Citation: Da-Yi CHEN, Yan LI, Yi-Heng WU, Zhi-Lin WANG, Shuai-Hua WANG, Qing SU, Bi-Sheng ZHANG, Qing-You ZENG, Shao-Fan WU. Scintillation Properties of Ce3+/Tb3+ Co-doped Oxyfluoride Glass with the Exploration of Imaging Application[J]. Chinese Journal of Structural Chemistry, ;2021, 40(10): 1337-1345. doi: 10.14102/j.cnki.0254–5861.2011–3146 shu

Scintillation Properties of Ce3+/Tb3+ Co-doped Oxyfluoride Glass with the Exploration of Imaging Application

  • Corresponding author: Shuai-Hua WANG, shwang@fjirsm.ac.cn Shao-Fan WU, sfwu@fjirsm.ac.cn
  • Received Date: 22 February 2021
    Accepted Date: 15 April 2021

    Fund Project: the National Natural Science Foundation of China 22075284the National Natural Science Foundation of China 51872287the National Natural Science Foundation of China U2030118Equipment Pre-research Foundation Project of China 61409220309the Financial Support of Fujian Province under 2018Y024the Financial Support of Fujian Province under 2019T3011

Figures(9)

  • Scintillator is a material that converts high-energy rays into visible light, and has great applications in high-energy physics, medical imaging, and security inspections. As a type of scintillator, scintillation glass has the advantages of low cost, high stability, controllable shape, and ability to be prepared on a large scale. In this paper, a traditional fusion quenching method was used to prepare a cerium-terbium co-doped glass. The green characteristic light of Tb ion was observed at 543 nm. Moreover, through the doping sensitization of Ce ions, the luminescence of Tb was successfully enhanced. The material has high X-ray response sensitivity, complete stability and strong X-ray emission intensity. We use a simple X-ray imaging platform for imaging, and the results show that our glass has a spatial resolution of 7.0 lp/mm.
  • 加载中
    1. [1]

      Zanella, G.; Zannoni, R.; Dalligna, R. Nuclear instruments and methods in physics research section a: accelerators, spectrometers, detectors and associated equipment. Nucl. Instr. Meth. A 1994, 345, 198–201.  doi: 10.1016/0168-9002(94)90987-3

    2. [2]

      Anderson, D. F. Properties of the high-density scintillator cerium fluoride. IEEE T. Nucl. Sci. 1989, 36, 137–140.  doi: 10.1109/23.34420

    3. [3]

      Blasse, G. Scintillator materials. Chem. Mater. 1994, 6, 1465–1475.  doi: 10.1021/cm00045a002

    4. [4]

      Murray, R. B.; Meyer, A. Scintillation response of activated inorganic crystals to various charged particles. Phys. Rev. 1961, 122, 815–826.  doi: 10.1103/PhysRev.122.815

    5. [5]

      Liu, S.; Zheng, S. P.; Tang, C. M. Photoluminescence and radio luminescence properties of Yb3+-doped silica glass. Mater. Lett. 2015, 144, 43–45.  doi: 10.1016/j.matlet.2015.01.005

    6. [6]

      Nguyen, L. Q.; Gabella, G.; Goldblum, B. L.; Laplace, T. A.; Carlson, J. S.; Brubaker, E.; Feng, P. L. Boron-loaded organic glass scintillators. Nucl. Instrum. Meth. A 2021, 988, 164898–7.  doi: 10.1016/j.nima.2020.164898

    7. [7]

      Ortega-Alfaro, M. C.; Hernández, N.; Cerna, I.; López-Cortés, J. G.; Gómez, E.; Toscano, R. A.; Alvarez-Toledano, C. Novel dinuclear iron (0) complexes from α, β-unsaturated ketones β-positioned with sulfide and sulfoxide groups. J. Organomet. Chem. 2004, 689, 885‒893.  doi: 10.1016/j.jorganchem.2003.12.015

    8. [8]

      Lecoq, P. On the stabilization of Ce, Tb, and Eu ions with different oxidation states in silica based glasses. J. Alloy. Compd. 2016, 809, 130–139.

    9. [9]

      Ronda, C.; Wieczorek, H.; Khanin, V.; Rodnyi, P. Review—scintillators for medical imaging: a tutorial overview. Ecs. J. Solid. State. Sc. 2016, 5, 3121–3125.  doi: 10.1149/2.0131601jss

    10. [10]

      Wantana, N.; Kaewnuam, E.; Kim, H. J. X-ray/proton and photoluminescence behaviors of Sm3+ doped high density tungsten gadolinium borate scintillating glass. J. Alloy. Compd. 2020, 849, 156574–8.  doi: 10.1016/j.jallcom.2020.156574

    11. [11]

      Lecoq, P. Development of new scintillators for medical applications. Nucl. Instrum. Meth. A 2016, 809, 130–139.  doi: 10.1016/j.nima.2015.08.041

    12. [12]

      Lecoq, P.; Gektin, A.; Korzhik, M. Inorganic Scintillators for Detecting Systems. Springer International Publishing, Switzerland, 2017, p1–408.

    13. [13]

      Kawano, N.; Kawaguchi, N.; Okada, G. Scintillation and dosimetric properties of Ce-doped strontium aluminoborate glasses. J. Non-Cryst. Solids 2017, 030, 0022–3093.

    14. [14]

      Saidi, K.; Dammak, M. Crystal structure, optical spectroscopy and energy transfer properties in NaZnPO4: Ce3+, Tb3+ phosphors for UV-based LEDs. RSC Adv. 2020, 37, 21867–21875.

    15. [15]

      Yi, Z.; Lu, W.; Qian, C.; Zeng, T.; Yin, L. Urchin-like Ce/Tb co-doped GdPO4 hollow spheres for in vivo luminescence/X-ray bioimaging and drug delivery. Biomater. Sci. 2014, 10, 1404–1411.

    16. [16]

      Zhang, W.; Hua, R.; Qi, X.; Zhao, J.; Qin, L.; Liu, T. Photoluminescence properties and energy transfer of Ce3+–Tb3+ co-doped SrAlF5 nanorods by a hydrothermal method. CrystEngComm. 2017, 19, 5214–5222.  doi: 10.1039/C7CE01054K

    17. [17]

      Liang, C.; Gong, X. H.; Huang, J. H. Preparation and spectroscopic properties of Pr3+-doped transparent glass-ceramic containing LiYF4 nanocrystals. Chin. J. Struct. Chem. 2017, 36, 614–620.

    18. [18]

      Zhang, H. D.; Wang, S. H.; Wu, S. F. A new copper coordination polymer with magnetic property based on 3-(1, 2, 4-traiazol-1-1-yl) benzoic acid. Chin. J. Struct. Chem. 2017, 036, 2011–1615.

    19. [19]

      Chen, J.; Wang, S. H.; Zhang, H. D. Crystal structure and luminescence with relative principles calculation of a new one-dimensional Zn(II) coordination polymer. Chin. J. Struct. Chem. 2017, 36, 711–715.

    20. [20]

      Liang, J. X.; Xin, S. L.; Qing, Q. H. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nat. Commun. 2020, 11, 4329–7.  doi: 10.1038/s41467-020-18119-y

    21. [21]

      Zhang, Y. H.; Sun, R. J.; Ou, X Y. Metal halide perovskite nanosheet for X-ray high-resolution scintillation-imaging screens. ACS Nano. 2019, 13, 2520–2525.  doi: 10.1021/acsnano.8b09484

    22. [22]

      Cao, J. T.; Guo, Z.; Zhu, S. Preparation of lead-free two-dimensional-layered (C8H17NH3)2SnBr4 perovskite scintillators and their application in X-ray imaging. ACS Appl. Mater. Inter. 2020, 12, 19797–19804.  doi: 10.1021/acsami.0c02116

    23. [23]

      Qiu, Z. H.; Wang, S. H.; Wang, W. Q. Polymer composites entrapped Ce-doped LiYF4 microcrystals for high-sensitivity X-ray scintillation and imaging. ACS. Appl. Mater. Inter. 2020, 12, 29835–29843.

    24. [24]

      Jin, H. H.; Dong, H. S. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. 2018, 1801743–6.

  • 加载中
    1. [1]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    2. [2]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    3. [3]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    4. [4]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    5. [5]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    6. [6]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    7. [7]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    8. [8]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    9. [9]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    10. [10]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    11. [11]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    12. [12]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    13. [13]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    14. [14]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    15. [15]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    16. [16]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    17. [17]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    18. [18]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    19. [19]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    20. [20]

      Fengying YeMing HuJun LuoWei YuZhirong XuJinjin FuYansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724

Metrics
  • PDF Downloads(10)
  • Abstract views(673)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return