Peroxometal-mediated environmentally favourable route to brominating agents and protocol for the bromination of organics, Pure Appl. Chem. 73 (2001) 93-102.

    12. [12]

      [12] M. K. Chaudhuri, U. Bora, S.S. Dhar, et al., Process of preparing quaternary ammonium tribromides, US Patent 7005548 (2006).

    13. [13]

      [13] M. Dey, K. Deb, S.S. Dhar, VO(acac)2 catalysed condensation of o-phenylenediamine with aromatic carboxylic acids/aldehydes under microwave radiation affording benzimidazoles, Chin. Chem. Lett. 22 (2011) 296-299.

    14. [14]

      [14] M.A. Zolfigol, G. Chehardoli, S. Salehzadeh, et al., {[K 18-Crown-6]Br3}n: a unique tribromide-type and columnar nanotube-like structure for the oxidative coupling of thiols and bromination of some aromatic compounds, Tetrahedron Lett. 48 (2007) 7969-7973.

    15. [15]

      [15] M. Hossein, K. Zahra, Synthesis and application of poly (diallyldimethylammonium tribromide) as a novel polymeric brominating agent, Chin. J. Chem. 28 (2010) 2221-2225.

    16. [16]

      [16] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed., John Wiley & Sons Inc., New York, 1997p. 169.

    17. [17]

      [17] T. Ozeki, H. Yuasa, Y. Kanaya, Application of the solid dispersion method to the controlled release of medicine. IX. Difference in the release of flurbiprofen from solid dispersions with poly(ethylene oxide) and hydroxypropylcellulose and the interaction between medicine and polymers, Int. J. Pharm. 155 (1997) 209-217.

    18. [18]

      [18] K. Shameli, M.B. Ahmad, S.D. Jazayeri, Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method, Int. J. Mol. Sci. 13 (2012) 6639-6650.

    19. [19]

      [19] E. Kang, J. Robinson, K. Park, et al., Paclitaxel distribution in poly(ethylene glycol)/poly(lactide-co-glycolic acid) blends and its release visualized by coherent anti-Stokes Raman scattering microscopy, J. Control. Release 122 (2007) 261-268.

    20. [20]

      [20] V. Meisalo, O. Inkinen, An X-ray diffraction analysis of potassium bromide, Acta Crystallogr. 22 (1967) 58-65.

    21. [21]

      [21] H.B. Watson, The reaction of bromine with aliphatic acids. Catalytic effect of acyl halides, J. Chem. Soc. Trans. 127 (1925) 2067-2082.

    22. [22]

      [22] J. Buckinghum, S.M. Donaghy, Dictionary of Organic Compounds, 6th ed., Chapman & Hall, London, 1982.

  • 加载中
    1. [1]

      Haiying Wei Daqing Yang Mingtao Run Guoyan Huo . Examination and Analysis on Rationality of Experimental Design: Based on Reaction of Potassium Permanganate with Potassium Bormide. University Chemistry, 2024, 39(10): 283-288. doi: 10.12461/PKU.DXHX202404068

    2. [2]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    3. [3]

      Aonan WangJingwen DaiYiming GuoFanghua NingXiaoyu LiuSidra SubhanJiaqian QinShigang LuJin Yi . Imidazolium bromide based dual-functional redox mediator for the construction of dendrite-free Li-CO2 batteries. Chinese Chemical Letters, 2025, 36(7): 110186-. doi: 10.1016/j.cclet.2024.110186

    4. [4]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    5. [5]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    6. [6]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

    7. [7]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    8. [8]

      Cailing WuShaojie WuQifei HuangKai SunXianqiang HuangJianji WangBing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250

    9. [9]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    10. [10]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    11. [11]

      Quanxing MaoZhengliang WangZhinan HuZiqi YangHui LiYali YaoZijun YongTianyi Ma . Facial detection of formaldehyde by using acidichromic carbon dots and the reaction between formaldehyde and ammonium chloride. Chinese Chemical Letters, 2025, 36(7): 110499-. doi: 10.1016/j.cclet.2024.110499

    12. [12]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    13. [13]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    14. [14]

      Shimei WuYining LiLantao ChenYufei ZhangLingxing ZengHaosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796

    15. [15]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    16. [16]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    17. [17]

      Wen XiaoFazhan WangYangzhuo GuXi HeNa FanQian ZhengShugang QinZhongshan HeYuquan WeiXiangrong Song . PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines. Chinese Chemical Letters, 2024, 35(5): 108755-. doi: 10.1016/j.cclet.2023.108755

    18. [18]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    19. [19]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    20. [20]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

Metrics
  • PDF Downloads(0)
  • Abstract views(1079)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return