Citation: Hamid Tajizadegan, Mehdi Rashidzadeh, Majid Jafari, Reza Ebrahimi-Kahrizsangi. Novel ZnO-Al2O3 composite particles as sorbent for low temperature H2S removal[J]. Chinese Chemical Letters, ;2013, 24(2): 167-169. shu

Novel ZnO-Al2O3 composite particles as sorbent for low temperature H2S removal

  • Corresponding author: Hamid Tajizadegan, 
  • Received Date: 28 September 2012
    Available Online: 24 December 2012

  • ZnO-Al2O3 composite particles composed of ZnO nanosheets (thickness of 40-80 nm) on alumina particles were prepared by heterogeneous precipitation method using bayerite seed particles. The asprepared composite particles were characterized in terms of crystal structure,morphology, surface area and pore volume. The composite particles were used as sorbent for H2S adsorption at low temperature, and were compared with pure ZnO sorbent. The composite sorbent showed a greater sulfur adsorption capacity (0.052 g/g) than pure form of ZnO (0.028 g/g). This significant improvement was mainly attributed to higher surface area, more pore volume and unique morphology in nanoscale, which were also obtained by low cost presented method in this work for synthesis of ZnO sorbent supported on alumina particles.
  • 加载中
    1. [1]

      [1] D. Stirling, The Sulfur Problem: Cleaning up Industrial Feedstocks, The Royal Society of Chemistry, Cambridge, 2000.

    2. [2]

      [2] C. Li, Z.S. Yu, S.M. Fang, et al., Fabrication and gas sensing property of honeycomblike ZnO, Chin. Chem. Lett. 19 (2008) 599-603.

    3. [3]

      [3] J. Skrzypski, I. Bezverkhyy, O. Heintz, J.P. Bellat, Low temperature H2S removal with metal-doped nanostructure ZnO sorbents: study of the origin of enhanced reactivity in Cu-containing materials, Ind. Eng. Chem. Res. 50 (2011) 5714-5722.

    4. [4]

      [4] I. Rosso, C. Galletti, M. Bizzi, G. Saracco, V. Specchia, Zinc oxide sorbents for the removal of hydrogen sulfide from syngas, Ind. Eng. Chem. Res. 42 (2003) 1688-1697.

    5. [5]

      [5] Y.J. Lee, N.K. Park, G.B. Han, et al., The preparation and desulfurization of nano-size ZnO by a matrix-assisted method for the removal of low concentration of sulfur compounds, Curr. Appl. Phys. 8 (2008) 746-751.

    6. [6]

      [6] T.J. Lee, I.H. Cho, N.K. Park, Desulfurization using ZnO nanostructure prepared by matrix assisted method, Korean J. Chem. Eng. 26 (2009) 582-586.

    7. [7]

      [7] R. Habibia, A.M. Rashidib, J.T. Daryana, A.M. Ali Zadeh, Study of the rod-like and spherical nano-ZnO morphology on H2S removal from natural gas, Appl. Surf. Sci. 257 (2010) 434-439.

    8. [8]

      [8] I.I. Novochinskii, C.H. Song, X. Ma, et al., Low temperature H2S removal from steam-containing gas mixtures with ZnO for fuel cell application: 1. ZnO particles and extrudates, Energy Fuels 18 (2004) 576-583.

    9. [9]

      [9] G. Liua, Z.H. Huanga, F. Kang, Preparation of ZnO/SiO2 gel composites and their performance of H2S removal at room temperature, J. Hazard. Mater. 215-216 (2012) 166-172.

    10. [10]

      [10] X. Wang, T. Sun, J. Yang, L. Zhao, J. Jia, Low-temperature H2S removal from gas streams with SBA-15 supported ZnO nanoparticles, Chem. Eng. J. 142 (2008) 48-55.

    11. [11]

      [11] L. Chen, J. Shen, Effect of resorcinol formaldehyde resin gel on the preparation of Co/SiO2 catalysts for Fischer-Tropsch synthesis, Chin. J. Catal. 33 (2012) 621-628.

    12. [12]

      [12] Qiherima, H. Li, H. Yuan, Y. Zhang, G. Xu, Effect of alumina support on the formation of the active phase of selective hydrodesulfurization catalysts Co-Mo/Al2O3, Chin. J. Catal. 32 (2011) 240-249.

    13. [13]

      [13] Qiherima, H. Yuan, H.F. Li, Y.H. Zhang, G.T. Xu, Investigation on the active phase of Co/Mo catalyst for selective HDS by low temperature in situ FT-IR, Chin. Chem. Lett. 22 (2011) 366-369.

    14. [14]

      [14] K. Wefers, C. Misra, Oxides and Hydroxides of Aluminum, Alcoa Research Laboratories, Pennsylvania, 1987.

    15. [15]

      [15] C. Xu, J. Sun, B. Zhao, Q. Liu, On the study of KF/Zn(Al)O catalyst for biodiesel production from vegetable oil, Appl. Catal. B 99 (2010) 111-117.

    16. [16]

      [16] M. Mozibur Rahman, M.K.R. Khan, M. Rafiqul Islam, et al., Effect of Al doping on structural, electrical, optical and photoluminescence properties of nano-structural ZnO thin films, J. Mater. Sci. Technol. 28 (2012) 329-335.

  • 加载中
    1. [1]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    2. [2]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    3. [3]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    4. [4]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    5. [5]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    6. [6]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    8. [8]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    9. [9]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    10. [10]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    11. [11]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    12. [12]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    13. [13]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    14. [14]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    15. [15]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    16. [16]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    17. [17]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    18. [18]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    19. [19]

      Shujun NingZhiyuan WeiZhening ChenTianmin WuLu Zhang . Curvature and defect formation synergistically promote the photocatalysis of ZnO slabs. Chinese Chemical Letters, 2025, 36(7): 111057-. doi: 10.1016/j.cclet.2025.111057

    20. [20]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

Metrics
  • PDF Downloads(0)
  • Abstract views(960)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return