Citation: Shuang RAO, Chen-Sheng LIN, Zhang-Zhen HE, Guo-Liang CHAI. Theoretical Studies on the Electronic Properties of R2M14B (R = Lanthanides from La to Lu; M = Mn, Fe, Co, and Ni)[J]. Chinese Journal of Structural Chemistry, ;2021, 40(2): 160-168. doi: 10.14102/j.cnki.0254–5861.2011–2846 shu

Theoretical Studies on the Electronic Properties of R2M14B (R = Lanthanides from La to Lu; M = Mn, Fe, Co, and Ni)

  • Corresponding author: Guo-Liang CHAI, g.chai@fjirsm.ac.cn
  • Received Date: 13 April 2020
    Accepted Date: 19 May 2020

    Fund Project: the National Natural Science Foundation of China 21703248the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the STS program under cooperative agreement between Fujian Province and Chinese Academy of Sciences 2017T3004

Figures(6)

  • To search for an alternative for Nd2Fe14B, we have studied the electronic structures of R2M14B compounds, where R stands for rare-earth element and M for Mn, Fe, Co and Ni. By density functional theory (DFT), we discuss the atomic coordination environment and partial density of states (PDOS) in detail, with the emphasis on the interaction between the six kinds of M sites and the R atoms. We systemically calculated the electronic structures of sixty R2M14B compounds to provide systematic and reliable results for explaining the origination of magnetism, which is important for further development of Nd2Fe14B based magnet materials.
  • 加载中
    1. [1]

      Sagawa, M.; Fujimura, S.; Togawa, N.; Yamamoto, H.; Matsuura, Y. New material for permanent magnets on a base of Nd and Fe. J. Appl. Phys. 1984, 55, 2083–2087.  doi: 10.1063/1.333572

    2. [2]

      Croat, J. J.; Herbst, J. F.; Lee, R. W.; Pinkerton, F. E. Pr-Fe and Nd-Fe-based materials: a new class of high-performance permanent magnets. J. Appl. Phys. 1984, 55, 2078–2082.  doi: 10.1063/1.333571

    3. [3]

      Skomski, R.; Coey, J. M. D. Magnetic anisotropy-how much is enough for a permanent magnet? Scripta. Mater. 2015, 112, 3–8.

    4. [4]

      Jia, Z.; Ren, D.; Zhu, R. Synthesis, characterization and magnetic properties of CoFe2O4 nanorods. Mater. Lett. 2012, 66, 128–131.  doi: 10.1016/j.matlet.2011.08.056

    5. [5]

      Khan, I.; Hong, J. Electronic structure and magnetic properties of Nd2Fe14B. J. Korean Phys. Soc. 2016, 68, 1409–1414.  doi: 10.3938/jkps.68.1409

    6. [6]

      Bolzoni, F.; Moze, O.; Pareti, L. First-order field-induced magnetization transitions in single-crystal Nd2Fe14B. J. Appl. Phys. 1987, 62, 615–620.  doi: 10.1063/1.339789

    7. [7]

      Yamada, O.; Tokuhara, H.; Ono, F.; Sagawa, M.; Matsuura, Y. Magnetocrystalline anisotropy in Nd2Fe14B intermetallic compound. J. Magn. Magn. Mater. 1986, 54, 585–586.

    8. [8]

      Givord, D.; Li, H. S.; Tasset, F. Polarized neutron study of the compounds Y2Fe14B and Nd2Fe14B. J. Appl. Phys. 1985, 57, 4100–4102.  doi: 10.1063/1.334631

    9. [9]

      Ching, W. Y.; Gu, Z. Q. Electronic structure of Nd2Fe14B. J. Appl. Phys. 1987, 61, 3718–3720.  doi: 10.1063/1.338671

    10. [10]

      Abache, C.; Oesterreicher, H. Structural and magnetic properties of R2Fe14−xTxB (R = Nd, Y; T = Cr, Mn, Co, Ni, Al). J. Appl. Phys. 1986, 60, 1114–1117.  doi: 10.1063/1.337353

    11. [11]

      Bolzoni, F.; Leccabue, F.; Moze, O.; Pareti, L.; Solzi, M. Magnetocrystalline anisotropy of Ni and Mn substituted Nd2Fe14B compounds. J. Magn. Magn. Mater. 1987, 67, 373–377.  doi: 10.1016/0304-8853(87)90197-1

    12. [12]

      Doi, M.; Matsui, M. Substitution effect of Fe sites in Nd2Fe14B. IEEE Translat. J. Magn. Jpn. 1992, 7, 38–44.  doi: 10.1109/TJMJ.1992.4565324

    13. [13]

      Wang, H. Y.; Zhao, F. A.; Chen, N. X.; Liu, G. Theoretical investigation on the phase stability of Nd2Fe14B and site preference of V, Cr, Mn, Zr and Nb. J. Magn. Magn. Mater. 2005, 295, 219–229.  doi: 10.1016/j.jmmm.2005.01.017

    14. [14]

      Runge, E.; Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52, 997–1000.  doi: 10.1103/PhysRevLett.52.997

    15. [15]

      Reinhard, M.; Giehl, K.; Abel, K.; Haffner, C.; Jarchau, T.; Hoppe, V.; Jockusch, B. M.; Walter, U. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO. J. 1995, 14, 1583–1589.  doi: 10.1002/j.1460-2075.1995.tb07146.x

    16. [16]

      Miyake, T.; Akai, H. Quantum theory of rare-earth magnets. J. Phys. Soc. Jpn. 2018, 87, 041009–10.  doi: 10.7566/JPSJ.87.041009

    17. [17]

      Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 2013, 34, 2557–2567.  doi: 10.1002/jcc.23424

    18. [18]

      Wolfram, T.; Elliatioglu, S. Density-of-states and partial-density-of-states functions for the cubic d-band perovskites. Phys. Rev. B 1982, 25, 2697–2714.  doi: 10.1103/PhysRevB.25.2697

    19. [19]

      Wang, S. G.; Schwarz, W. H. E. Lanthanide diatomics and lanthanide contractions. J. Phys. Chem. C 1995, 99, 11687–11695.  doi: 10.1021/j100030a011

    20. [20]

      James, P.; Eriksson, O.; Johansson, B.; Abrikosov, I. A. Calculated magnetic properties of binary alloys between Fe, Co, Ni, and Cu. Phys. Rev. B 1999, 59, 419–430.  doi: 10.1103/PhysRevB.59.419

    21. [21]

      Kitagawa, I. Calculation of electronic structures and magnetic moments of Nd2Fe14B and Dy2Fe14B by using linear-combination-of-pseudo-atomic-orbital method. J. Appl. Phys. 2009, 105, 07E502–3.  doi: 10.1063/1.3068458

    22. [22]

      Fuerst, C. D.; Meisner, G. P.; Pinkerton, F. E.; Yelon, W. B. Site occupancy in erbium-iron-manganese-boron alloys. J. Less Common. Met. 1987, 133, 255–261.  doi: 10.1016/0022-5088(87)90235-9

    23. [23]

      Jaswal, S. S.; Langell, M. A.; Ren, Y. G.; Engelhardt, M. A.; Sellmyer, D. J. Electronic structure and surface reactivity of Nd2Fe14B and related compounds. J. Appl. Phys. 1988, 64, 5577–5579.  doi: 10.1063/1.342286

    24. [24]

      Hughes, I. D.; Däne, M.; Ernst, A.; Hergert, W.; Lüders, W.; Poulter, J.; Staunton, J. B.; Svane, A.; Szotek, Z.; Temmerman, W. M. Lanthanide contraction and magnetism in the heavy rare earth elements. Nature 2007, 446, 650–653.  doi: 10.1038/nature05668

    25. [25]

      Maple, M. B.; Witting, J.; Kim, K. S. Pressure-induced magnetic-nonmagnetic transtion of Ce impurities in La. Phys. Rev. Lett. 1969, 23, 1375–1377.  doi: 10.1103/PhysRevLett.23.1375

    26. [26]

      Kitagawa, I.; Asari, Y. Magnetic anisotropy of R2Fe14B (R = Nd, Gd, Y): density functional calculation by using the linear combination of pseudo-atomic-orbital method. Phys. Rev. B 2010, 81, 214408–7.  doi: 10.1103/PhysRevB.81.214408

    27. [27]

      Wang, C. S.; Klein, B. M.; Krakauer, H. Theory of magnetic and structural ordering in iron. Phys. Rev. Lett. 1985, 54, 1852–1855.  doi: 10.1103/PhysRevLett.54.1852

    28. [28]

      Marcus, P. M.; Moruzzi, V. L. Equilibrium properties of the cubic phases of cobalt. Solid State Commun. 1985, 55, 971–975.  doi: 10.1016/0038-1098(85)90569-1

    29. [29]

      Basch, H.; Newton, M. D.; Moskowitz, J. W. The electronic structure of small nickel atom clusters. J. Chem. Phys. 1980, 73, 4492–4510.  doi: 10.1063/1.440687

    30. [30]

      Fuster, G.; Brener, N. E.; Callaway, J.; Fry, J. L.; Zhao, Y. Z.; Papaconstantopoulos, D. A. Magnetism in bcc and fcc manganese. Phys. Rev. B 1988, 38, 423–432.  doi: 10.1103/PhysRevB.38.423

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    3. [3]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    10. [10]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    11. [11]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    12. [12]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    13. [13]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    14. [14]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    15. [15]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    16. [16]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    17. [17]

      Xinxin ZhangZhijian LiangXu ZhangQian GuoYing XieLei WangHonggang Fu . Electronic modulation of VN on Co5.47N as tri-functional electrocatalyst for constructing zinc-air battery to drive water splitting. Chinese Chemical Letters, 2025, 36(5): 109935-. doi: 10.1016/j.cclet.2024.109935

    18. [18]

      Xinyu TianJiaxiang GuoZeyi LiShihou ShengTianyu ZhangXianfei LiChuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174

    19. [19]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    20. [20]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

Metrics
  • PDF Downloads(2)
  • Abstract views(380)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return