Citation: Chang-Zhi Zhao, Jun-Yu Liang, Xiao-Lei Gu, Hui Liu. Simultaneous determination of dihydroxybenzene isomers utilizing a thiadiazole film electrode[J]. Chinese Chemical Letters, ;2014, 25(2): 370-374. shu

Simultaneous determination of dihydroxybenzene isomers utilizing a thiadiazole film electrode

  • Corresponding author: Chang-Zhi Zhao, 
  • Received Date: 28 August 2013
    Available Online: 25 October 2013

  • The present study reports a sensitive electro-analytical method for the simultaneous determination of dihydroxybenzene isomers by using a thiadiazole film electrode, which was readily prepared by electropolymerization of 2,5-dimercapto-1,3,4-thiadiazole on a glassy carbon electrode with cyclic voltammetry. The functionalized electrode has a distinguishable and sensitive response to dihydroxybenzene isomers. Under the optimized conditions, the linear stripping peak currents showed good linear relationships with hydroquinone, catechol and resorcinol at concentration ranges 0.50-120, 0.50-110 and 1.00-110 μmol/L, and the detection limits are 0.1, 0.1 and 0.3 μmol/L, respectively. The proposed method is applicable to the simultaneous determination of dihydroxybenzene isomers in real samples with the relative standard deviations of less than 5.7% and the recovery rates of 95.6%-106%. The constructed electrode is characterized by simple preparation, good selectivity, and high sensitivity advantages.
  • 加载中
    1. [1]

      [1] K.J. Huang, S. Yu, L. Wang, T. Gan, M. Li, Simultaneous determination of hydroquinone, catechol and resorcinol based on graphene/cobalt hexacyanoferrate modified glassy carbon, electrode, Acta Chim. Sinica 70 (2012) 735-740.

    2. [2]

      [2] X. Zhang, S. Duan, X. Xu, S. Xu, C. Zhou, Electrochemical behavior and simultaneous determination of dihydroxybenzene isomers at a functionalized SBA-15 mesoporous silica modified carbon paste electrode, Electrochim. Acta 56 (2011) 1981-1987.

    3. [3]

      [3] H.S. Yin, Q.M. Zhang, Y.L. Zhou, et al., Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene-chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples, Electrochim. Acta 56 (2011) 2748-2753.

    4. [4]

      [4] D.W. Li, Y.T. Li, W. Song, Y.T. Long, Simultaneous determination of dihydroxybenzene isomers using disposable screen-printed electrode modified by multiwalled carbon nanotubes and gold nanoparticles, Anal. Methods 2 (2010) 837-843.

    5. [5]

      [5] D.D. Zhang, Y.G. Peng, H.L. Qi, Q. Gao, C.X. Zhang, Application of multielectrode array modified with carbon nanotubes to simultaneous amperometric determination of dihydroxybenzene isomers, Sens. Actuators B 136 (2009) 113-121.

    6. [6]

      [6] L. Han, X.L. Zhang, Simultaneous voltammetry determination of dihydroxybenzene isomers by nanogold modified electrode, Electroanalysis 21 (2009) 124-129.

    7. [7]

      [7] J.P. Dong, X.M. Qu, L.J. Wang, C.J. Zhao, J.Q. Xu, Electrochemistry of nitrogen-doped carbon nanotubes (CNx) with different nitrogen content and its application in simultaneous determination of dihydroxybenzene isomers, Electroanalysis 20 (2008) 1981-1986.

    8. [8]

      [8] P.H. Yang,W.Z. Wei, C.Y. Tao, J.X. Zeng, Simultaneous voltammetry determination of dihydroxybenzene isomers by poly-bromophenol blue/carbon nanotubes composite modified electrode, Bull. Environ. Contam. Toxicol. 79 (2007) 5-10.

    9. [9]

      [9] P.H. Yang, W.Z. Wei, L. Yang, Simultaneous voltammetric determination of dihydroxybenzene isomers using a poly(acid chrome blue K) carbon nanotube composite electrode, Microchim. Acta 157 (2007) 229-235.

    10. [10]

      [10] S. Cosnier, M. Holzinger, Electrosynthesized polymers for biosensing, Chem. Soc. Rev. 40 (2011) 2146-2156.

    11. [11]

      [11] P. Kalimuthu, S.A. John, Electropolymerized film of functionalized thiadiazole on glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid, Bioelectrochemistry 77 (2009) 13-18.

    12. [12]

      [12] C.Z. Zhao, H. Liu, L. Wang, Simultaneous determination of Pb(Ⅱ) and Cd(Ⅱ) using an electrode modified with electropolymerized thiadiazole film, Anal. Methods 4 (2012) 3586-3592.

    13. [13]

      [13] T. Tatsuma, Y. Yokoyama, D.A. Buttry, N. Oyama, Electrochemical polymerization and depolymerization of 2,5-dimercapto-1,3,4-thiadiazole. QCM and spectroscopic analysis, J. Phys. Chem. B 101 (1997) 7556-7562.

    14. [14]

      [14] D.T. Harvey, Modern Analytical Chemistry, McGraw-Hill, New York, 2000, p. 151.

  • 加载中
    1. [1]

      Lingjun ShaBing BoJiayu LiQi LiuYa CaoJing Zhao . Precise assessment of lung cancer-derived exosomes based on dual-labelled membrane interface. Chinese Chemical Letters, 2025, 36(4): 110109-. doi: 10.1016/j.cclet.2024.110109

    2. [2]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    3. [3]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    4. [4]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    5. [5]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    6. [6]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    7. [7]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    8. [8]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    9. [9]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    10. [10]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    11. [11]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    12. [12]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    13. [13]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    14. [14]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    15. [15]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    16. [16]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    17. [17]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    18. [18]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    19. [19]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    20. [20]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

Metrics
  • PDF Downloads(0)
  • Abstract views(910)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return