Citation: Hai-Yan Fu, Dong-Chen Huang, Tian-Ming Yang, Yuan-Bin She, Hao Zhang. Rapid recognition of Chinese herbal pieces of Areca catechu by different concocted processes using Fourier transform mid-infrared and near-infrared spectroscopy combined with partial least-squares discriminant analysis[J]. Chinese Chemical Letters, ;2013, 24(07): 639-642. shu

Rapid recognition of Chinese herbal pieces of Areca catechu by different concocted processes using Fourier transform mid-infrared and near-infrared spectroscopy combined with partial least-squares discriminant analysis

  • Corresponding author: Tian-Ming Yang,  Yuan-Bin She, 
  • Received Date: 24 December 2012
    Available Online: 8 April 2013

  • Rapid and sensitive recognition of herbal pieces according to different concocted processing is crucial to quality control and pharmaceutical effect. Near-infrared (NIR) and mid-infrared (MIR) technology combined with supervised pattern recognition based on partial least-squares discriminant analysis (PLSDA) was attempted to classify and recognize six different concocted processing pieces of 600 Areca catechu L. samples and the influence of fingerprint information preprocessing methods on recognition performance was also investigated in this work. Recognition rates of 99.24%, 100% and 99.49% for original fingerprint, multiple scatter correct (MSC) fingerprint and second derivative (2nd derivative) fingerprint of NIR spectra were achieved by PLSDA models, respectively. Meanwhile, a perfect recognition rate of 100% was obtained for the above three fingerprint models of MIR spectra. In conclusion, PLSDA can rapidly and effectively extract otherness of fingerprint information from NIR and MIR spectra to identify different concocted herbal pieces of A. catechu.
  • 加载中
    1. [1]

      [1] R. Karoui, G. Downey, C. Blecker, Mid-infrared spectroscopy coupled with chemometrics: a tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships-a review, Chem. Rev. 110 (2010) 6144-6168.

    2. [2]

      [2] J.J. Liu, H. Xu, W.S. Cai, et al., Discrimination of industrial products by on-line near infrared spectroscopy with an improved dendrogram, Chin. Chem. Lett. 22 (2011) 1241-1244.

    3. [3]

      [3] Y. Wang, X. Ma, Y.D. Wen, et al., Discrimination of plant samples using nearinfrared spectroscopy with a principal component accumulation method, Anal. Methods 4 (2012) 2893-2899.

    4. [4]

      [4] J.J. Liu, X. Ma, Y.D. Wen, et al., Online near-infrared spectroscopy combined with alternating trilinear decomposition for process analysis of industrial production and quality assurance, Ind. Eng. Chem. Res. 50 (2011) 7677-7681.

    5. [5]

      [5] L. Reid, T. Woodcock, C.P. O' Donnell, et al., Differentiation of apple juice samples on the basis of heat treatment and variety using chemometric analysis of MIR and NIR data, Food Res. Int. 389 (2005) 1109-1115.

    6. [6]

      [6] O. Galtier, O. Abbas, Y. Le Dréau, et al., Comparison of PLS1-DA, PLS2-DA and SIMCA for classification by origin of crude petroleum oils by MIR and virgin olive oils by NIR for different spectral regions, Vib. Spectrosc. 55 (2011) 132-140.

    7. [7]

      [7] R. Riovanto, W.U. Cynkar, P. Berzaghi, et al., Discrimination between Shiraz wines from different Australian regions: the role of spectroscopy and chemometrics, J. Agric. Food Chem. 59 (2011) 10356-10360.

    8. [8]

      [8] H.Y. Fu, S.Y. Huan, L. Xu, et al., Moving window partial least-squares discriminant analysis for identification of different kinds of bezoar samples by near infrared spectroscopy and comparison of different pattern recognition methods, J. Near. Infrared Spec. 15 (2007) 291-297.

    9. [9]

      [9] S.M. van Ruth, B. Villegas, W. Akkermans, et al., Prediction of the identity of fats and oils by their fatty acid, triacylglycerol and volatile compositions using PLS-DA, Food Chem. 118 (2010) 948-955.

    10. [10]

      [10] W.Q. Luo, S.Y. Huan, H.Y. Fu, et al., Preliminary study on the application of near infrared spectroscopy and pattern recognition methods to classify different types of apple samples, Food Chem. 128 (2011) 555-561.

    11. [11]

      [11] U. Lutz, R.W. Lutz, W.K. Lutz, Metabolic profiling of glucuronides in human urine by LC-MS/MS and partial least-squares discriminant analysis for classification and prediction of gender, Anal. Chem. 78 (2006) 4564-4571.

    12. [12]

      [12] P. Geladi, D. MacDougall, H. Martens, Linearization and scatter-correction for near-infrared reflectance spectra of meat, Appl. Spectrosc. 39 (1985) 491-500.

    13. [13]

      [13] D.K. Holdsworth, R.A. Jones, R. Self, Volatile alkaloids from Areca catechu, Phytochemistry 48 (1998) 581-582.

    14. [14]

      [14] A. Bales, M.J. Peterson, S. Ojha, K. Upadhaya, et al., Associations between betel nut (Areca catechu) and symptoms of schizophrenia among patients in Nepal: a longitudinal study, Psychiat. Res. 169 (2009) 203-211.

    15. [15]

      [15] V. Ortiz-Somovilla, F. España-Españ a, A.J. Gaitán-Jurado, et al., Proximate analysis of homogenized and minced mass of pork sausages by NIRS, Food Chem. 101 (2007) 1031-1040.

    16. [16]

      [16] Y.P. Zhou, J.H. Jiang, H.L. Wu, et al., Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression, J. Chemometr. 20 (2006) 13-21.

  • 加载中
    1. [1]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

    2. [2]

      Yuyang ZhouZiwang MaoJing-Juan Xu . Recent advances in near infrared (NIR) electrochemiluminescence luminophores. Chinese Chemical Letters, 2024, 35(11): 109622-. doi: 10.1016/j.cclet.2024.109622

    3. [3]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    4. [4]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    5. [5]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    6. [6]

      Hao LiHanzhi LuLinlin HuXueli ZhangHua ShaoFulun LiYanfei Shen . Dynamic surface-enhanced Raman spectroscopy-based metabolic profiling: A novel pathway to overcoming antifungal resistance. Chinese Chemical Letters, 2025, 36(7): 110342-. doi: 10.1016/j.cclet.2024.110342

    7. [7]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    8. [8]

      Rakesh Kumar Gupta Zhi Wang Di Sun . Shining bright: Revolutionary near-unity NIR phosphorescent metal nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(11): 100417-100417. doi: 10.1016/j.cjsc.2024.100417

    9. [9]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    10. [10]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    11. [11]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    12. [12]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    13. [13]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    14. [14]

      Lulu CaoYikun LiDongxiang ZhangShuai YueRong ShangXin-Dong JiangJianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735

    15. [15]

      Xiaoshuai WuBailei WangYichen LiXiaoxuan GuanMingjing YinWenquan LvYin ChenFei LuTao QinHuyang GaoWeiqian JinYifu HuangCuiping LiMing GaoJunyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211

    16. [16]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    17. [17]

      Shu TianWenxin HuangJunrui HuHuiling WangZhipeng ZhangLiying XuJunrong LiYao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336

    18. [18]

      Xiao-Fang LvXiao-Yun RanYu ZhaoRui-Rui ZhangLi-Na ZhangJing ShiJi-Xuan XuQing-Quan KongXiao-Qi YuKun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027

    19. [19]

      Mengjie GaoZhiqiang CuiYue ShenYikun LiDongxiang ZhangXiaoyan GaoYaguang SunXin-Dong JiangJianjun DuXiaohong Sun . NIR-II emissive aza-BODIPY-based nanoparticles for triggering glioblastoma apoptosis in brain. Chinese Chemical Letters, 2025, 36(5): 110098-. doi: 10.1016/j.cclet.2024.110098

    20. [20]

      Baoli YinXinlin LiuZhe LiZhifei YeYoujuan WangXia YinSulai LiuGuosheng SongShuangyan HuanXiao-Bing Zhang . Ratiometric NIR-Ⅱ fluorescent organic nanoprobe for imaging and monitoring tumor-activated photodynamic therapy. Chinese Chemical Letters, 2025, 36(5): 110119-. doi: 10.1016/j.cclet.2024.110119

Metrics
  • PDF Downloads(0)
  • Abstract views(969)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return