Citation: Ze-Yun CAI, Kun LI, Guo-Qiang XIE. Optimizing Strength and Ductility of Titanium Alloys by Oxygen: Review and Prospect[J]. Chinese Journal of Structural Chemistry, ;2020, 39(4): 615-622. doi: 10.14102/j.cnki.0254-5861.2011-2826 shu

Optimizing Strength and Ductility of Titanium Alloys by Oxygen: Review and Prospect

  • Corresponding author: Guo-Qiang XIE, xieguoqiang@hit.edu.cn
  • Received Date: 19 March 2020
    Accepted Date: 31 March 2020

Figures(5)

  • The traditional strengthening elements of titanium alloys include Al, Mo, V, etc., however, the high cost and toxicity of these elements put a limit on their further applications for biomaterials. Ubiquitous light elements such as oxygen are hopeful replacement due to high biocompatibility. It is recognized that the oxygen enhances the strength but pays the price of brittleness, thus the amount of oxygen is constrained. However, recent study results indicated that excess oxygen can keep high ductility together with high strength of titanium. This paper reviews the influence and the mechanism of oxygen on the strength and ductility of titanium alloys, and provides a new perspective for the strengthening method of titanium alloys.
  • 加载中
    1. [1]

      Leyens, C.; Peters, M. Titanium and Titanium Alloys. 2003, 1–523.

    2. [2]

      Koczak, J.; Premkumar, K. Emerging technologies for the in-situ production of MMCs. JOM 1993, 45, 44–48.

    3. [3]

      Jattce, K.; Ogden, K.; Maybuth, J. Alloys of titanium with carbon, oxygen and nitrogen. Transactions AIME 1950, 188, 1261–1266.

    4. [4]

      Yan, M.; Xu, W.; Dargusch, S.; Tang, H.; Brandt, M.; Qian, M. Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall. 2014, 57, 251–257.  doi: 10.1179/1743290114Y.0000000108

    5. [5]

      Yan, M.; Dargusch, S.; Ebel, T.; Qian, M. A transmission electron microscopy and three-dimensional atom probe study of the oxygen-induced fine microstructural features in as-sintered Ti-6Al-4V and their impacts on ductility. Acta Mater. 2014, 68, 196–206.  doi: 10.1016/j.actamat.2014.01.015

    6. [6]

      Sun, B.; Li, S.; Imai, H.; Minoto, T.; Umeda, J.; Kondoh, K. Fabrication of high-strength Ti materials by in-process solid solution strengthening of oxygen via P/M methods. Mat. Sci. Eng. A 2013, 563, 95–100.  doi: 10.1016/j.msea.2012.11.058

    7. [7]

      Xia, Y.; Zhao, J.; Tian, Q.; Guo, X. Review of the effect of oxygen on titanium and deoxygenation technologies for recycling of titanium metal. JOM 2019, 71, 1–12.  doi: 10.1007/s11837-018-3286-1

    8. [8]

      Ogden, R.; Jaffee, I. The effects of carbon, oxygen, and nitrogen on the mechanical properties of titanium and titanium alloys. TML Report 1955, 20, 1–101.

    9. [9]

      Kahvec, I.; Welsch, E. Effect of oxygen on hardness and alpha/beta phase ratio of Ti-6Al-4V alloy. Scripta Metal. 1986, 20, 1287–1290.  doi: 10.1016/0036-9748(86)90050-5

    10. [10]

      Sidambe, T.; Derguti, F.; Todd, I. Metal injection moulding of low interstitial titanium. Key Eng. Mat. 2012, 520, 145–152.  doi: 10.4028/www.scientific.net/KEM.520.145

    11. [11]

      Ebel, T.; Friederici, V.; Imgrund, P.; Hartwig, T. Metal injection molding of titanium. Titanium Powder Metall. 2015, 337–360.

    12. [12]

      Barkia, B.; Doquet, V.; Couzinié, P.; Guillot, I. Room-temperature creep and stress relaxation in commercial purity titanium-influence of the oxygen and hydrogen contents on incubation phenomena and aging-induced rejuvenation of the creep potential. Mat. Sci. Eng. A 2015, 624, 79–89.  doi: 10.1016/j.msea.2014.11.073

    13. [13]

      Yu, Q.; Correia, M.; Laskar, J. Origin of dramatic oxygen solute strengthening effect in titanium. Int. J. Astrobiol. 2014, 14, 233–254.

    14. [14]

      Rhodes, G.; Paton, E. The influence of α/β interface phase on tensile properties of Ti-6AI-4V. Metall. Trans. A 1979, 10A, 1753–1758.

    15. [15]

      Sauer, C.; Tjering, L. Influence of α layers at β grain boundaries on mechanical properties of Ti-alloys. Mat. Sci. Eng. 2001, 319, 393–397.

    16. [16]

      Welsch, G.; Bunk, W. Deformation modes of the α-phase of Ti-6Al-4V as a function of oxygen concentration and aging temperature. Metall. Trans. A 1982, 13A, 889–899.

    17. [17]

      Kim, S.; Ra, Y.; Yeo, D.; Bang, H.; Yoo, Y.; Kim, W. Microstructure, elastic modulus and tensile properties of Ti-Nb-O alloy system. J. Mater. Sci. Technol 2008, 24, 33–36.  doi: 10.1179/174328407X248505

    18. [18]

      Prima, F.; Vermaut, P.; Gloriant, T.; Debuigne, J. Experimental evidence of elastic interaction between ω nanoparticles embedded in a metastable β titanium alloy. J. Mater. Sci. Lett. 2002, 21, 1935–1937.  doi: 10.1023/A:1021608614004

    19. [19]

      Lim, Y.; Mcmahon, J.; Pope, P.; Williams, J. The effect of oxygen on the structure and mechanical behavior of aged Ti-8 wt pct Al. Metall. Trans. A 1976, 7A, 139–144.

    20. [20]

      Bridier, F.; Villechaise, P.; Mendez, J. Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation. Acta Mater. 2005, 53, 555–567.  doi: 10.1016/j.actamat.2004.09.040

    21. [21]

      Wyatt, W.; Joost, J.; Zhu, D.; Ankem, S. Deformation mechanisms and kinetics of time-dependent twinning in an α-titanium alloy. Int. J. Plasticity 2012, 39, 119–131.  doi: 10.1016/j.ijplas.2012.06.001

    22. [22]

      Meyers, A.; Hringer, V.; Lubarda, A. The onset of twinning in metals a constitutive description. Acta mater. 2001, 49, 4025–4039.  doi: 10.1016/S1359-6454(01)00300-7

    23. [23]

      Zaefferer, S. Investigation of the correlation between texture and microstructure on a submicrometer scale in the TEM. Adv. Eng. Mater. 2003, 5, 607–613.  doi: 10.1002/adem.200300382

    24. [24]

      Chen, B.; She, J.; Ye, X.; Umeda, J. Advanced mechanical properties of powder metallurgy commercially pure titanium with a high oxygen concentration. J. Mater. Res. 2017, 32, 3769–3776.  doi: 10.1557/jmr.2017.338

    25. [25]

      Sun, B.; Li, S.; Imai, H.; Umeda, J.; Kondoh, K. Fabrication of high-strength Ti materials by in-process solid solution strengthening of oxygen via P/M methods. Mat. Sci. Eng. A 2013, 563, 95–100.  doi: 10.1016/j.msea.2012.11.058

    26. [26]

      Kariya, S.; Fukuo, M.; Umeda, J.; Kondoh, K. Quantitative analysis on light elements solution strengthening in pure titanium sintered materials by Labusch model using experimental data. Mater. Trans. 2019, 60, 263–268.  doi: 10.2320/matertrans.Y-M2018849

    27. [27]

      Hall, E. O. The deformation and ageing of mild steel: Ⅲ discussion of results. Proc. Phys. Soc. B 1951, 64, 747–753.  doi: 10.1088/0370-1301/64/9/303

    28. [28]

      Jones, P.; Hutchinson, B. Stress-state dependence of slip in titanium-6Al-4V and other HCP metals. Acta Mater. 1981, 29, 951–968.  doi: 10.1016/0001-6160(81)90049-3

    29. [29]

      Kariya, S.; Umeda, J.; Ma, Q.; Seiichi, K. Ductility improvement mechanism of pure titanium with excessive oxygen solid solution via rapid cooling process. J. Jpn. I. Met. 2018, 82, 390–395.  doi: 10.2320/jinstmet.JAW201810

    30. [30]

      Lei, Z.; Liu, X.; Wu, Y.; Wang, H.; Jiang, S.; Wang, S.; Hui, X.; Wu, Y.; Gault, B.; Kontis, P.; Raabe, D.; Gu, L.; Zhang, Q.; Chen, H.; Wang, H.; Liu, J.; An, K.; Zeng, Q.; Nieh, T.; Lu, Z. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018, 563, 546-550.  doi: 10.1038/s41586-018-0685-y

    31. [31]

      Mimoto, T.; Umeda, J.; Kondoh, K. Strengthening behaviour and mechanisms of extruded powder metallurgy pure Ti materials reinforced with ubiquitous light elements. Powder Metall. 2016, 59, 223–228.  doi: 10.1080/00325899.2016.1148847

    32. [32]

      Shen, J.; Chen, B.; Umeda, J.; Kondoh, K. Microstructure and mechanical properties of CP-Ti fabricated via powder metallurgy with non-uniformly dispersed impurity solutes. Mat. Sci. Eng. A 2018, 716, 1–10.  doi: 10.1016/j.msea.2018.01.031

  • 加载中
    1. [1]

      Xiaoya CuiYanchang LiuQiang LiHe ZhuShibo XiJianrong Zeng . Ultrafast crystallinity engineering of PtCo3 alloy for enhanced oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(5): 110069-. doi: 10.1016/j.cclet.2024.110069

    2. [2]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    3. [3]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    4. [4]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    5. [5]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    6. [6]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    7. [7]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    8. [8]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    9. [9]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    10. [10]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    11. [11]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    12. [12]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    13. [13]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    14. [14]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    15. [15]

      Juhong Zhou Hui Zhao Ping Han Ziyue Wang Yan Zhang Xiaoxia Mao Konglin Wu Shengjue Deng Wenxiang He Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470

    16. [16]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    17. [17]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    18. [18]

      Shengtao JiangMengjiao XieLimin JinYifan RenWentian ZhengSiping JiYanbiao Liu . New insights into electrocatalytic singlet oxygen generation for effective and selective water decontamination. Chinese Chemical Letters, 2025, 36(5): 110293-. doi: 10.1016/j.cclet.2024.110293

    19. [19]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    20. [20]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

Metrics
  • PDF Downloads(13)
  • Abstract views(867)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return