Citation: Shi YANG, Hong JIANG, Wen-Qiang ZHANG, Xian-Hui TANG, Yao JIN, Yan LIU. Synthesis, Structure, and Characterization of a Novel Coordination Polymer with Polythreading Feature[J]. Chinese Journal of Structural Chemistry, ;2021, 40(3): 343-348. doi: 10.14102/j.cnki.0254–5861.2011–2877 shu

Synthesis, Structure, and Characterization of a Novel Coordination Polymer with Polythreading Feature

  • Corresponding author: Yan LIU, liuy@sjtu.edu.cn
  • Received Date: 14 May 2020
    Accepted Date: 29 June 2020

    Fund Project: the National Science Foundation of China 91956124the National Science Foundation of China 21875136the National Key Basic Research Program of China 2016YFA0203400Shanghai Rising-Star Program 19QA1404300

Figures(5)

  • A novel coordination polymer 1 with formula of Zn2(BDC)2(TPPA) was built from 1, 4-dicarboxybenzene (H2BDC), tris(4-(pyridin-3-yl)phenyl)amine (TPPA), and Zn(II) ion. It was characterized by single-crystal and powder X-ray diffraction, Fourier-transform infrared spectra (FT-IR), thermal gravimetric analysis (TGA), and UV-vis. 1 crystallizes in triclinic space group P\begin{document}$ \overline 1 $\end{document} with a = 14.589, b = 14.606, c = 16.108 Å, α = 115.635o, β = 90.328o, γ = 114.662o, V = 2738.6 Å3, Z = 2, Mr = 935.52 g/mol, Dc = 1.134 g/cm3, F(000) = 956, GOOF = 1.062, the final R = 0.0685 and wR = 0.1817 for 7701 observed reflections with (I > 2σ(I)), and R = 0.0717 and wR = 0.1843 for all data. In 1, Zn(II) is coordinated with H2BDC to form a 2D square grid, and TPPA ligands were arranged above and beneath the 2D layer. Two neighbor layers are interpenetrated each other by π-π interactions to generate a polythreading framework structure. Moreover, the photoluminescence of 1 was also studied.
  • 加载中
    1. [1]

      Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705−714.  doi: 10.1038/nature01650

    2. [2]

      Xuan, W.; Zhu, C.; Liu, Y.; Cui, Y. Mesoporous metal-organic framework materials. Chem. Soc. Rev. 2012, 41, 1677−1695.  doi: 10.1039/C1CS15196G

    3. [3]

      Li, J. R.; Kuppler, R.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477−1504.  doi: 10.1039/b802426j

    4. [4]

      Lysova, A. A.; Samsonenko, D. G.; Dorovatovskii, P. V.; Lazarenko, V. A.; Khrustalev, V. N.; Kovalenko, K. A.; Dybtsev, D. N.; Fedin, V. P. Tuning the molecular and cationic affinity in a series of multifunctional metal-organic frameworks based on dodecanuclear Zn(II) carboxylate wheels. J. Am. Chem. Soc. 2019, 141, 17260−17269.  doi: 10.1021/jacs.9b08322

    5. [5]

      Jiang, H.; Zhang, W.; Kang, X.; Cao, Z.; Chen, X.; Liu, Y.; Cui, Y. Topology-based functionalization of robust chiral Zr-based metal-organic frameworks for catalytic enantioselective hydrogenation. J. Am. Chem. Soc. 2020, 142, 9642−9652.

    6. [6]

      Gong, W.; Chen, X.; Jiang, H.; Chu, D.; Cui, Y.; Liu, Y. Highly stable Zr(IV)-based metal-organic frameworks with chiral phosphoric acids for catalytic asymmetric tandem reactions. J. Am. Chem. Soc. 2019, 141, 7498−7508.  doi: 10.1021/jacs.9b02294

    7. [7]

      Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330−1352.  doi: 10.1039/b802352m

    8. [8]

      Sussardi, A.; Hobday, C. L.; Marshall, R. J.; Forgan, R. S.; Jones, A. C.; Moggach, S. A. Correlating pressure-induced emission modulation with linker rotation in a photoluminescent MOF. Angew. Chem. Int. Ed. 2020, 132, 8195−8199.  doi: 10.1002/ange.202000555

    9. [9]

      Zeng, M. H.; Yin, Z.; Tan, Y. X.; Zhang, W. X.; He, Y. P.; Kurmoo, M. Nanoporous cobalt(II) MOF exhibiting four magnetic ground states and changes in gas sorption upon post-synthetic modification. J. Am. Chem. Soc. 2014, 136, 4680−4688.  doi: 10.1021/ja500191r

    10. [10]

      Terzopoulou, A.; Hoop, M.; Chen, X. Z.; Hirt, A. M.; Charilaou, M.; Shen, Y.; Mushtaq, F.; del Pino, A. P.; Logofatu, C.; Simonelli, L.; de Mello, A. J.; Doonan, C. J.; Sort, J.; Nelson, B. J.; Pané, S.; Puigmartí-Luis, J. Mineralization-inspired synthesis of magnetic zeolitic imidazole framework composites. Angew. Chem. Int. Ed. 2019, 58, 13550−13555.  doi: 10.1002/anie.201907389

    11. [11]

      Fu, H. R.; Xu, Z. X.; Zhang, J. Water-stable metal-organic frameworks for fast and high dichromate trapping via single-crystal-to-single-crystal ion exchange. Chem. Mater. 2015, 27, 205−210.  doi: 10.1021/cm503767r

    12. [12]

      Zhuo, C.; Wang, F.; Zhang, J. Mixed short and long ligands toward the construction of metal-organic frameworks with large pore openings. Cryst. Growth Des. 2019, 19, 3120−3123.  doi: 10.1021/acs.cgd.9b00426

    13. [13]

      An, Z.; Zhou, T. Mixed-ligands self-assembly strategy affording a new 4-fold interpenetrated 3D Co(II)-based coordination polymer: synthesis, crystal structure and magnetic property. Chin. J. Struct. Chem. 2019, 38, 777−782.

    14. [14]

      Liu, Z. Y.; Fu, M.; Wang, X. G.; Wang, L. L.; Yang, E. C.; Zhao, X. J. Two preparation methods-dominated CdII-based coordination polymers with mixed adenine nucleobase and 5-nitroisophathalate ligands: synthesis, structure and fluorescence. Chin. J. Struct. Chem. 2019, 38, 613−620.

    15. [15]

      Liu, N.; Xing, G. E.; Huang, X. X.; Guo, J. A new Zn(II) coordination polymer constructed from 4-(1H-pyrazol-3-yl)pyridine as fluorescent sensor for Fe3+. Chin. J. Struct. Chem. 2019, 38, 660−666.

    16. [16]

      Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334−2375.  doi: 10.1002/anie.200300610

    17. [17]

      Liu, G.; Li, Y.; Lu, Z.; Li, X.; Wang, X. L.; Wang, X.; Chen, X. Versatile carboxylate-directed structures of ten 1D → 3D Ni(II) coordination polymers: fluorescence behaviors and electrochemical activities. CrystEngComm. 2019, 21, 5344−5355.  doi: 10.1039/C9CE01060B

    18. [18]

      Qian, L. L.; Han, S. S.; Zheng, L. Y.; Yang, Z.; Li, K.; Li, B. L.; Wu, B. Syntheses, structures and properties of structural diversity of 3D coordination polymers based on bis(imidazole) and dicarboxylate. Polyhedron 2019, 162, 303−310.  doi: 10.1016/j.poly.2019.02.006

    19. [19]

      Zhang, L.; Ma, J.; Yang, J.; Pang, Y.; Ma, J. Series of 2D and 3D coordination polymers based on 1, 2, 3, 4-benzenetetracarboxylate and N-donor ligands: synthesis, topological structures, and photoluminescent properties. Inorg. Chem. 2010, 49, 1535−1550.  doi: 10.1021/ic9019553

    20. [20]

      Gu, Z.; Xu, X.; Zhou, W.; Pang, C.; Bao, F.; Li, Z. A new type of entangled coordination network: coexistence of polythreading and polyknotting involved molecular braids. Chem. Commun. 2012, 48, 3212−3214.  doi: 10.1039/c2cc17821d

    21. [21]

      Carlucci, L.; Ciani, G.; Proserpio, D. M. Polycatenation, polythreading and polyknotting in coordination network chemistry. Coord. Chem. Rev. 2003, 246, 247−289.  doi: 10.1016/S0010-8545(03)00126-7

    22. [22]

      Yao, Q.; Ju, Z.; Jin, X.; Zhang, J. Novel polythreaded coordination polymer: from an armed-polyrotaxane sheet to a 3D polypseudorotaxane array, photo- and thermochromic behaviors. Inorg. Chem. 2009, 48, 1266−1268.  doi: 10.1021/ic8021672

    23. [23]

      Hu, B.; Chen, X.; Wang, Y.; Lu, P.; Wang, Y. Structure-property investigations of substituted triarylamines and their applications as fluorescent pH sensors. Chem. Asian J. 2013, 8, 1144−1151.  doi: 10.1002/asia.201300028

    24. [24]

      Wang, T.; Liu, L.; Xu, K.; Xie, H.; Shen, H.; Zhao, W. X. Synthesis and characterization of trinuclear N-heterocyclic carbine-palladium(II) complexes and their applications in the Suzuki-Miyaura cross-coupling reaction. RSC Adv. 2016, 6, 100690−100695.  doi: 10.1039/C6RA20852E

    25. [25]

      Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of Göttingen, Germany 1997.

    26. [26]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339−341.  doi: 10.1107/S0021889808042726

    27. [27]

      Mohamed, G.; El-Gamel, N. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and dl-phenylalanine. Spectrochim. Acta Part A 2004, 60, 3141−3154.  doi: 10.1016/j.saa.2004.01.035

    28. [28]

      Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T. Control over catenation in metal-organic frameworks via rational design of the organic building block. J. Am. Chem. Soc. 2010, 132, 950−952.  doi: 10.1021/ja909519e

    29. [29]

      Yang, H.; Peng, F.; Dang, C.; Wang, Y.; Hu, D.; Zhao, X.; Feng, P.; Bu, X. Ligand charge separation to build highly stable quasi-isomer of MOF-74-Zn. J. Am. Chem. Soc. 2019, 141, 9808−9812.  doi: 10.1021/jacs.9b04432

  • 加载中
    1. [1]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    2. [2]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    3. [3]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    4. [4]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    5. [5]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    6. [6]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    7. [7]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    8. [8]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    9. [9]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    10. [10]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    11. [11]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    12. [12]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    13. [13]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    14. [14]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    19. [19]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    20. [20]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

Metrics
  • PDF Downloads(1)
  • Abstract views(394)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return