Citation: Wen-Tong CHEN. Structure and Photophysical Properties of an Upconversion Holmium-mercury Compound with a 2-D Layer-like Motif[J]. Chinese Journal of Structural Chemistry, ;2021, 40(1): 70-78. doi: 10.14102/j.cnki.0254–5861.2011–2762 shu

Structure and Photophysical Properties of an Upconversion Holmium-mercury Compound with a 2-D Layer-like Motif

  • Corresponding author: Wen-Tong CHEN, wtchen_2000@aliyun.com
  • Dedicated to Professor Jin-Shun Huang on the Occasion of His 80th Birthday
  • Received Date: 10 February 2020
    Accepted Date: 2 April 2020

    Fund Project: the NNSFC 21361013Jiangxi Provincial Department of Education's Item of Science and Technology GJJ170637the Open Foundation of State Key Laboratory of Structural Chemistry 20180008

Figures(9)

  • Using a hydrothermal reaction, a novel holmium-mercury compound {[Ho(IA)(HIA)2(H2O)2]2-(Hg3Br8)}n(nHgBr2)·2nNO3 (1, HIA is isonicotinc acid) was synthesized and its crystal structure was characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in monoclinic system, space group P2/c with a = 13.0647(6), b = 9.4659(3), c = 26.0832(14) Å, β = 97.522(4)°, V = 3197.9(2) Å3, C36H36Br10Hg4Ho2N8O22, Mr = 2863.95, Z = 2, Dc = 2.974 g/cm3, μ(Mo) = 18.331 mm–1 and F(000) = 2575. It displays a two-dimensional (2D) layer-like structure. A solid-state photoluminescence experiment revealed that it shows upconversion green emission. The emission peaks should come from the 5I85G6 and 5S25I8 characteristic emission of the 4f electrons of the Ho3+ ion. Compound 1 has a CIE chromaticity coordinate (0.1774, 0.526). A solid-state UV-visible diffuse reflectance spectrum unveiled that this compound has a wide optical band gap of 3.26 eV.
  • 加载中
    1. [1]

      Wen, G. X.; Han, M. L.; Wu, X. Q.; Wu, Y. P.; Dong, W. W.; Zhao, J.; Li, D. S.; Ma, L. F. A multi-responsive luminescent sensor based on a super-stable sandwich-type terbium(Ⅲ)-organic framework. Dalton Trans. 2016, 45, 15492–15499.  doi: 10.1039/C6DT03057B

    2. [2]

      Liu, S. J.; Cao, C.; Xie, C. C.; Zheng, T. F.; Tong, X. L.; Liao, J. S.; Chen, J. L.; Wen, H. R.; Chang, Z.; Bu, X. H. Tricarboxylate-based Gd coordination polymers exhibiting large magnetocaloric effects. Dalton Trans. 2016, 45, 9209–9215.  doi: 10.1039/C6DT01349J

    3. [3]

      Qiu, L. Y.; Yu, C. F.; Wang, X. L.; Xie, Y. B.; Kirillov, A. M.; Huang, W.; Li, J. P.; Gao, P.; Wu, T.; Gu, X. W.; Nie, Q.; Wu, D. Y. Tuning the solid-state white light emission of postsynthetic lanthanide-encapsulated double-layer MOFs for three-color luminescent thermometry applications. Inorg. Chem. 2019, 58, 4524–4533.  doi: 10.1021/acs.inorgchem.9b00084

    4. [4]

      Zhou, Z.; Gu, J. P.; Qiao, X. G.; Wu, H. X.; Fu, H. R.; Wang, L.; Li, H. Y.; Ma, L. F. Double protected lanthanide fluorescence core@shell colloidal hybrid for the selective and sensitive detection of ClO-. Sensor Actuat. B-Chem. 2019, 282, 437–442.  doi: 10.1016/j.snb.2018.11.103

    5. [5]

      Wei, J. H.; Yi, J. W.; Han, M. L.; Li, B.; Liu, S.; Wu, Y. P.; Ma, L. F.; Li, D. S. A water-stable terbium(Ⅲ)-organic framework as a chemosensor for inorganic ions, nitro-containing compounds and antibiotics in aqueous solutions. Chem. Asian J. 2019, 14, 3694–3701.  doi: 10.1002/asia.201900706

    6. [6]

      Samannan, B.; Selvam, J.; Thavasikani, J. Synthesis, characterization and anticancer activity of transition metal substituted polyoxometalate-β-cyclodextrin composites. Asian J. Chem. 2020, 32, 297–302.  doi: 10.14233/ajchem.2020.22321

    7. [7]

      Xiong, X. H.; Tao, Y.; Yu, Z. W.; Yang, L. X.; Sun, L. J.; Fan, Y. L.; Luo, F. Selective extraction of thorium from uranium and rare earth elements using sulfonated covalent organic framework and its membrane derivate. Chem. Engin. J. 2020, 384, 123240–7.  doi: 10.1016/j.cej.2019.123240

    8. [8]

      Yao, X.; An, G. H.; Li, Y. X.; Yan, P. F.; Li, W. Z.; Li, G. M. Effect of nuclearity and symmetry on the single-molecule magnets behavior of seven-coordinated β-diketonate Dy(Ⅲ) complexes. J. Solid State Chem. 2019, 274, 295–302.  doi: 10.1016/j.jssc.2019.03.044

    9. [9]

      Liu, S. J.; Cao, C.; Yao, S. L.; Zheng, T. F.; Wang, Z. X.; Liu, C.; Liao, J. S.; Chen, J. L.; Li, Y. W.; Wen, H. R. Temperature- and vapor-induced reversible single-crystal-to-single-crystal transformations of three 2D/3D Gd(Ⅲ)-organic frameworks exhibiting significant magnetocaloric effects. Dalton Trans. 2017, 46, 64–70.  doi: 10.1039/C6DT03589B

    10. [10]

      Ahmed, N.; Nisar, J.; Kouser, R.; Nabi, A. G.; Mukhtar, S.; Saeed, Y.; Nasim, M. H. Study of electronic, magnetic and optical properties of KMS2 (M = Nd, Ho, Er and Lu): first principle calculations. Mater. Res. Express 2017, 4, 065903–8.  doi: 10.1088/2053-1591/aa75fc

    11. [11]

      Wu, H. Q.; Yan, C. S.; Luo, F.; Krishna, R. Beyond crystal engineering: significant enhancement of C2H2/CO2 separation by constructing composite material. Inorg. Chem. 2018, 57, 3679–3682.  doi: 10.1021/acs.inorgchem.8b00341

    12. [12]

      Knoefel, N. D.; Schoo, C.; Seifert, T. P.; Roesky, P. W. A dimolybdenum paddlewheel as a building block for heteromultimetallic structures. Dalton Trans. 2020, 49, 1513–1521.  doi: 10.1039/C9DT04167B

    13. [13]

      Li, J. Q.; Gong, L. L.; Feng, X. F.; Zhang, L.; Wu, H. Q.; Yan, C. S.; Xiong, Y. Y.; Gao, H. Y.; Luo, F. Direct extraction of U(VI) from alkaline solution and seawater via anion exchange by metal-organic framework. Chem. Eng. J. 2017, 316, 154–159.  doi: 10.1016/j.cej.2017.01.046

    14. [14]

      Cai, H.; Li, N.; Zhang, N.; Yang, Z.; Cao, J.; Lin, Y.; Min, N.; Wang, J. Metal-directed supramolecular architectures based on the bifunctional ligand 2, 5-bis(1H-1, 2, 4-triazol-1-yl)terephthalic acid. Acta Crystallogr. C 2020, 76, 118–124.  doi: 10.1107/S2053229620000248

    15. [15]

      Gong, L. L.; Feng, X. F.; Luo, F.; Yi, X. F.; Zheng, A. M. Removal and safe reuse of highly toxic allyl alcohol using a highly selective photo-sensitive metal-organic framework. Green Chem. 2016, 18, 2047–2055.  doi: 10.1039/C5GC02182K

    16. [16]

      Zhao, Y.; Zhai, Z. M.; Liu, X. Y.; Yang, X. G.; Ma, L. F.; Wang, L. Y. Two cobalt(II) coordination polymers based on 5-i-butoxyisophthalate and dipyridyl: syntheses, structures and efficient oxygen evolution reaction. J. Solid State Chem. 2019, 278, 120913–6.  doi: 10.1016/j.jssc.2019.120913

    17. [17]

      Anuja, K.; Reddy, K. H; Srinivasulu, K.; Dhanalakshmi, D. Synthesis, structural characterization and DNA binding studies on transition metal complexes with 2-formylpyridine benzoylhydrazone. Asian J. Chem. 2020, 32, 322–328.  doi: 10.14233/ajchem.2020.22389

    18. [18]

      Yin, W. H.; Xiong, Y. Y.; Wu, H. Q.; Tao, Y.; Yang, L. X.; Li, J. Q.; Tong, X. L.; Luo, F. Functionalizing a metal-organic framework by a photoassisted multicomponent postsynthetic modification approach showing highly effective Hg(II) removal. Inorg. Chem. 2018, 57, 8722–8725.  doi: 10.1021/acs.inorgchem.8b01457

    19. [19]

      Martinez, B.; Livache, C.; Goubet, N.; Jagtap, A.; Cruguel, H.; Ouerghi, A.; Lacaze, E.; Silly, M. G.; Lhuillier, E. Probing charge carrier dynamics to unveil the role of surface ligands in HgTe narrow band gap nanocrystals. J. Phys. Chem. C 2018, 122, 859–865.

    20. [20]

      Fan, C. B.; Gong, L. L.; Huang, L.; Luo, F.; Krishna, R.; Yi, X. F.; Zheng, A. M.; Zhang, L.; Pu, S. Z.; Feng, X. F.; Luo, M. B.; Guo, G. C. Significant enhancement of C2H2/C2H4 separation by a photochromic diarylethene unit: a temperature- and light-responsive separation switch. Angew. Chem. Int. Ed. 2017, 56, 7900–7906.  doi: 10.1002/anie.201702484

    21. [21]

      Du, X.; Su, H.; Zhang, X. Metal-organic framework-derived M (M = Fe, Ni, Zn and Mo) doped Co9S8 nanoarrays as efficient electrocatalyst for water splitting: the combination of theoretical calculation and experiment. J. Catal. 2020, 383, 103–116.  doi: 10.1016/j.jcat.2020.01.015

    22. [22]

      Cheng, Y. J.; Wang, R.; Wang, S.; Xi, X. J.; Ma, L. F.; Zang, S. Q. Encapsulating [Mo3S13]2– clusters in cationic covalent organic frameworks: enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst. Chem. Commun. 2018, 54, 13563–13566.  doi: 10.1039/C8CC07784C

    23. [23]

      Wu, Y. P.; Tian, J. W.; Liu, S.; Li, B.; Zhao, J.; Ma, L. F.; Li, D. S.; Lan, Y. Q.; Bu, X. Bi-microporous metal-organic-frameworks with cubane [M4(OH)4] (M = Ni, Co) clusters and pore space partition for electrocatalytic methanol oxidation reaction. Angew. Chem. Int. Ed. 2019, 58, 12185–12189.  doi: 10.1002/anie.201907136

    24. [24]

      Wu, X. X.; Fu, H. R.; Han, M. L.; Zhou, Z.; Ma, L. F. Tetraphenylethylene immobilized metal-organic frameworks: highly sensitive fluorescent sensor for the detection of Cr2O72– and nitroaromatic explosives. Cryst. Growth Des. 2017, 17, 6041–6048.  doi: 10.1021/acs.cgd.7b01155

    25. [25]

      Liu, S. J.; Cao, C.; Yang, F.; Yu, M. H.; Yao, S. L.; Zheng, T. F.; He, W. W.; Zhao, H. X.; Hu, T. L.; Bu, X. H. High proton conduction in two CoII and MnII anionic metal-organic frameworks derived from 1, 3, 5-benzenetricarboxylic acid. Cryst. Growth Des. 2016, 16, 6776–6780.  doi: 10.1021/acs.cgd.6b00776

    26. [26]

      Yang, X. G.; Zhai, Z. M.; Lu, X. M.; Zhao, Y.; Chang, X. H.; Ma, L. F. Room temperature phosphorescence of Mn(II) and Zn(II) coordination polymers for photoelectron response applications. Dalton Trans. 2019, 48, 10785–10789.  doi: 10.1039/C9DT02178G

    27. [27]

      Zhao, Y.; Deng, D. S.; Ma, L. F.; Ji, B. M.; Wang, L. Y. A new copper-based metal-organic framework as a promising heterogeneous catalyst for chemo- and regio-selective enamination of β-ketoesters. Chem. Commun. 2013, 49, 10299–10301.  doi: 10.1039/c3cc45310c

    28. [28]

      Yang, X. G.; Ma, L. F.; Yan, D. P. Facile synthesis of 1D organic-inorganic perovskite micro-belts with high water stability for sensing and photonic applications. Chem. Sci. 2019, 10, 4567–4572.  doi: 10.1039/C9SC00162J

    29. [29]

      Yao, S. L.; Liu, S. J.; Tian, X. M.; Zheng, T. F.; Cao, C.; Niu, C. Y.; Chen, Y. Q.; Chen, J. L.; Huang, H.; Wen, H. R. A Zn(II)-based metal-organic framework with a rare tcj topology as a turn-on fluorescent sensor for acetylacetone. Inorg. Chem. 2019, 58, 3578–3581.  doi: 10.1021/acs.inorgchem.8b03316

    30. [30]

      Zhao, Y.; Wang, L.; Fan, N. N.; Han, M. L.; Yang, G. P.; Ma, L. F. Porous Zn(II)-based metal-organic frameworks decorated with carboxylate groups exhibiting high gas adsorption and separation of organic dyes. Cryst. Growth Des. 2018, 18, 7114–7121.  doi: 10.1021/acs.cgd.8b01290

    31. [31]

      Luo, M. B.; Xiong, Y. Y.; Wu, H. Q.; Feng, X. F.; Li, J. Q.; Luo, F. The MOF+ technique: a significant synergic effect enables high performance chromate removal. Angew. Chem. Int. Ed. 2017, 56, 16376–16379.  doi: 10.1002/anie.201709197

    32. [32]

      Fu, H. R.; Wang, N.; Qin, J. H.; Han, M. L.; Ma, L. F.; Wang, F. Spatial confinement of a cationic MOF: a SC-SC approach for high capacity Cr(VI)-oxyanion capture in aqueous solution. Chem. Commun. 2018, 54, 11645–11648.  doi: 10.1039/C8CC05990J

    33. [33]

      Wang, H.; Meng, W.; Wu, J.; Ding, J.; Hou, H.; Fan, Y. Crystalline central-metal transformation in metal-organic frameworks. Coor. Chem. Rev. 2016, 307, 130–146.  doi: 10.1016/j.ccr.2015.05.009

    34. [34]

      Cryer, M. E.; Fiedler, H.; Halpert, J. E. Photo-electrosensitive memristor using oxygen doping in HgTe nanocrystal films. ACS Appl. Mater. Inter. 2018, 10, 18927–18934.  doi: 10.1021/acsami.8b05429

    35. [35]

      Fu, H. R.; Zhao, Y.; Zhou, Z.; Yang, X. G.; Ma, L. F. Neutral ligand TIPA-based two 2D metal-organic frameworks: ultrahigh selectivity of C2H2/CH4 and efficient sensing and sorption of Cr(VI). Dalton Trans. 2018, 47, 3725–3732.  doi: 10.1039/C8DT00206A

    36. [36]

      Yao, S. L.; Zheng, T. F.; Tian, X. M.; Liu, S. J.; Cao, C.; Zhu, Z. H.; Chen, Y. Q.; Chen, J. L.; Wen, H. R. Dicarboxylate-induced structural diversity of luminescent ZnII/CdII coordination polymers derived from V-shaped bis-benzimidazole. CrystEngComm. 2018, 20, 5822–5832.  doi: 10.1039/C8CE01261J

    37. [37]

      Zhai, Z. M.; Yang, X. G.; Yang, Z. T.; Lu, X. M.; Ma, L. F. Trinuclear Ni(II) oriented highly dense packing and π-conjugation degree of metal-organic framework for efficient water oxidation. CrystEngComm. 2019, 21, 5862–5866.  doi: 10.1039/C9CE00944B

    38. [38]

      Zhao, Y.; Yang, X. G.; Lu, X. M.; Yang, C. D.; Fan, N. N.; Yang, Z. T.; Wang, L. Y.; Ma, L. F. {Zn6} Cluster based metal-organic framework with enhanced room-temperature phosphorescence and optoelectronic performances. Inorg. Chem. 2019, 58, 6215–6221.  doi: 10.1021/acs.inorgchem.9b00450

    39. [39]

      Qin, J. H.; Huang, Y. D.; Zhao, Y.; Yang, X. G.; Li, F. F.; Wang, C.; Ma, L. F. Highly dense packing of chromophoric linkers achievable in a pyrene-based metal-organic framework for photoelectric response. Inorg. Chem. 2019, 58, 15013–15016.  doi: 10.1021/acs.inorgchem.9b02203

    40. [40]

      Zhou, Z.; Han, M. L.; Fu, H. R.; Ma, L. F.; Luo, F.; Li, D. S. Engineering design toward exploring the functional group substitution in 1D channels of Zn-organic frameworks upon nitro explosives and antibiotics detection. Dalton Trans. 2018, 47, 5359–5365.  doi: 10.1039/C8DT00594J

    41. [41]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sec. C-Struct. Chem. 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    42. [42]

      Lin, W. S.; Kuang, H. M.; Luo, H.; Chen, W. T. Upconversion photoluminescence and energy transfer mechanism of a novel terbium-mercury compound. Chin. J. Struct. Chem. 2019, 38, 1012–1020.

    43. [43]

      Lin, W. S.; Chen, W. T. Magnetic, photoluminescent and semiconductive properties of a novel 4f-5d bromide compound (La6Hg5Br26)[4(HgBr2)](2Br). Chin. J. Struct. Chem. 2020, 1, 154–163.

    44. [44]

      Kuang, H. M.; Zhang, Z. X.; Lin, L. Z.; Chen, H. L.; Chen, W. T. Preparation, structure, photoluminescence and energy transfer mechanism of a novel holmium complex. Chin. J. Struct. Chem. 2019, 38, 337–344.

    45. [45]

      Rajagopalan, K.; Jagannathan, T. Up/down conversion luminescence properties of (Na0.5Gd0.5)MoO4: Ln3+ (Ln = Eu, Tb, Dy, Yb/Er, Yb/Tm, and Yb/Ho) microstructures: synthesis, morphology, structural and magnetic investigation. New J. Chem. 2014, 38, 3480–3491.  doi: 10.1039/C4NJ00165F

    46. [46]

      Tishchenko, M. A.; Gerasimenko, G. I.; Poluektov, N. S. Spectrophotometric study of the complexing of neodymium, holmium, and erbium ions with diantipyrylmethane and some of its homologs in aqueous-ethanol solutions. Doklady Akademii Nauk SSSR 1975, 222, 1107–1110.

    47. [47]

      Huang, F. Q.; Mitchell, K.; Ibers, J. A. New layered materials: syntheses, structures, and optical and magnetic properties of CsGdZnSe3, CsZrCuSe3, CsUCuSe3, and BaGdCuSe3. Inorg. Chem. 2001, 40, 5123–5126.  doi: 10.1021/ic0104353

  • 加载中
    1. [1]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    2. [2]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    3. [3]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    4. [4]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    5. [5]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    6. [6]

      Yuqing LiuShiling ZhangKai JiangShiyue DingLimei XuYingqi LiuTing WangFenfen ZhengWeiwei XiongJun-Jie Zhu . Near-infrared light responsive upconversion-DNA nanocapsules for remote-controlled CRISPR-Cas9 genome editing. Chinese Chemical Letters, 2025, 36(5): 110282-. doi: 10.1016/j.cclet.2024.110282

    7. [7]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    8. [8]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    9. [9]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    10. [10]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    11. [11]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    12. [12]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    13. [13]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    14. [14]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    15. [15]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    16. [16]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

    17. [17]

      Zheyu LiHuwei LiYao LiXinyu FuHongxia YueQingxing YangJing FengXinyu WangHongjie Zhang . The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2025, 36(4): 109800-. doi: 10.1016/j.cclet.2024.109800

    18. [18]

      Hongzhi Zhang Hong Li Asif Ali Haider Junpeng Li Zhi Xie Hongming Jiang Conglin Liu Rui Wang Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509

    19. [19]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    20. [20]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

Metrics
  • PDF Downloads(1)
  • Abstract views(384)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return