Citation: Hui Tang, Can-Hui Zheng, Xiao-Hui Ren, Jia Liu, Na Liu, Jia-Guo Lv, Ju Zhu, You-Jun Zhou. Synthesis and biological evaluation of novel triazole derivatives as antifungal agents[J]. Chinese Chemical Letters, ;2013, 24(3): 219-222. shu

Synthesis and biological evaluation of novel triazole derivatives as antifungal agents

  • Corresponding author: Can-Hui Zheng,  You-Jun Zhou, 
  • Received Date: 26 October 2012
    Available Online: 17 December 2012

  • A series of 1-(benzylamino)-2-(2,4-difluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ols compounds were synthesized and evaluated for their antifungal activities in vitro. The results showed that compounds 6A and 6B exhibited good antifungal activity. Compound 6A8 showed the strongest antifungal activity, which was significantly higher than that of the lead compounds and positive-control drugs Fluconazole and Itraconazole. In particular, the antifungal activity of compound 6A8 against Candida albicans and Candida krusei (MIC80 both at 0.00097 mg/mL) was 515 and 64 times that of Fluconazole, respectively. The structure-activity relationships of the synthesized compounds were discussed, and the docking model of the target compounds with fungal lanosterol 14α-demethylase (CYP51) was analyzed.
  • 加载中
    1. [1]

      [1] B.J. Kullberg, A.M. Oude Lashof, Epidemiology of opportunistic invasive mycoses, Eur. J. Med. Res. 7 (2002) 183-191.

    2. [2]

      [2] D.A. Enoch, H.A. Ludlam, N.M. Brown, Invasive fungal infections: a review of epidemiology and management options, J. Med. Microbiol. 55 (2006) 809-818.

    3. [3]

      [3] E. Rodriguez-Fernandez, J.L. Manzano, J.J. Benito, et al., Thiourea, triazole and thiadiazine compounds and their metal complexes as antifungal agents, J. Inorg. Biochem. 99 (2005) 1558-1572.

    4. [4]

      [4] H. Hof, Is there a serious risk of resistance development to azoles among fungi due to the widespread use and long-term application of azole antifungals in medicine? Drug Resist. Updat. 11 (2008) 25-31.

    5. [5]

      [5] P. Eggimann, J. Garbino, D. Pittet, Management of Candida species infections in critically ill patients, Lancet Infect. Dis. 3 (2003) 772-785.

    6. [6]

      [6] J. Peman, E. Canton, A. Espinel-Ingroff, Antifungal drug resistance mechanisms, Expert. Rev. Anti. Infect. Ther. 7 (2009) 453-460.

    7. [7]

      [7] A.K. Gupta, E. Tomas, New antifungal agents, Dermatol. Clin. 21 (2003) 565-576.

    8. [8]

      [8] G.R. Thompson Ⅲ, J. Cadena, T.F. Patterson, Overview of antifungal agents, Clin. Chest Med. 30 (2009) 203-215.

    9. [9]

      [9] H. Ji, W. Zhang, Y. Zhou, et al., A three-dimensional model of lanosterol 14alphademethylase of Candida albicans and its interaction with azole antifungals, J. Med. Chem. 43 (2000) 2493-2505.

    10. [10]

      [10] Z. Guan, X. Chai, S. Yu, et al., Synthesis, molecular docking, and biological evaluation of novel triazole derivatives as antifungal agents, Chem. Biol. Drug. Des. 76 (2010) 496-504.

    11. [11]

      [11] C. Sheng, W. Zhang, H. Ji, et al., Structure-based optimization of azole antifungal agents by CoMFA, CoMSIA, and molecular docking, J. Med. Chem. 49 (2006) 2512-2525.

    12. [12]

      [12] National Committee for Clinical Laboratory Standards, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts Approved standard, Document M27-A2, National Committee for Clinical Laboratory Standards, Wayne, PA, 2002.

    13. [13]

      [13] B. Yao, H. Ji, Y. Cao, et al., Synthesis and antifungal activities of novel 2-aminotetralin derivatives, J. Med. Chem. 50 (2007) 5293-5300.

    14. [14]

      [14] X. Chai, J. Zhang, S. Yu, et al., Design, synthesis, and biological evaluation of novel 1-(1H-1,2,4-triazole-1-yl)-2-(2,4-difluorophenyl)-3-substituted benzylamino-2-propanols, Bioorg. Med. Chem. Lett. 19 (2009) 1811-1814.

    15. [15]

      [15] X. Chai, J. Zhang, H. Hu, et al., synthesis, and biological evaluation of novel triazole derivatives as inhibitors of cytochrome P450 14alpha-demethylase, Eur. J. Med. Chem. 44 (2009) 1913-1920.

  • 加载中
    1. [1]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    2. [2]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    3. [3]

      Anjing LiaoWei SunYaming LiuHan YanZhi XiaJian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094

    4. [4]

      Yun-Feng LiuHui-Fang DuYa-Hui ZhangZhi-Qin LiuXiao-Qian QiDu-Qiang LuoFei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858

    5. [5]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    6. [6]

      Haiying Jiang Liuhong Song Yangyang Cheng Kefen Yue Mingli Peng Huilin Guo . Ph―C≡C―Cu2.5的力致变色现象探究——推荐一个物理化学实验. University Chemistry, 2025, 40(8): 249-254. doi: 10.12461/PKU.DXHX202410003

    7. [7]

      Bing XieQi JiangFang ZhuYaoyao LaiYueming ZhaoWei HePei Yang . Transdermal delivery of amphotericin B using deep eutectic solvents for antifungal therapy. Chinese Chemical Letters, 2025, 36(5): 110508-. doi: 10.1016/j.cclet.2024.110508

    8. [8]

      Hao LiHanzhi LuLinlin HuXueli ZhangHua ShaoFulun LiYanfei Shen . Dynamic surface-enhanced Raman spectroscopy-based metabolic profiling: A novel pathway to overcoming antifungal resistance. Chinese Chemical Letters, 2025, 36(7): 110342-. doi: 10.1016/j.cclet.2024.110342

    9. [9]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    10. [10]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    11. [11]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    12. [12]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    13. [13]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    14. [14]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    15. [15]

      Yu PengYue WangTian-Jiao ChenJing-Jing ChenJin-Ling YangTing GongPing Zhu . A fungal CYP from Beauveria bassiana with promiscuous steroid hydroxylation capabilities. Chinese Chemical Letters, 2024, 35(5): 108818-. doi: 10.1016/j.cclet.2023.108818

    16. [16]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    17. [17]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    18. [18]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    19. [19]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    20. [20]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

Metrics
  • PDF Downloads(0)
  • Abstract views(919)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return