Citation: Zhen-Hai SHI, Yuan HUANG, Yu-Ze WU, Xiao-Li CHEN, Hua YANG. A Hexanuclear Cobalt Cluster with Tetracubane-like Topology: Synthesis, Structure and Magnetic Properties[J]. Chinese Journal of Structural Chemistry, ;2021, 40(4): 495-500. doi: 10.14102/j.cnki.0254–5861.2011–2942 shu

A Hexanuclear Cobalt Cluster with Tetracubane-like Topology: Synthesis, Structure and Magnetic Properties

  • Corresponding author: Hua YANG, yanghua_08@163.com
  • Received Date: 20 July 2020
    Accepted Date: 12 October 2020

    Fund Project: the Natural Science Foundation of Yan'an University YDY2017-08Innovation and Entrepreneurship Training Program of College Students of China S202010719031the Natural Science Foundation of Yulin CXY-2020-065the National Natural Science Foundation of China 21763028

Figures(3)

  • One hexanuclear cobalt cluster [Co2Co4(L)4(CH3COO)2(MeO)4]·MeOH (1) was synthesized by the reaction of H2L (H2L = 2-((2-hydroxy-4-methoxy-benzylideneamino)methyl)phenol) and Co(OAc)2·4H2O in MeOH under solvothermal conditions. Complex 1 crystalizes in the triclinic space group P\begin{document}$ \overline 1 $\end{document} with a = 14.397(3), b = 16.625(3), c = 18.992(4) Å, α = 109.47(3)°, β = 99.24(3)°, γ = 112.37(3)°, Dc = 1.464 g/cm3, Z = 2, V = 3741.7(2) Å3, the final R = 0.0781 and wR = 0.1436 for 13051 observed reflections with I > 2σ(I). In the structure of 1, two cobalt ions are in 3+ oxidation states and four cobalt ions are in 2+ valence states. The six cobalt atoms are held together by six phenolate oxygen atoms from four L2– ligands, four oxygen atoms from two chelating acetates and four μ3-O atoms from four MeO groups. The six cobalt atoms are located at six corners of four defective cubanes. Thus, complex 1 displays tetracubane-like topology. Solid-state dc magnetic susceptibilities were measured for 1 in the 2.0~300 K range. Antiferromagnetic interactions were determined for 1.
  • 加载中
    1. [1]

      Han, S. D.; Song, W. C.; Zhao, J. P.; Yang, Q.; Liu, S. J.; Li, Y.; Bu, X. H. Synthesis and ferrimagnetic properties of an unprecedented polynuclear cobalt complex composed of [Co24] macrocycles. Chem. Commun. 2013, 49, 871–873.  doi: 10.1039/C2CC37593A

    2. [2]

      Guo, L. Y.; Zeng, S. Y.; Jaglicic, Z.; Hu, Q. D.; Wang, S. X.; Wang, Z.; Sun, D. A pyridazine-bridged sandwiched cluster incorporating planar hexanuclear cobalt ring and bivacant phosphotungstate. Inorg. Chem. 2016, 55, 9006–9011.  doi: 10.1021/acs.inorgchem.6b01468

    3. [3]

      Guo, Z. Y.; Su, S. G.; Deng, R. P.; Zhang, H. J. An unprecedented ten-connected 3D metal-organic framework based on hexanuclear cobalt(Ⅱ) cluster building blocks. Inorg. Chem. Commun. 2015, 51, 9–12.  doi: 10.1016/j.inoche.2014.10.030

    4. [4]

      Liu, W.; Liu, M.; Du, S. C.; Li, Y. F.; Liao, W. P. Bridging cobalt-calixarene subunits into a Co8 entity or a chain with 4, 4'-bipyridyl. J. Mol. Stru. 2014, 1060, 58–62.  doi: 10.1016/j.molstruc.2013.12.044

    5. [5]

      Zhao, J. J.; Xu, J. C.; King, R. B. Hexanuclear cobalt carbonyl carbide clusters: the interplay between octahedral and trigonal prismatic structures. Inorg. Chem. 2008, 47, 9314–9320.  doi: 10.1021/ic8009089

    6. [6]

      Ma, Y. S.; Xue, F. F.; Tang, X. Y.; Chen, B.; Yuan, R. X. A hexanuclear antiferromagnetic cobalt(Ⅱ) wheel: synthesis, structure and magnetic properties. Inorg. Chem. Commun. 2012, 15, 285–287.  doi: 10.1016/j.inoche.2011.11.003

    7. [7]

      Tudor, V.; Madalan, A.; Lupu, V.; Lloret, F.; Julve, M.; Andruh, M. A new mixed-valence hexanuclear cobalt complex, [Co4Co2(dea)2(Hdea)4(piv)4](ClO4)2·H2O: synthesis, crystal structure and magnetic properties. Inorg. Chim. Acta 2010, 363, 823–826.  doi: 10.1016/j.ica.2009.12.006

    8. [8]

      Shiga, T.; Oshio, H. Syntheses, structures and magnetic properties of mixed-valence pentanuclear [Mn3Mn2] and hexanuclear [Co4Co2] complexes derived from 3-formylsalicylic acid. Polyhedron 2007, 26, 1881–1884.  doi: 10.1016/j.poly.2006.09.026

    9. [9]

      Li, J.; Zhu, X. F.; Zhang, L. Y.; Chen, Z. N. Structures and luminescence properties of diethyldithiocarbamate-bridged polynuclear gold(I) cluster complexes with diphosphine/triphosphine. RSC Adv. 2015, 5, 34992–34998.  doi: 10.1039/C5RA01831E

    10. [10]

      Artemév, A. V.; Pritchina, E. A.; Rakhmanova, M. I.; Gritsan, N. P.; Bagryanskaya, I. Y.; Malysheva, S. F.; Belogorlova, N. A. Alkyl-dependent self-assembly of the first red-emitting zwitterionic {Cu4I6} clusters from [alkyl-P(2-Py)3]+ salts and CuI: when size matters. Dalton Trans. 2019, 48, 2328–2337.  doi: 10.1039/C8DT04328K

    11. [11]

      Leng, J. D.; Xing, S. K.; Herchel, R.; Liu, J. L.; Tong, M. L. Disklike hepta- and tridecanuclear cobalt clusters. Synthesis, structures, magnetic properties, and DFT calculations. Inorg. Chem. 2014, 53, 5458–5466.  doi: 10.1021/ic403093r

    12. [12]

      Nesterov, D. S.; Nesterova, O. V. Polynuclear cobalt complexes as catalysts for light-driven water oxidation: a review of recent advances. Catalysts 2018, 8, 602/1–602/21.

    13. [13]

      Singha Mahapatra, T.; Basak, D.; Chand, S.; Lengyel, J.; Shatruk, M.; Bertolasi, V.; Ray, D. Competitive coordination aggregation for V-shaped [Co3] and disc-like [Co7] complexes: synthesis, magnetic properties and catechol oxidase activity. Dalton Trans. 2016, 45, 13576–13589.  doi: 10.1039/C6DT02494G

    14. [14]

      Murrie, M. Cobalt(Ⅱ) single-molecule magnets. Chem. Soc. Rev. 2010, 39, 1986–1995.  doi: 10.1039/b913279c

    15. [15]

      Wang, X. T.; Wang, B. W.; Wang, Z. M.; Zhang, W.; Gao, S. Azide and oxo bridged ferromagnetic clusters: three face-shared tetracubane Ni(Ⅱ)/Co(Ⅱ) hexamers and a wheel-shaped SMM-like Co(Ⅱ) heptamer. Inorg. Chim. Acta 2008, 361, 3895–3902.  doi: 10.1016/j.ica.2008.03.020

    16. [16]

      Liu, Y. N.; Hou, J. L.; Wang, Z.; Gupta, R. K.; Jaglicic, Z.; Jagodic, M.; Wang, W. G.; Tung, C. H.; Sun, D. An octanuclear cobalt cluster protected by macrocyclic ligand: in situ ligand-transformation-assisted assembly and single-molecule magnet behavior. Inorg. Chem. 2020, 59, 5683–5693.  doi: 10.1021/acs.inorgchem.0c00449

    17. [17]

      Murrie, M.; Teat, S. J.; Stoeckli-Evans, H.; Guedel, H. U. Synthesis and characterization of a cobalt(Ⅱ) single-molecule magnet. Angew. Chem., Int. Ed. 2003, 42, 4653–4656.  doi: 10.1002/anie.200351753

    18. [18]

      Mannini, M.; Pineider, F.; Danieli, C.; Totti, F.; Sorace, L.; Sainctavit, P.; Arrio, M. A.; Otero, E.; Joly, L.; Cezar, J. C.; Cornia, A.; Sessoli, R. Quantum tunneling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 2010, 468, 417–421.  doi: 10.1038/nature09478

    19. [19]

      Ariciu, A. M.; Woen, D. H.; Huh, D. N.; Nodaraki, L. E.; Kostopoulos, A. K.; Goodwin, C. A. P.; Chilton, N. F.; Mclnnes, E. J. L.; Winpenny, R. E. P.; Evans, W. J.; Tuna, F. Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum. Nat. Commun. 2019, 10, 3330–3337.  doi: 10.1038/s41467-019-11309-3

    20. [20]

      Chandra, A.; Mebs, S.; Kundu, S.; Kuhlmann, U.; Hildebrandt, P.; Dau, H.; Ray, K. Catalytic dioxygen reduction mediated by a tetranuclear cobalt complex supported on a stannoxane core. Dalton Trans. 2020, 49, 6065–6073.  doi: 10.1039/D0DT00475H

    21. [21]

      Lin, J. Q.; Meng, X. Y.; Zheng, M.; Ma, B. C.; Ding, Y. Insight into a hexanuclear cobalt complex: strategy to construct efficient catalysts for visible light-driven water oxidation. Appl. Cataly. B-Environ. 2019, 241, 351–358.  doi: 10.1016/j.apcatb.2018.09.052

    22. [22]

      Monte-Perez, I.; Kundu, S.; Chandra, A.; Craigo, K. E.; Chernev, P.; Kuhlmann, U.; Dau, H.; Hildebrandt, P.; Greco, C.; Van Stappen, C.; Lehnert, N.; Ray, K. Temperature dependence of the catalytic two-versus four-electron reduction of dioxygen by a hexanuclear cobalt complex J. Am. Chem. Soc. 2017, 139, 15033–15042.  doi: 10.1021/jacs.7b07127

    23. [23]

      Gao, J. K.; Bai, L. L.; Zhang, Q.; Li, Y. X.; Rakesh, G.; Lee, J. M.; Yang, Y. H.; Zhang, Q. C. Co6(µ3-OH)6 cluster based coordination polymer as an effective heterogeneous catalyst for aerobic epoxidation of alkenes. Dalton Trans. 2014, 43, 2559–2565.  doi: 10.1039/C3DT52562G

    24. [24]

      Huang, Y.; Qin, Y. R.; Ge, Y.; Cui, Y. F.; Zhang, X. M.; Li, Y. H.; Yao, J. L. Rationally assembled nonanuclear lanthanide clusters: Dy9 displays slow relaxation of magnetization and Tb9 serves as luminescent sensor for Fe3+, CrO42- and Cr2O72-. New J. Chem. 2019, 43, 19344–19354.  doi: 10.1039/C9NJ04893F

    25. [25]

      Sheldrick, G. M. A. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.  doi: 10.1107/S0108767307043930

    26. [26]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    27. [27]

      Brown, I. D.; Altermat, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst. 1985, B41, 244–247.

    28. [28]

      Brese, N. E.; O'keeffe, M. Bond-valence parameters for solids. Acta Cryst. 1991. B47, 192–197.

    29. [29]

      Alley, K. G.; Bircher, R.; Waldmann, O.; Ochsenbein, S. T.; Gudel, H. U.; Moubaraki, B.; Murray, K. S.; Fernandez-Alonso, F.; Abrahams, B. F.; Boskovic, C. Mixed-valent cobalt spin clusters: a hexanuclear complex and a one-dimensional coordination polymer comprised of alternating hepta- and mononuclear fragments. Inorg. Chem. 2006, 45, 8950–8957.  doi: 10.1021/ic060938e

    30. [30]

      Cao, Y. Y.; Chen, Y. M.; Li, L.; Gao, D. D.; Liu, W.; Hu, H. L.; Li, W.; Li, Y. H. A Co16 cluster and a 1-D Mn chain complex supported by benzohydroxamic acid. Dalton Trans. 2013, 42, 10912–10918.  doi: 10.1039/c3dt51140e

    31. [31]

      Sánchez, R. H.; Champsaur, A. M.; Choi, B.; Wang, S. G.; Bu, W.; Roy, X.; Chen, Y. S.; Steigerwald, M. L.; Nuckolls, C.; Paley, D. W. Electron cartography in clusters. Angew. Chem. Int. Ed. 2018, 57, 13815–13820.  doi: 10.1002/anie.201806426

    32. [32]

      Ferguson, A.; Parkin, A.; Sanchez-Benitez, J.; Kamenev, K.; Wernsdorfer, W.; Murrie, M. A mixed-valence Co7 single-molecule magnet with C3 symmetry. Chem. Commun. 2007, 3473–3475.

    33. [33]

      Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. Structure, magnetism, and theoretical study of a mixed-valence Co3Co4 heptanuclear wheel: lack of SMM behavior despite negative magnetic anisotropy. J. Am. Chem. Soc. 2008, 130, 12445–12455.  doi: 10.1021/ja8029416

    34. [34]

      Zhang, S. H.; Song, Y.; Liang, H.; Zeng, M. H. Microwave-assisted synthesis, crystal structure and properties of a disc-like heptanuclear Co(Ⅱ) cluster and a heterometallic cubanic Co(Ⅱ) cluster. CrystEngComm. 2009, 11, 865–872.  doi: 10.1039/b815675a

    35. [35]

      Zhou, Y. L.; Zeng, M. H.; Wei, L. Q.; Li, B. W.; Kurmoo, M. Traditional and microwave-assisted solvothermal synthesis and surface modification of Co7 brucite disk clusters and their magnetic properties. Chem. Mater. 2010, 22, 4295–4303.  doi: 10.1021/cm1011229

    36. [36]

      Wei, L. Q.; Li, B. W.; Hua, S.; Zeng, M. H. Controlled assemblies of hepta- and trideca-Co clusters by a rational derivation of salicylalde Schiff bases: microwave-assisted synthesis, crystal structures, ESI-MS solution analysis and magnetic properties. CrystEngComm. 2011, 13, 510–516.  doi: 10.1039/C0CE00085J

    37. [37]

      Zhang, S. H.; Ma, L. F.; Zou, H. H.; Wang, Y. G.; Liang, H.; Zeng, M. H. Anion induced diversification from heptanuclear to tetranuclear clusters: syntheses, structures and magnetic properties. Dalton Trans. 2011, 40, 11402–11409.  doi: 10.1039/c1dt10517e

    38. [38]

      Kitos, A. A.; Efthymiou, C. G.; Papatriantafyllopoulou, C.; Nastopoulos, V.; Tasiopoulos, A. J.; Manos, M. J.; Wernsdorfer, W.; Christou, G.; Perlepes, S. P. The search for cobalt single-molecule magnets: a disk-like CoCo6 cluster with a ligand derived from a novel transformation of 2-acetylpyridine. Polyhedron 2011, 30, 2987–2996.  doi: 10.1016/j.poly.2011.02.013

    39. [39]

      Meally, S. T.; McDonald, C.; Kealy, P.; Taylor, S. M.; Brechin, E. K.; Jones, L. F. Investigating the solid state hosting abilities of homo- and hetero-valent [Co7] metallocalix[6]arenes. Dalton Trans. 2012, 41, 5610–5616.  doi: 10.1039/c2dt12229d

    40. [40]

      Zhang, S. H.; Zou, H. H.; Wang, Y. G.; Song, Y.; Liang, H.; Zeng, M. H. Microwave-assisted synthesis, crystal structure and magnetic behavior of a Schiff base heptanuclear cobalt cluster. J. Cluster Sci. 2014, 25, 357–365.  doi: 10.1007/s10876-013-0614-z

    41. [41]

      Zhang, S. H.; Huang, Q. P.; Zhang, H. Y.; Li, G.; Liu, Z.; Li, Y.; Liang, H. Dodecanuclear water cluster in bowl: microwave-assisted synthesis of a heptanuclear cobalt(Ⅱ) cluster. J. Coord. Chem. 2014, 67, 3155–3166.  doi: 10.1080/00958972.2014.964221

    42. [42]

      Boudalis, A. K.; Raptopoulou, C. P.; Abarca, B.; Ballesteros, R.; Chadlaoui, M.; Tuchagues, J. P.; Terzis, A. Co chemistry of 2, 6-bis(2-pyridylcarbonyl)pyridine: an icosanuclear Co cluster exhibiting superparamagnetic relaxation. Angew. Chem., Int. Ed. 2006, 45, 432–435.  doi: 10.1002/anie.200502519

    43. [43]

      Cheng, X. N.; Zhang, W. X.; Zheng, Y. Z.; Chen, X. M. The slow magnetic relaxation observed in a mixed carboxylate/hydroxide-bridged compound [Co2Na(4-cpa)2(μ3-OH)(H2O)] featuring magnetic Δ-chains. Chem. Commun. 2006, 34, 3603–3605.

  • 加载中
    1. [1]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    2. [2]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    3. [3]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    4. [4]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    5. [5]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    6. [6]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    9. [9]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    10. [10]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    11. [11]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    12. [12]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    13. [13]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    14. [14]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    15. [15]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    16. [16]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    17. [17]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    18. [18]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    19. [19]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    20. [20]

      Kun YangAnhui LiPeng ZhangGuilin LiuLiusai HuangYumeng FoLuyuan YangXiangyang JiJian LiuWeiyu Song . Hierarchical zeolites stabilized cobalt(Ⅱ) as propane dehydrogenation catalyst: Enhanced activity and coke tolerance via alkaline post-treatment. Chinese Chemical Letters, 2025, 36(5): 110663-. doi: 10.1016/j.cclet.2024.110663

Metrics
  • PDF Downloads(1)
  • Abstract views(383)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return