Denitrative iodination of nitroarenes with hydroiodic acid
-
* Corresponding author.
E-mail address: ssong@bjmu.edu.cn (S. Song).
Citation:
Qingxuan Kong, Changwei Jiang, Bin Lyu, Zhaoting Li, Ning Jiao, Song Song. Denitrative iodination of nitroarenes with hydroiodic acid[J]. Chinese Chemical Letters,
;2025, 36(10): 111444.
doi:
10.1016/j.cclet.2025.111444
B.R. Smith, C.M. Eastman, J.T. Njardarson, J. Med. Chem. 57 (2014) 9764–9773.
doi: 10.1021/jm501105n
Y. Kondo, H. Kimura, M. Sasaki, et al., ACS Omega 8 (2023) 24418–24425.
doi: 10.1021/acsomega.3c01974
H. McErlain, M.J. Andrews, A.J.B. Watson, S.L. Pimlott, A. Sutherland, Org. Lett. 26 (2024) 1528–1532.
doi: 10.1021/acs.orglett.4c00356
M. Diop, A. Samb, V. Costantino, E. Fattorusso, A. Mangoni, J. Nat. Prod. 59 (1996) 271–272.
doi: 10.1021/np960053n
A. Yoshimura, V.V. Zhdankin, Chem. Rev. 116 (2016) 3328–3435.
doi: 10.1021/acs.chemrev.5b00547
A.B. Dounay, L.E. Overman, Chem. Rev. 103 (2003) 2945–2964.
doi: 10.1021/cr020039h
R. Chinchilla, C. Nájera, Chem. Soc. Rev. 40 (2011) 5084–5121.
doi: 10.1039/c1cs15071e
D. Tilly, F. Chevallier, F. Mongin, P.C. Gros, Chem. Rev. 114 (2014) 1207–1257.
doi: 10.1021/cr400367p
F. Khan, M. Dlugosch, X. Liu, M.G. Banwell, Acc. Chem. Res. 51 (2018) 1784–1795.
doi: 10.1021/acs.accounts.8b00169
B. Wei, Y.-H. Chen, P. Knochel, Acc. Chem. Res. 57 (2024) 1951–1963.
doi: 10.1021/acs.accounts.4c00242
G.K.S. Prakash, T. Mathew, D. Hoole, et al., J. Am. Chem. Soc. 126 (2004) 15770–15776.
doi: 10.1021/ja0465247
C.N. Kona, R. Oku, S. Nakamura, et al., Chem 10 (2024) 402–413.
doi: 10.1016/j.chempr.2023.10.006
A. Podgoršek, M. Zupan, J. Iskra, Angew. Chem. Int. Ed. 48 (2009) 8424–8450.
doi: 10.1002/anie.200901223
F. Mo, J.M. Yan, D. Qiu, et al., Angew. Chem. Int. Ed. 49 (2010) 2028–2032.
doi: 10.1002/anie.200906699
Q. Shi, S. Zhang, J. Zhang, et al., J. Am. Chem. Soc. 138 (2016) 3946–3949.
doi: 10.1021/jacs.5b12259
X. He, X. Wang, Y.L. Tse, Z. Ke, Y.Y. Yeung, Angew. Chem. Int. Ed. 57 (2018) 12869–12873.
doi: 10.1002/anie.201806965
S.C. Fosu, C.M. Hambira, A.D. Chen, J.R. Fuchs, D.A. Nagib, Chem. 5 (2019) 417–428.
doi: 10.1016/j.chempr.2018.11.007
Y. Nishii, M. Ikeda, Y. Hayashi, S. Kawauchi, M. Miura, J. Am. Chem. Soc. 142 (2020) 1621–1629.
doi: 10.1021/jacs.9b12672
M. Liu, L.J. Li, J. Zhang, H. Xu, H.X. Dai, Chin. Chem. Lett. 31 (2020) 1301–1304.
doi: 10.1016/j.cclet.2019.09.057
W. Wang, X. Yang, R. Dai, et al., J. Am. Chem. Soc. 144 (2022) 13415–13425.
doi: 10.1021/jacs.2c06440
H. Mondal, S. Patra, S. Saha, et al., Angew. Chem. Int. Ed. 62 (2023) e202312597.
doi: 10.1002/anie.202312597
W. Wang, S. Song, N. Jiao, Acc. Chem. Res. 57 (2024) 3161–3181.
doi: 10.1021/acs.accounts.4c00501
Y. Wang, C. Bi, Y. Kawamata, et al., Nat. Chem. 16 (2024) 1539–1545.
doi: 10.1038/s41557-024-01539-4
S. Torabi, M. Jamshidi, G. Hilt, Angew. Chem. Int. Ed. 64 (2025) e202422442.
doi: 10.1002/anie.202422442
H. Finkelstein, Ber. Dtsch. Chem. Ges. 43 (1910) 1528–1532.
doi: 10.1002/cber.19100430257
L. Li, W. Liu, H. Zeng, et al., J. Am. Chem. Soc. 137 (2015) 8328–8331.
doi: 10.1021/jacs.5b03220
W. Liu, X. Yang, Y. Gao, C.J. Li, J. Am. Chem. Soc. 139 (2017) 8621–8627.
doi: 10.1021/jacs.7b03538
T. Morack, T.E. Myers, L.J. Karas, et al., J. Am. Chem. Soc. 145 (2023) 22322–22328.
doi: 10.1021/jacs.3c08727
A. Varenikov, E. Shapiro, M. Gandelman, Chem. Rev. 121 (2021) 412–484.
doi: 10.1021/acs.chemrev.0c00813
H. Hunsdiecker, C. Hunsdiecker, Ber. Dtsch. Chem. Ges. 75 (1942) 291–297.
doi: 10.1002/cber.19420750309
Y.H. Lee, B. Morandi, Nat. Chem. 10 (2018) 1016–1022.
doi: 10.1038/s41557-018-0078-8
J.M. Murphy, X. Liao, J.F. Hartwig, J. Am. Chem. Soc. 129 (2007) 15434–15435.
doi: 10.1021/ja076498n
C. Cheng, J.F. Hartwig, Science 343 (2014) 853–857.
doi: 10.1126/science.1248042
S. Rozen, M. Carmeli, J. Am. Chem. Soc. 125 (2003) 8118–8119.
doi: 10.1021/ja035616d
R. Calvo, K. Zhang, A. Passera, D. Katayev, Nat. Commun. 10 (2019) 3410.
doi: 10.1038/s41467-019-11419-y
S. Majedi, S. Majedi, F. Behmagham, Chem. Rev. Lett. 2 (2019) 187–192.
T. Long, L. Liu, Y. Tao, et al., Angew. Chem. Int. Ed. 60 (2021) 13414–13422.
doi: 10.1002/anie.202102287
I. Mosiagin, A.J. Fernandes, A. Budinská, et al., Angew. Chem. Int. Ed. 62 (2023) e202310851.
doi: 10.1002/anie.202310851
S. Patra, I. Mosiagin, R. Giri, T. Nauser, D. Katayev, Angew. Chem. Int. Ed. 62 (2023) e202300533.
doi: 10.1002/anie.202300533
Y. Zheng, Q.Q. Hu, Q. Huang, Y. Xie, Org. Lett. 26 (2024) 3316–3320.
doi: 10.1021/acs.orglett.4c01006
K. Muto, T. Okita, J. Yamaguchi, ACS Catal. 10 (2020) 9856–9871.
doi: 10.1021/acscatal.0c02990
H. Sun, S.G. DiMagno, Angew. Chem. Int. Ed. 45 (2006) 2720–2725.
doi: 10.1002/anie.200504555
F. Inoue, M. Kashihara, M.R. Yadav, Y. Nakao, Angew. Chem. Int. Ed. 56 (2017) 13307–13309.
doi: 10.1002/anie.201706982
M.R. Yadav, M. Nagaoka, M. Kashihara, et al., J. Am. Chem. Soc. 139 (2017) 9423–9426.
doi: 10.1021/jacs.7b03159
W. Chen, K. Chen, W. Chen, M. Liu, H. Wu, ACS Catal. 9 (2019) 8110–8115.
doi: 10.1021/acscatal.9b02760
P. Ryabchuk, T. Leischner, C. Kreyenschulte, et al., Angew. Chem. Int. Ed. 59 (2020) 18679–18685.
doi: 10.1002/anie.202007613
J. Liu, Y. Yang, K. Ouyang, W.X. Zhang, Green Synth. Catal. 2 (2021) 87–122.
doi: 10.1117/12.2604794
M. Kashihara, Y. Nakao, Acc. Chem. Res. 54 (2021) 2928–2935.
doi: 10.1021/acs.accounts.1c00220
Z. Lei, J. Yao, Y. Xiao, et al., Chem. Sci. 15 (2024) 3552–3561.
doi: 10.1039/d3sc06618e
R.V. Jagadeesh, A.E. Surkus, H. Junge, et al., Science 342 (2013) 1073–1076.
doi: 10.1126/science.1242005
X. Liu, H.Q. Li, S. Ye, et al., Angew. Chem. Int. Ed. 53 (2014) 7624–7628.
doi: 10.1002/anie.201404543
C.W. Cheung, M.L. Ploeger, X. Hu, Nat. Commun. 8 (2017) 14878.
doi: 10.1038/ncomms14878
M. Rauser, C. Ascheberg, M. Niggemann, Angew. Chem. Int. Ed. 56 (2017) 11570–11574.
doi: 10.1002/anie.201705356
C.W. Cheung, J.A. Ma, X. Hu, J. Am. Chem. Soc. 140 (2018) 6789–6792.
doi: 10.1021/jacs.8b03739
T.V. Nykaza, J.C. Cooper, G. Li, et al., J. Am. Chem. Soc. 140 (2018) 15200–15205.
doi: 10.1021/jacs.8b10769
J. Xiao, Y. He, F. Ye, S. Zhu, Chem 4 (2018) 1645–1657.
doi: 10.1016/j.chempr.2018.04.008
L. Wang, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 58 (2019) 5417–5421.
doi: 10.1002/anie.201814146
G. Li, T.V. Nykaza, J.C. Cooper, et al., J. Am. Chem. Soc. 142 (2020) 6786–6799.
doi: 10.1021/jacs.0c01666
H. Song, Z. Yang, C.H. Tung, W. Wang, ACS Catal. 10 (2020) 276–281.
doi: 10.1021/acscatal.9b03604
G. Li, S.P. Miller, A.T. Radosevich, J. Am. Chem. Soc. 143 (2021) 14464–14469.
doi: 10.1021/jacs.1c07272
B.D. Akana-Schneider, D.J. Weix, J. Am. Chem. Soc. 145 (2023) 16150–16159.
doi: 10.1021/jacs.3c04647
A. Bhunia, K. Bergander, C.G. Daniliuc, A. Studer, Angew. Chem. Int. Ed. 60 (2021) 8313.
doi: 10.1002/anie.202015740
T. Patra, T. Wirth, Angew. Chem. Int. Ed. 61 (2022) e202213772.
doi: 10.1002/anie.202213772
A. Ruffoni, C. Hampton, M. Simonetti, D. Leonori, Nature 610 (2022) 81–86.
doi: 10.1038/s41586-022-05211-0
D.E. Wise, E.S. Gogarnoiu, A.D. Duke, et al., J. Am. Chem. Soc. 144 (2022) 15437–15442.
doi: 10.1021/jacs.2c05648
H. Qin, R. Liu, Z. Wang, et al., Angew. Chem. Int. Ed. 64 (2025) e202416923.
doi: 10.1002/anie.202416923
L.W. Ye, X.Q. Zhu, R.L. Sahani, et al., Chem. Rev. 121 (2021) 9039–9112.
doi: 10.1021/acs.chemrev.0c00348
B. Li, A. Ruffoni, D. Leonori, Angew. Chem. Int. Ed. 62 (2023) e202310540.
doi: 10.1002/anie.202310540
G. Li, M.N. Lavagnino, S.Z. Ali, S. Hu, A.T. Radosevich, J. Am. Chem. Soc. 145 (2023) 41–46.
doi: 10.1021/jacs.2c12450
E. Matador, M.J. Tilby, I. Saridakis, et al., J. Am. Chem. Soc. 145 (2023) 27810–27820.
doi: 10.1021/jacs.3c10863
R. Sánchez-Bento, B. Roure, J. Llaveria, A. Ruffoni, D. Leonori, Chem 9 (2023) 3685–3695.
doi: 10.1016/j.chempr.2023.10.008
R. Mykura, R. Sánchez-Bento, E. Matador, et al., Nat. Chem. 16 (2024) 771–779.
doi: 10.1038/s41557-023-01429-1
J. Elfert, A. Bhunia, C.G. Daniliuc, A. Studer, ACS Catal. 13 (2023) 6704–6709.
doi: 10.1021/acscatal.3c00958
J.M. Paolillo, A.D. Duke, E.S. Gogarnoiu, D.E. Wise, M. Parasram, J. Am. Chem. Soc. 145 (2023) 2794–2799.
doi: 10.1021/jacs.2c13502
T. Sandmeyer, Ber. Dtsch. Chem. Ges. 17 (1884) 1633–1635.
doi: 10.1002/cber.18840170219
F. Kaufler, Ber. Dtsch. Chem. Ges. 37 (1904) 59–66.
doi: 10.1002/cber.19040370113
H.H. Hodgson, Chem. Rev. 40 (1947) 251–277.
doi: 10.1021/cr60126a003
F. Mo, G. Dong, Y. Zhang, J. Wang, Org. Biomol. Chem. 11 (2013) 1582–1593.
doi: 10.1039/c3ob27366k
Q. Liu, B. Sun, Z. Liu, et al., Chem. Sci. 9 (2018) 8731–8737.
doi: 10.1039/c8sc03346c
F. Mo, D. Qiu, Y. Zhang, J. Wang, Acc. Chem. Res. 51 (2018) 496–506.
doi: 10.1021/acs.accounts.7b00566
R. Akhtar, A.F. Zahoor, N. Rasool, M. Ahmad, K.G. Ali, Mol. Divers. 26 (2022) 1837–1873.
doi: 10.1007/s11030-021-10295-3
N. Sivendran, F. Belitz, D. Sowa Prendes, et al., Chem. Eur. J. 28 (2022) e202103669.
doi: 10.1002/chem.202103669
J. Mateos, T. Schulte, D. Behera, et al., Science 384 (2024) 446–452.
doi: 10.1126/science.adn7006
M. Deng, K. Liu, Z. Ma, G. Luo, L. Dian, Green Chem. 26 (2024) 11556–11562.
doi: 10.1039/d4gc04210g
T. Liang, Z. Lyu, Y. Wang, et al., Nat. Chem. 17 (2025) 598–605.
doi: 10.1038/s41557-024-01728-1
R. Hernández-Ruiz, S. Gómez-Gil, M.R. Pedrosa, S. Suárez-Pantiga, R. Sanz, Org. Biomol. Chem. 21 (2023) 7791–7798.
doi: 10.1039/d3ob01187a
J.W. Li, T.S. Duan, B. Sun, F.L. Zhang, Org. Biomol. Chem. 22 (2024) 2819–2823.
doi: 10.1039/d4ob00309h
A. Goto, A. Ohtsuki, H. Ohfuji, M. Tanishima, H. Kaji, J. Am. Chem. Soc. 135 (2013) 11131–11139.
doi: 10.1021/ja4036016
J.A. Luján-Montelongo, J.B. Mateus-Ruiz, R.M. Valdez-García, Eur. J. Org. Chem. 26 (2023) e202201156.
doi: 10.1002/ejoc.202201156
M. Lemmerer, V. Tona, D. Just, et al., Angew. Chem. Int. Ed. 64 (2025) e202409688.
doi: 10.1002/anie.202409688
S. Song, X. Li, J. Wei, et al., Nat. Catal. 3 (2020) 107–115.
doi: 10.17245/jdapm.2020.20.3.107
W. Wang, X. Li, X. Yang, et al., Nat. Commun. 12 (2021) 3873.
doi: 10.1038/s41467-021-24174-w
W. Wang, T. Huo, X. Zhao, et al., CCS Chem. 2 (2020) 566–575.
doi: 10.31635/ccschem.020.202000172
B.T. Boyle, J.N. Levy, L. de Lescure, R.S. Paton, A. McNally, Science 378 (2022) 773–779.
doi: 10.1126/science.add8980
J.N. Levy, J.V. Alegre-Requena, R. Liu, R.S. Paton, A. McNally, J. Am. Chem. Soc. 142 (2020) 11295–11305.
doi: 10.1021/jacs.0c04674
H. Cao, Q. Cheng, A. Studer, Science 378 (2022) 779–785.
doi: 10.1126/science.ade6029
C. Li, Z. Yan, B. Wang, et al., Chem. 10 (2024) 628–643.
doi: 10.1016/j.chempr.2023.10.015
J.M. Jacobs, P.R. Sinclair, N. Gorman, et al., J. Biochem. Mol. Toxicol. 7 (1992) 87–95.
doi: 10.1002/jbt.2570070206
I. Ghosh, N. Shlapakov, T.A. Karl, et al., Nature 619 (2023) 87–93.
R. Moningka, F.A. Romero, N.B. Hastings, et al., Bioorg. Med. Chem. Lett. 30 (2020) 127510.
doi: 10.1016/j.bmcl.2020.127510
G. Wienhöfer, I. Sorribes, A. Boddien, et al., J. Am. Chem. Soc. 133 (2011) 12875–12879.
doi: 10.1021/ja2061038
Q. Xiao, S. Sarina, E.R. Waclawik, et al., ACS Catal. 6 (2016) 1744–1753.
doi: 10.1021/acscatal.5b02643
J. Strachan, C. Barnett, A.F. Masters, T. Maschmeyer, ACS Catal. 10 (2020) 5516–5521.
doi: 10.1021/acscatal.0c00725
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
Jieshuai Xiao , Yuan Zheng , Yue Zhao , Zhuangzhi Shi , Minyan Wang . Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis. Chinese Chemical Letters, 2025, 36(5): 110243-. doi: 10.1016/j.cclet.2024.110243
Fangqing Zhang , Yu Wang , Zhenda Tan , Yangbin Liu , Lijuan Song , Xiaoming Feng . Catalytic asymmetric inverse-electron-demand Diels–Alder reaction of 2-pyrones with aryl enol ethers. Chinese Chemical Letters, 2025, 36(7): 110581-. doi: 10.1016/j.cclet.2024.110581
Lei Shen , Yang Zhang , Linlin Zhang , Chuanwang Liu , Zhixian Ma , Kangjiang Liang , Chengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Yu-Chen Fang , Jia-He Chen , Mi-Zhuan Li , Hui-Min Li , Mei Bai , Yong-Zheng Chen , Zi-Wei Gao , Wen-Yong Han . Forging of silaoxycarbocyclics by interrupted Catellani reaction. Chinese Chemical Letters, 2025, 36(7): 110474-. doi: 10.1016/j.cclet.2024.110474
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
Tiantian Long , Hongmei Luo , Jingbo Sun , Fengniu Lu , Yi Chen , Dong Xu , Zhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Yan Guo , Hongtao Bian , Le Yu , Jiani Ma , Yu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971