Citation: Xiao-Jun TAN, Xiu-Hui LU, Jin-Song GU. Features of Mechanism of Cycloaddition Reaction between Me2Ge=Sn: and Ethylene[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1627-1632. doi: 10.14102/j.cnki.0254-5861.2011-2667 shu

Features of Mechanism of Cycloaddition Reaction between Me2Ge=Sn: and Ethylene

  • Corresponding author: Xiu-Hui LU, lxh@ujn.edu.cn Jin-Song GU, jndxswxygjs@163.com
  • Received Date: 15 November 2019
    Accepted Date: 1 April 2020

    Fund Project: the National Natural Science Foundation of China 31370090Project of Key R & D of Shandong Province 2015GSF121006

Figures(5)

  • X2Ge=Sn: (X = H, Me, F, Cl, Br, Ph, Ar···) are new species of chemistry. The cycloaddition reaction of X2Ge=Sn: is a new study field of stannylene chemistry. To explore the rules of cycloaddition reaction between X2Ge=Sn: and the symmetric π-bonded compounds, the cycloaddition reactions of Me2Ge=Sn: and ethylene were selected as model reactions in this paper, and the mechanism was investigated for the first time here using the MP2 theory together with the 6-311++G** basis set for C, H and Ge atoms and the LanL2dzbasis set for Sn atoms. From the potential energy profile, it could be predicted that the reaction has one dominant reaction channel. The reaction rule present is that the 5p unoccupied orbital of Sn in Me2Ge=Sn: and the π orbital of ethylene form a πp donor–acceptor bond, resulting in an intermediate which, due to its instability, makes itself isomerize into a four-membered Ge-heterocyclic ring stannylene. Because the 5p unoccupied orbital of Sn atom in the four-membered Ge-heterocyclic ring stannylene and the π orbital of ethylene form a πp donor-acceptor bond, the four-membered Ge-heterocyclic ring stannylene further combines with ethylene to get another intermediate. Because the Sn atom in this intermediate exhibits sp3 hybridization after transition state, the intermediate isomerizes to a Ge-heterocyclic spiro-Sn-heterocyclic ring compound. The research result indicates the laws of cycloaddition reaction between X2Ge=Sn: and the symmetric π-bonded compounds. This study opens up a new research field for stannylene chemistry.
  • 加载中
    1. [1]

      Stang, P. J. Unsaturated carbenes. Chem. Rev. 1978, 78, 383–405.  doi: 10.1021/cr60314a003

    2. [2]

      Stang, P. J. Recent developments in unsaturated carbenes and related chemistry. Acc. Chem. Res. 1982, 15, 348–354.  doi: 10.1021/ar00083a002

    3. [3]

      Leclercq, H.; Dubois, I. The absorption spectrum of the H2CSi radical. J. Mol. Spectrosc 1979, 76, 39–54.  doi: 10.1016/0022-2852(79)90216-9

    4. [4]

      Srinivas, R.; Sulzle, D.; Schwarz, H. Experimental evidence for the existence of SiCH (x = 1~3) molecules in the gas phase. J. Am. Chem. Soc. 1991, 113, 52–58.  doi: 10.1021/ja00001a010

    5. [5]

      Harper, W. H.; Ferrall, E. A.; Hilliard, R. K.; Stogner, S. M.; Grev, R. S.; Clouthier, D. J. Laser spectroscopic detection of the simplest unsaturated silylene and germylene. J. Am. Chem. Soc. 1997, 119, 8361–8362.  doi: 10.1021/ja9716012

    6. [6]

      Hostutler, D. A.; Smith, T. C.; Li, H. Y.; Clouthier, D. J. The electronic spectrum, molecular structure, and oscillatory fluorescence decay of jet-cooled germylidene (H2C=Ge), the simplest unsaturated germylene. J. Chem. Phys. 1999, 111, 950–958.  doi: 10.1063/1.479187

    7. [7]

      Lu, X. H.; Lian, Z. X.; Li, Y. Q.; Wang, Z. N. Ab initio study of the formation of bis-heterocyclic compound involving Si and Ge from dichlorosilylene germylidene (Cl2Si=Ge: ) and ethene1. Russian J. Phys. Chem. A 2012, 86, 1869–1874.  doi: 10.1134/S0036024412120278

    8. [8]

      Lu, X. H.; Xiang, P. P.; Lian, Z. X.; Li, Y. Q. Ab initio study of mechanism of cycloaddition reaction between silylene carbene (H2Si=C: ) and acetone. Chin. J. Struct. Chem. 2010, 29, 1618–1625.

    9. [9]

      Ming, J. J.; Han, J. F.; Lu, X. H. Ab initio study of the mechanism of forming a spiro-Si-heterocyclic ring compound involving Ge from Cl2Ge=Si: and formaldehyde. Chin. J. Struct. Chem. 2014, 33, 1267–1274.

    10. [10]

      Lu, X. H.; Li, Y. Q.; Ming, J. J. Ab initio study of the mechanism of cycloaddition reaction between H2Ge=Ge: and acetaldehyde. Chin. J. Struct. Chem. 2015, 34, 7–14.

    11. [11]

      Lu, X. H.; Wang, D. S.; Li, T.; Lian, Z. X. Ab initio study of mechanism of forming a spiro-Ge-heterocyclic ring compound involving Si from Me2Si=Ge: and formaldehyde. Chin. J. Struct. Chem. 2015, 34, 81–487.

    12. [12]

      Tan, X. J.; Lu, X. H. Ab initio study of mechanism of forming a Si-heterocyclic spiro-Sn-heterocyclic ring compound by cycloaddition reaction of Cl2Si=Sn: and ethylene. Chin. J. Struct. Chem. 2019, 38, 673–678.

    13. [13]

      Bundhun, A.; Momeni, M. R.; Shakib, F. A.; Ramasami, P.; Gaspar, P. P.; Schaefer, III H. F. Toward unsaturated stannylenes Y2Z=Sn: and related compounds with triplet electronic ground states. RSC Adv. 2016, 6, 53749–53759.  doi: 10.1039/C6RA00492J

    14. [14]

      Curtis, L. A.; Raghavachari, K.; Pople, J. A. Gaussian-2 theory using reduced Møller-Plesset orders. J. Chem. Phys. 1993, 98, 1293–1298.  doi: 10.1063/1.464297

    15. [15]

      Fukui, K. A formulation of the reaction coordinate. J. Phys. Chem. 1970, 74, 4161−4163.  doi: 10.1021/j100717a029

    16. [16]

      Ishida, K.; Morokuma, K.; Komornicki, A. The intrinsic reaction coordinate. An ab initio calculation for HNC to HCN and H- + CH4 to CH4 + H-. J. Chem. Phys. 1977, 66, 2153−2156.  doi: 10.1063/1.434152

  • 加载中
    1. [1]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    2. [2]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    3. [3]

      Li LiXue KeShan WangZhuo JiangYuzheng GuoChunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423

    4. [4]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    5. [5]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    6. [6]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    7. [7]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    8. [8]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    9. [9]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    10. [10]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    11. [11]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    12. [12]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    13. [13]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    14. [14]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    15. [15]

      Chupeng LuoKeying SuShan YangYujia LiangYawen TangXiaoyu Qiu . Ultrathin NiS2 nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(5): 109940-. doi: 10.1016/j.cclet.2024.109940

    16. [16]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    17. [17]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    18. [18]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    19. [19]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    20. [20]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

Metrics
  • PDF Downloads(1)
  • Abstract views(402)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return