Citation: Kun ZHU, Jin-Xia YANG, Ye-Yan QIN, Yuan-Gen YAO. Three Novel Luminescent Zinc(II) Compounds Constructed by Employing Mixed-ligand Strategy[J]. Chinese Journal of Structural Chemistry, ;2021, 40(9): 1152-1160. doi: 10.14102/j.cnki.0254–5861.2011–3129 shu

Three Novel Luminescent Zinc(II) Compounds Constructed by Employing Mixed-ligand Strategy

  • Corresponding author: Yuan-Gen YAO, yyg@fjirsm.ac.cn
  • Received Date: 1 February 2021
    Accepted Date: 18 March 2021

    Fund Project: the National Key R & D Program of China 2017YFB0307301the National Key R & D Program of China 2017YFA0206802the Strategic Priority Research Program of the Chinese Academy of Sciences XDA21020800the Science and Technology Service Network Initiative KFJ-STS-QYZD-048the NSF of China 21703247the NSF of China 21701172the Science Foundation of Fujian Province 2018J05029the Science Foundation of Fujian Province 2019J05156the Science Foundation of Fujian Province 2019H0053Guizhou Province [2018]2193

Figures(6)

  • Three novel coordination polymers, [Zn(suc)(o-bix)]n (1), [Zn(suc)(m-bix)·H2O]n (2) and [Zn2(suc)2(p-bix)2·4H2O]n (3) (H2suc = succinic acid, o-bix = 1, 2-bis(imidazol-1-ylmethyl)-benzene, m-bix = 1, 3-bis(imidazol-1-ylmethyl)-benzene, p-bix = 1, 4-bis(imidazol-1-ylmethyl)-benzene), have been synthesized and structurally characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. These three coordination polymers present various structures originated from auxiliary N-donor ligands with different configurations. Compound 1 shows a 2D network with 44-sql topology. Compound 2 exhibits an infinite chain, and the adjacent chains are extended into a 2D sheet by π-π stacking interactions. Changing the conformation of the N-donor ligand leads to 3 featuring a 3D framework with a novel 4-connected (65·8) topology. In addition, the solid-state photoluminescent properties of compounds 1~3 are investigated.
  • 加载中
    1. [1]

      Noro, S.; Kitaura, R.; Kondo, M.; Kitagawa, S.; Ishii, T.; Matsuzaka, H.; Yamashita, M. Framework engineering by anions and porous functionalities of Cu(II)/4, 4΄-bpy coordination polymers. J. Am. Chem. Soc. 2002, 124, 2568–2583.  doi: 10.1021/ja0113192

    2. [2]

      Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231.  doi: 10.1021/cr2003147

    3. [3]

      Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.  doi: 10.1039/C4CS00010B

    4. [4]

      Manna, P.; Das, S. K. Perceptive approach in assessing rigidity versus flexibility in the construction of diverse metal-organic coordination networks: synthesis, structure, and magnetism. Cryst. Growth Des. 2015, 15, 1407–1421.  doi: 10.1021/cg501787m

    5. [5]

      Noh, T. H.; Jung, O. S. Recent advances in various metal-organic channels for photochemistry beyond confined spaces. Acc. Chem. Res. 2016, 49, 1835–1843.  doi: 10.1021/acs.accounts.6b00291

    6. [6]

      Yang, X. G.; Lin, X. Q.; Zhao, Y. B.; Zhao, Y. S.; Yan, D. P. Lanthanide metal-organic framework microrods: colored optical waveguides and chiral polarized emission. Angew. Chem. Int. Ed. 2017, 56, 7961–7965.

    7. [7]

      Wu, Y. P.; Tian, J. W.; Liu, S.; Li, B.; Zhao, J.; Ma, L. F.; Li, D. S.; Lan, Y. Q.; Bu, X. Bi-microporous metal-organic frameworks with cubane [M4(OH)4] (M = Ni, Co) clusters and pore-space partition for electrocatalytic methanol oxidation reaction. Angew. Chem. Int. Ed. 2019, 58, 12185–12189.  doi: 10.1002/anie.201907136

    8. [8]

      Wang, K. B.; Wang, X.; Zhang, D.; Wang, H. J.; Wang, Z. K.; Zhao, M. Y.; Xi, R.; Wu, H.; Zheng, M. B. Interpenetrated nano-MOFs for ultrahigh-performance supercapacitors and excellent dye adsorption performance. CrystEngComm. 2018, 20, 6940–6949.  doi: 10.1039/C8CE01067F

    9. [9]

      Chen, C. X.; Wei, Z. W.; Cao, C. C.; Yin, S. Y.; Qiu, Q. F.; Zhu, N. X.; Xiong, Y. Y.; Jiang, J. J.; Pan, M.; Su, C. Y. All roads lead to Rome: tuning the luminescence of a breathing catenated Zr-MOF by programmable multiplexing pathways. Chem. Mater. 2019, 31, 5550–5557.  doi: 10.1021/acs.chemmater.9b01258

    10. [10]

      Jiang, W.; Yang, J. Q.; Yan, G. S.; Zhou, S.; Liu, B.; Qiao, Y.; Zhou, T. Y.; Wang, J. J.; Che, G. B. A novel 3-fold interpenetrated dia metal-organic framework as a heterogeneous catalyst for CO2 cycloaddition. Inorg. Chem. Commum. 2020, 113, 107770.  doi: 10.1016/j.inoche.2020.107770

    11. [11]

      Ren, S. S.; Jiang, W.; Wang, Q. W.; Li, Z. M.; Qiao, Y.; Che, G. B. Synthesis, structures and properties of six lanthanide complexes based on a 2-(2-carboxyphenyl)imidazo(4, 5-f)-(1, 10)phenanthroline ligand. RSC Adv. 2019, 9, 3102–3112.  doi: 10.1039/C8RA09207A

    12. [12]

      Steel, P. J. Ligand design in multimetallic architectures:   six lessons learned. Acc. Chem. Res. 2005, 38, 243–250.  doi: 10.1021/ar040166v

    13. [13]

      Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969  doi: 10.1021/cr200304e

    14. [14]

      Tan, Y. X.; He, Y. P.; Zhang, Y.; Zheng, Y. J.; Zhang, J. Solvent controlled assembly of four Mn(II)-2, 5-thiophenedicarboxylate frameworks with rod-packing architectures and magnetic properties. CrystEngComm. 2013, 15, 6009–6014.  doi: 10.1039/c3ce40677f

    15. [15]

      Huang, S. Y.; Li, J. Y.; Li, J. Q.; Xu, W. Y.; Luo, M. B.; Zhu, Y.; Luo, F. Exceptional temperature-dependent coordination sites from acylamide groups. Dalton Trans. 2014, 43, 5260–5264.  doi: 10.1039/c3dt53123f

    16. [16]

      Zhang, J. W.; Kan, X. M.; Liu, B. Q.; Liu, G. C.; Tian, A. X.; Wang, X. L. Systematic investigation of reaction-time dependence of three series of copper-lanthanide/lanthanide coordination polymers: syntheses, structures, photoluminescence, and magnetism. Chem. Eur. J. 2015, 21, 16219–16228.  doi: 10.1002/chem.201502203

    17. [17]

      Zhao, J.; Liu, X.; Wu, Y.; Li, D. S.; Zhang Q. Surfactants as promising media in the field of metal-organic frameworks. Coord. Chem. Rev. 2019, 391, 30–43.  doi: 10.1016/j.ccr.2019.04.002

    18. [18]

      Ghosh, A. K.; Hazra, A.; Mondal, A.; Banerjee, P. Weak interactions: the architect behind the structural diversity of coordination polymer. Inorg. Chim. Acta 2019, 488, 86–119.  doi: 10.1016/j.ica.2019.01.008

    19. [19]

      Yang, J. X.; Qin, Y. Y.; Ye, R. P.; Zhang, X.; Yao, Y. G. Employing mixed-ligand strategy to construct a series of luminescent Cd(II) compounds with structural diversities. CrystEngComm. 2016, 18, 8309–8320.  doi: 10.1039/C6CE01607C

    20. [20]

      Yang, J. X.; Zhai, J. Q.; Zhang, X.; Qin, Y. Y.; Yao, Y. G. Tuning different kinds of entangled metal-organic frameworks through modifying the spacer group of aliphatic dicarboxylate ligands and reactant ratio. Dalton Trans. 2016, 45, 711–723.  doi: 10.1039/C5DT03731J

    21. [21]

      Yang, J. X.; Qin, Y. Y.; Cheng, J. K.; Yao, Y. G. Construction of a series of Zn(II) compounds with different entangle motifs by varying flexible aliphatic dicarboxylic acids. Cryst. Growth Des. 2015, 15, 2223−2234.  doi: 10.1021/cg501879w

    22. [22]

      Liu, Y. H.; Zhang, F. J.; Wu, P. Y.; Deng, C. F.; Yang, Q. M.; Xue, J. J.; Shi, Y. H.; Wang, J. Cobalt(II)-based metal-organic framework as bifunctional materials for Ag(I) detection and proton reduction catalysis for hydrogen production. Inorg. Chem. 2019, 58, 924−931.  doi: 10.1021/acs.inorgchem.8b03046

    23. [23]

      Wang, Z. X.; Ren, Y. X.; Cao, J.; Tang, L.; Zhang, M. L.; Zhou, S. H. Structural assembly from 1D to 3D motivated by the linear co-ligands, and the magnetic and photocatalytic properties of five NiII coordination polymers with 5-(4΄-carboxylphenyl)nicotinic acid. New J. Chem. 2018, 42, 17991–18000.  doi: 10.1039/C8NJ02921K

    24. [24]

      He, X.; Lu, X. P.; Li, M. X.; Morris, R. E. Tuning different kinds of entangled networks formed by isomers of bis(1, 2, 4-triazol-1-ylmethyl)benzene and a flexible tetracarboxylate ligand. Cryst. Growth Des. 2013, 13, 1649−1654.  doi: 10.1021/cg3018562

    25. [25]

      Zhao, F. H.; Huang, L. W.; He, Y. C.; Yan, X. Q.; Li, Z. L.; Jia, X. M.; Feng, R.; Li, J. X.; You, J. M. Two entangled Cd(II) MOFs of sebacic acid and bis(2-methyl-imidazole) ligands for selective sensing of Fe3+. Inorg. Chim. Acta 2020, 499, 119184.  doi: 10.1016/j.ica.2019.119184

    26. [26]

      Hoskins, B. F.; Robson, R.; Slizys, D. A. An infinite 2D polyrotaxane network in Ag2(bix)3(NO3)2 (bix = 1, 4-bis(imidazol-1-ylmethyl)benzene). J. Am. Chem. Soc. 1997, 119, 2952−2953.  doi: 10.1021/ja9642626

    27. [27]

      Sheldrick, G. M. SADABS, Institute for Inorganic Chemistry. University of Göttingen. Göttingen, Germany 1996.

    28. [28]

      Sheldrick, G. M. SHELXL-2014, Program for Crystal Structure Refinement. University of Gottingen, Germany 2014.

    29. [29]

      Uebler, J. W.; Wilson, J. A.; LaDuca, R. L. A. Donor disposition and aliphatic conformation effects on structure in luminescent zinc dicarboxylate coordination polymers with isomeric dipyridylamide coligands. CrystEngComm. 2013, 15, 1586−1596.  doi: 10.1039/c2ce26929e

    30. [30]

      Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330−1352.

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    3. [3]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    4. [4]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    5. [5]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    6. [6]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    7. [7]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    8. [8]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    9. [9]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    10. [10]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    11. [11]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    12. [12]

      Fengying YeMing HuJun LuoWei YuZhirong XuJinjin FuYansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724

    13. [13]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    14. [14]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    15. [15]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    16. [16]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    17. [17]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    18. [18]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    19. [19]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    20. [20]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

Metrics
  • PDF Downloads(1)
  • Abstract views(656)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return