Citation: Yong-Hai Liu, Ting-Ming Fu, Chun-Yan Ou, Wen-Ling Fan, Guo-Ping Peng. Improved preparation of (1S,3’R,4’S,5’S,6’R)-5-chloro-6-[(4-ethylphenyl)methyl]-3’,4’,5’,6’-tetrahydro-6’-(hydroxymethyl)-spiro[isobenzofuran-1(3H),2’-[2H]pyran]-3’,4’,5’-triol[J]. Chinese Chemical Letters, ;2013, 24(2): 131-133. shu

Improved preparation of (1S,3’R,4’S,5’S,6’R)-5-chloro-6-[(4-ethylphenyl)methyl]-3’,4’,5’,6’-tetrahydro-6’-(hydroxymethyl)-spiro[isobenzofuran-1(3H),2’-[2H]pyran]-3’,4’,5’-triol

  • Corresponding author: Guo-Ping Peng, 
  • Received Date: 9 November 2012
    Available Online: 3 December 2012

    Fund Project: This work was financially supported by the Open Project Program of National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, PAPD (ysxk-2010). (ysxk-2010)

  • A convenient approach for the preparation of (1S,3'R,4'S,5'S,6'R)-5-chloro-6-[(4-ethylphenyl)methyl]-3',4',5',6'-tetrahydro-6'-(hydroxymethyl)-spiro[isobenzofuran-1(3H), 2'-[2H]pyran]-3',4',5'-triol is developed. The targeted compound was synthesized from 2-bromo-4-methylbenzoic acid in nine steps and the isomers of undesired ortho-products were avoided during the preparation.
  • 加载中
    1. [1]

      [1] D. Mathis, L. Vence, C. Benoist, beta-Cell death during progression to diabetes, Nature 414 (2001) 792-798.

    2. [2]

      [2] T. Asano, T. Ogihara, H. Katagiri, Glucose transporter and Na+/glucose cotransporter as molecular targets of anti-diabetic drugs, Curr. Med. Chem. 11 (2004) 2717-2724.

    3. [3]

      [3] J.R.L. Ehrenkranz, N.G. Lewis, C.R. Kahn, J. Roth, Phlorizin: a review, Diabetes Metab. Res. Rev. 21 (2005) 31-38.

    4. [4]

      [4] L. Binhua, X. Baihua, Exploration of O-spiroketal C-arylglucosides as novel and selective renal sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors, Bioorg. Med. Chem. Lett. 19 (2009) 6877-6881.

    5. [5]

      [5] L. Binhua, X. Baihua, ortho-Substituted C-aryl glucosides as highly potent and selective renal sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors, Bioorg. Med. Chem. Lett. 18 (2010) 4422-4432.

    6. [6]

      [6] S. Tsutomu, H. Kiyofumi, et al., EU Patent, EP 2048153A1, 2009.

    7. [7]

      [7] L. Sandrine, A. Mohamed, Selective double Suzuki cross-coupling reactions. Synthesis of unsymmetrical diaryl (or heteroaryl) methanes, Tetrahedron Lett. 44 (2003) 9255-9258.

    8. [8]

      [8] C. Sultan, E.G. Paris, Palladium catalyzed cross-coupling between phenyl or naphthylboronic acids and benzylic bromides, Tetrahedron Lett. 40 (1999) 7599-7603.

    9. [9]

      [9] M.N. Sabrina, L.M. Adriano, Synthesis of diarylmethane derivatives from Pdcatalyzed cross-coupling reactions of benzylic halides with arylboronic acids, Tetrahedron Lett. 45 (2004) 8225-8228.

    10. [10]

      [10] Typical procedure for the synthesis of 6: To a solution of 4-ethylphenylboronic acid (0.225 g, 1.5 mmol) in toluene (5 mL) was added Pd(OAc)2 (2.3 mg, 0.01 mmol) under an argon atmosphere, and PPh3 (1.5 mg, 0.005 mmol) and K3PO4 (0.4 g, 2 mmol) were added sequentially. The mixture was stirred for 10 min at room temperature, and 5 (0.26 g, 1 mmol) was added. The reaction mixture was stirred for 4 h at 80℃ under an argon atmosphere, cooled to room temperature, and treated with water. The resultant mixture was extracted with EtOAc, washed with water and brine, dried over anhydrous sodium sulfate and concentrated in vacuo to give yellow oil (0.3 g, 82%).

    11. [11]

      [11] Typical procedure for the synthesis of 9: To a stirred 78℃ solution of 8 (0.41 g, 1 mmol) in 1:2 anhydrous THF/toluene (10 mL) was slowly added n-BuLi (1 mL, 1.1 mol/L in hexane) to maintain the temperature below 70℃. After stirring for 30 min, this solution was added to a stirred solution of (3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-(benzyloxymethyl)-tetrahydro-pyran-2-one 10 (0.64 g, 1.2 mmol) in toluene (5 mL) to maintain the temperature below 65℃, then the solution was stirred for 5 h at 78℃, and the reaction was quenched by a solution of methanesulfonic acid (214 mg, 2.2 mmol) in THF (5 mL). The mixture was stirred for 24 h at room temperature and quenched with saturated NaHCO3. The mixture was extracted with EtOAc, washed with water and brine, dried over anhydrous sodium sulfate and concentrated in vacuo to give oil, which was purified by silicon column chromatography to get a colorless oil (0.62 g, 79%). Rf = 0.35 (petroleum ether/EtOAc, 8:1, v/v).

    12. [12]

      [12] Typical procedure for the synthesis of 1: To a solution of 9 (2.6 g, 3.33 mmol) in 2:3 EtOAc/MeOH (30 mL), 0.25 g palladium on carbon and 1,2-dichlorobenzene (10 mL) was added sequentially. The air of the reactor was removed by argon, then the 0.1 MPa H2 was applied for 12 h at 25℃. The solvent was filtrated, the filter cake was washed by EtOAc, and the filtrate was concentrated in vacuo to give oil. The oil was purified by silicon column chromatography to get a glassy off white solid (1.35 g, 96%). Rf = 0.35 (MeOH/EtOAc, 1:5, v/v).

    13. [13]

      [13] Selected data compounds: 6: 1H NMR: (300 MHz, CDCl3): δ 7.96 (s, 1H), 7.54 (s, 1H), 7.32 (d, 2H, J = 7.8 Hz), 7.11 (d, 2H, J = 7.8 Hz), 4.11 (s, 2H), 3.82 (s, 3H), 2.74 (q, 2H, J = 7.8 Hz), 1.26 (t, 3H, J = 7.8 Hz); 13C NMR (100 MHz, CDCl3): δ 168.9, 150.3, 142.4, 138.9, 134.6, 133.6, 132.8, 130.9, 129.5, 128.7, 121.7, 53.5, 36.3, 28.5, 14.7; MS: m/z 366 [M+]; 389 [M++Na+]; Anal. Calcd. for C17H16BrClO2: C 55.53, H 4.39; Found: C 55.49, H 4.41; 9 1H NMR (300 MHz, CDCl3): δ 7.52 (d, 1H, J = 1.5 Hz), 7.38-7.42 (m, 6H), 7.29-7.32 (m, 9H), 7.17-7.21 (m, 4H), 7.11 (d, 4H, J = 1.2 Hz), 7.08 (d, 2H, J = 8.4 Hz), 4.88-4.96 (m, 3H), 4.72 (S, 2H), 4.56-4.67 (m, 3H), 4.46 (d, 1H, J = 10.8 Hz), 4.16-4.22 (m, 2H), 3.88 (d, 1H, J = 8.4 Hz), 3.82 (s, 1H), 3.66-3.77 (m, 4H), 3.36 (d, 1H, J = 9.6 Hz), 2.60 (q, 2H, J = 7.6 Hz), 1.24 (t, 3H, J = 7.6 Hz); 13C NMR (100 MHz, CH23OD): δ 139.8, 138.6, 137.6, 130.5, 129.5, 129.1, 129.0, 128.9, 128.8, 128.6, 128.4, 128.3, 128.2, 128.1, 128.0, 127.4, 101.2, 85.6, 84.9, 79.8, 78.9, 78.5, 77.5, 76.4, 75.6, 74.9, 73.6, 70.2, 62.7, 39.4, 28.8, 16.0; MS:m/z 780 [M+]; 803 [M++Na+]; Anal. Calcd. for C50H49ClO6: C 76.86, H 6.32; Found: C 76.47, H 6.43; 1: 1H NMR (300 MHz, CH23OD): δ 1.19 (t, 3H, J = 7.5 Hz), 2.57 (q, 2H, J = 7.5, 7.8 Hz), 3.41-3.47 (1H, m), 3.64 (dd, 1H, J = 6 Hz), 3.73-3.83 (m, 4H), 3.95 (s, 2H), 5.11 (dd, 2H, J = 7.8, 12.3 Hz), 7.06-7.12 (m, 4H), 7.16-7.23 (m, 3H); 13C NMR (100 MHz, CH23OD): δ 143.3, 142.8, 140.8, 139.7, 138.2, 131.6, 130.8, 129.6, 128.8, 127.8, 125.6, 83.6, 77.2, 72.6, 71.4, 66.1, 62.7, 36.8, 28.6, 15.6; MS: m/z 420 [M+]; 443 [M++Na+]; Anal. Calcd. for C22H25ClO6: C 62.78, H 5.99; Found: C 62.71, H 6.02.

  • 加载中
    1. [1]

      Chunyu YanQinglong QiaoWei ZhouXuelian ZhouYonghui ChenLu MiaoZhaochao Xu . FRET-based in vitro assay for rapid detecting of SARS-CoV-2 entry inhibitors. Chinese Chemical Letters, 2025, 36(5): 110258-. doi: 10.1016/j.cclet.2024.110258

    2. [2]

      Zhexin ChenYuqing ShiFang ZhongKai ZhangFurong ZhangShenghong XieZhongbin ChengQian ZhouYi-You HuangHai-Bin Luo . Discovery of amentoflavone as a natural PDE4 inhibitor with anti-fibrotic effects. Chinese Chemical Letters, 2025, 36(4): 109956-. doi: 10.1016/j.cclet.2024.109956

    3. [3]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    4. [4]

      Han YuanFengcai ZhangHongzhe HuangJiafei WuYi YangWanyi HuangDongjing YangZhuoming LiZhe LiLing HuangYi-You HuangHai-Bin LuoLei Guo . Discovery of 3-trifluoromethyl-substituted pyrazoles as selective phosphodiesterase 10A inhibitors for orally attenuating isoprenaline-induced cardiac hypertrophy. Chinese Chemical Letters, 2025, 36(4): 109965-. doi: 10.1016/j.cclet.2024.109965

    5. [5]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    6. [6]

      Shuheng ZhangYuanyuan ZhangWanyu WangYuzhu HuXinchuan ChenBilan WangXiang Gao . A combination strategy of DOX and VEGFR-2 targeted inhibitor based on nanomicelle for enhancing lymphoma therapy. Chinese Chemical Letters, 2024, 35(12): 109658-. doi: 10.1016/j.cclet.2024.109658

    7. [7]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    8. [8]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    9. [9]

      Hongwei DingJingjing YangYongchen ShuaiDi WeiXueliang LiuGuiying LiLin JinJianliang ShenIn situ preparation of tannin-mediated CeO2@CuS nanocomposites for multimodal wound therapy. Chinese Chemical Letters, 2025, 36(6): 110286-. doi: 10.1016/j.cclet.2024.110286

    10. [10]

      Yadong LiFeng-Huan DuJunjie LiJun XuZhifang YangShanshan LiChi ZhangYunfei Du . Preparation of benziodazole-triflate and its application as both 2-iodobenzamido- and triflate-transfer reagents. Chinese Chemical Letters, 2025, 36(6): 110338-. doi: 10.1016/j.cclet.2024.110338

    11. [11]

      Zhangyong LIULihui XUYue YANGLiming WANGHong PANXinzhe HUANGXueqiang FUYingxiu ZHANGMeiran DOUMeng WANGYi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345

    12. [12]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    13. [13]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    14. [14]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    15. [15]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    16. [16]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    17. [17]

      Xuan WangPeng SunSiteng YuanLu YueYufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015

    18. [18]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    19. [19]

      Dongmei DaiXiaobing LaiXiaojuan WangYunting YaoMengmin JiaLiang WangPengyao YanYaru QiaoZhuangzhuang ZhangBao LiDai-Huo Liu . Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage. Chinese Chemical Letters, 2024, 35(10): 109405-. doi: 10.1016/j.cclet.2023.109405

    20. [20]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

Metrics
  • PDF Downloads(0)
  • Abstract views(951)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return