Identifying the catalytic active site of durable Ru-based liquid-phase catalyst for acetylene hydrochlorination
-
* Corresponding author.
E-mail address: zhangjinli@tju.edu.cn (J. Zhang).
Citation:
Linfeng Li, Bao Wang, Tiantong Zhang, Xinyuan Wang, Dingqiang Feng, Wei Li, Jiangjiexing Wu, Jinli Zhang. Identifying the catalytic active site of durable Ru-based liquid-phase catalyst for acetylene hydrochlorination[J]. Chinese Chemical Letters,
;2025, 36(10): 111303.
doi:
10.1016/j.cclet.2025.111303
X. Qiao, Q. Guan, W. Li, Sci. Sin. Chim. 49 (2019) 1385–1400.
J. Zhong, Y. Xu, Z. Liu, Green Chem. 20 (2018) 2412-2427.
doi: 10.1039/c8gc00768c
V. Giulimondi, A. Ruiz-Ferrando, G. Giannakakis, et al., Nat. Commun. 14 (2023) 5557.
doi: 10.1038/s41467-023-41344-0
S.K. Kaiser, E. Fako, I. Surin, et al., Nat. Nanotechnol. 17 (2022) 606–612.
doi: 10.1038/s41565-022-01105-4
T. Zhang, Y. Nian, B. Wang, et al., J. Catal. 442 (2025) 115926.
doi: 10.1016/j.jcat.2024.115926
Y. Xu, L. Yao, J. Li, et al., Chin. Chem. Lett. 36 (2025) 110318.
doi: 10.1016/j.cclet.2024.110318
B. Wang, Y. Yue, C. Jin, et al., Appl. Catal. B 272 (2020) 118944.
doi: 10.1016/j.apcatb.2020.118944
M. Zhang, H. Zhang, F. Li, et al., Catal. Sci. Technol. 12 (2022) 4255–4265.
doi: 10.1039/d2cy00786j
L. Song, L. Liu, M. Zhu, B. Dai, Chin. J. Chem. Eng. 45 (2022) 32–40.
doi: 10.1016/j.cjche.2021.04.026
J. Zhao, Y. Yue, G. Sheng, et al., Chem. Eng. J. 360 (2019) 38–46.
doi: 10.1016/j.cej.2018.11.179
B. Wang, T. Zhang, L. Li, et al., Chem. Eng. J. 480 (2024) 148323.
doi: 10.1016/j.cej.2023.148323
G. Qin, Y. Song, R. Jin, et al., Green Chem. 13 (2011) 1495–1498.
doi: 10.1039/c1gc15041c
K. Zhou, J. Jia, C. Li, et al., Green Chem. 17 (2015) 356–364.
doi: 10.1039/C4GC00795F
J. Hu, Q. Yang, L. Yang, et al., ACS Catal. 5 (2015) 6724–6731.
doi: 10.1021/acscatal.5b01690
S. Yao, X. Zhang, F. Wang, Y. Ren, Chem. Ind. Eng. 39 (2021) 9–21.
L. Yang, Q. Yang, J. Hu, et al., AIChE J. 64 (2018) 2536–2544.
doi: 10.1002/aic.16103
X. Zhou, S. Xu, Y. Liu, S. Cao, Mol. Catal. 461 (2018) 73–79.
doi: 10.1016/j.mcat.2018.04.027
X. Wang, Y. Li, Z. Zhang, et al., New J. Chem. 48 (2024) 5613–5620.
doi: 10.1039/d3nj05266d
L. Yang, L. Li, J. Li, et al., Ind. Eng. Chem. Res. 63 (2024) 12394–12402.
doi: 10.1021/acs.iecr.4c00863
J. Peng, X. Yin, D. Dong, et al., Chin. Chem. Lett. 35 (2024) 109508.
doi: 10.1016/j.cclet.2024.109508
Y. Yang, H. Qi, H. Li, et al., ACS Catal. 11 (2021) 11774–11785.
doi: 10.1021/acscatal.1c03045
K. Liu, G. Hou, J. Mao, et al., Nat. Commun. 10 (2019) 996.
doi: 10.1038/s41467-019-08804-y
Y. Ren, B. Wu, F. Wang, et al., Catal. Sci. Technol. 9 (2019) 2868–2878.
doi: 10.1039/c9cy00401g
L. Li, B. Wang, T. Zhang, et al., Mol. Syst. Des. Eng. 9 (2024) 571–580.
doi: 10.1039/d4me00045e
Y. Li, F. Wang, B. Wu, et al., Catal. Sci. Technol. 12 (2022) 5086–5096.
doi: 10.1039/d2cy00716a
M. Kac̆uráková, P. Capek, V. Sasinková, et al., Carbohydr. Polym. 43 (2000) 195–203.
doi: 10.1016/S0144-8617(00)00151-X
Y. Han, Y. Wang, Y. Wang, et al., Appl. Organomet. Chem. 35 (2021) e6066.
doi: 10.1002/aoc.6066
B. Andrews, S. Almahdali, K. James, et al., Polyhedron 114 (2016) 360–369.
doi: 10.1016/j.poly.2016.01.027
T. Yang, F. Su, D. Shi, et al., Chin. Chem. Lett. 36 (2025) 110444.
doi: 10.1016/j.cclet.2024.110444
Y. Zhou, Y. Li, Q. Ding, et al., Chin. Chem. Lett. 32 (2021) 263–265.
doi: 10.1109/mems51782.2021.9375424
C. Dong, X. Song, J. Zhang, et al., Chem. Eng. J. 377 (2019) 120120.
doi: 10.1016/j.cej.2018.10.057
G. Malta, S.A. Kondrat, S.J. Freakley, et al., ACS Catal. 8 (2018) 8493–8505.
doi: 10.1021/acscatal.8b02232
Y. Fan, H. Xu, G. Gao, et al., Nat. Commun. 15 (2024) 6035.
doi: 10.1038/s41467-024-50221-3
L. Lv, B. Tang, Q. Ji, et al., Chin. Chem. Lett. 34 (2023) 107524.
doi: 10.1016/j.cclet.2022.05.038
B. Wang, J. Jiang, H. Yu, Y. Fu, Organometallics 36 (2017) 523–529.
doi: 10.1021/acs.organomet.6b00717
Yongsheng Xu , Lisha Yao , Jian Li , Yanzhao Dong , Dongyang Xie , Miaomiao Zhang , Feng Li , Yunsheng Dai , Jinli Zhang , Haiyang Zhang . Dual-ligand engineering over Au-based catalyst for efficient acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(3): 110318-. doi: 10.1016/j.cclet.2024.110318
Junchen Peng , Xue Yin , Dandan Dong , Zhongyuan Guo , Qinqin Wang , Minmin Liu , Fei He , Bin Dai , Chaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508
Junchen Peng , Zhongyuan Guo , Dandan Dong , Yusheng Lu , Bao Wang , Fangjie Lu , Chaofeng Huang , Bin Dai . Cu0/Cuδ+ site construction and its catalytic role in acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(8): 111208-. doi: 10.1016/j.cclet.2025.111208
Yusheng Lu , Chaofeng Huang , Zhigang Lei , Mingyuan Zhu . Catalytic effects of structural design in N-modified carbon materials for the hydrochlorination of acetylene. Chinese Chemical Letters, 2025, 36(8): 110583-. doi: 10.1016/j.cclet.2024.110583
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Mengfan Zhang , Lingyan Liu , Peng Wei , Wei Feng , Tao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Hanying Li , Wee-Liat Ong . “Super-heterojunctioned” thermoelectric polymers. Chinese Chemical Letters, 2025, 36(2): 110523-. doi: 10.1016/j.cclet.2024.110523
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Tao Ban , Xi-Yang Yu , Hai-Kuo Tian , Zheng-Qing Huang , Chun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Jingyu Shi , Xiaofeng Wu , Yutong Chen , Yi Zhang , Xiangyan Hou , Ruike Lv , Junwei Liu , Mengpei Jiang , Keke Huang , Shouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938
Jianning Zhang , Yihuai Zhang , Guoxin Ma , Jingchen Zhao , Tao Zhang , Jian Liu . Enhancing hydrothermal stability in Cu/SSZ-13 catalyst for diesel SCR applications through a novel core-shell structure. Chinese Chemical Letters, 2025, 36(7): 110516-. doi: 10.1016/j.cclet.2024.110516
Zuyou Song , Yong Jiang , Qiao Gou , Yini Mao , Yimin Jiang , Wei Shen , Ming Li , Rongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793