Citation: Gaojing Yang, Zhimeng Hao, Chun Fang, Wen Zhang, Xia-hui Zhang, Yuyu Li, Zhenhua Yan, Zhiyuan Wang, Tao Sun, Xiaofei Yang, Fei Wang, Chengzhi Zhang, Hongchang Jin, Shuaifeng Lou, Nan Chen, Yiju Li, Jia-Yan Liang, Le Yang, Shouyi Yuan, Jin Niu, Shuai Li, Xu Xu, Dong Wang, Song Jin, Bo-Quan Li, Meng Zhao, Changtai Zhao, Baoyu Sun, Xiaohong Wu, Yuruo Qi, Lili Wang, Nan Li, Bin Qin, Dong Yan, Xin Cao, Ting Jin, Peng Wei, Jing Zhang, Jiaojiao Liang, Li Liu, Ruimin Sun, Zengxi Wei, Xinxin Cao, Kaixiang Lei, Xiaoli Dong, Xijun Xu, Xiaohui Rong, Zhaomeng Liu, Hongbo Ding, Xuanpeng Wang, Zhanheng Yan, Guohui Qin, Guanghai Chen, Yaxin Chen, Ping Nie, Zhi Chang, Fang Wan, Minglei Mao, Zejing Lin, Anxing Zhou, Qiubo Guo, Wen Luo, Xiaodong Shi, Yan Guo, Longtao Ma, Xiangkun Ma, Jiangjiang Duan, Zhizhang Yuan, Jiafeng Lei, Hao Fan, Jinlin Yang, Chao Li, Tong Zhou, Jiabiao Lian, Jin Zhao, Huanxin Ju, Tinglu Song, Zulipiya Shadike, Weiguang Lv, Jiawei Wen, Lingxing Zeng, Jianmin Ma. Research progress and perspectives on rechargeable batteries[J]. Chinese Chemical Letters, ;2025, 36(10): 111185. doi: 10.1016/j.cclet.2025.111185 shu

Research progress and perspectives on rechargeable batteries

    * Corresponding author.
    E-mail address: nanoelechem@hnu.edu.cn (J. Ma).
  • Received Date: 14 January 2025
    Revised Date: 20 March 2025
    Accepted Date: 8 April 2025
    Available Online: 8 April 2025

Figures(46)

  • Energy storage plays a critical role in sustainable development, with secondary batteries serving as vital technologies for efficient energy conversion and utilization. This review provides a comprehensive summary of recent advancements across various battery systems, including lithium-ion, sodium-ion, potassium-ion, and multivalent metal-ion batteries such as magnesium, zinc, calcium, and aluminum. Emerging technologies, including dual-ion, redox flow, and anion batteries, are also discussed. Particular attention is given to alkali metal rechargeable systems, such as lithium-sulfur, lithium-air, sodium-sulfur, sodium-selenium, potassium-sulfur, potassium-selenium, potassium-air, and zinc-air batteries, which have shown significant promise for high-energy applications. The optimization of key components—cathodes, anodes, electrolytes, and interfaces—is extensively analyzed, supported by advanced characterization techniques like time-of-flight secondary ion mass spectrometry (TOF-SIMS), synchrotron radiation, nuclear magnetic resonance (NMR), and in-situ spectroscopy. Moreover, sustainable strategies for recycling spent batteries, including pyrometallurgy, hydrometallurgy, and direct recycling, are critically evaluated to mitigate environmental impacts and resource scarcity. This review not only highlights the latest technological breakthroughs but also identifies key challenges in reaction mechanisms, material design, system integration, and waste battery recycling, and presents a roadmap for advancing high-performance and sustainable battery technologies.
  • 加载中
    1. [1]

      D. Larcher, J.M. Tarascon, Nat. Chem. 7 (2015) 19–29.  doi: 10.1038/nchem.2085

    2. [2]

      J.B. Goodenough, Acc. Chem. Res. 46 (2013) 1053–1061.  doi: 10.1021/ar2002705

    3. [3]

      J.L. Brédas, J.M. Buriak, F. Caruso, et al., Chem. Mater. 31 (2019) 8577–8581.  doi: 10.1021/acs.chemmater.9b04345

    4. [4]

      Y.P. Deng, Z.G. Wu, R. Liang, et al., Adv. Funct. Mater. 29 (2019) 1808522.  doi: 10.1002/adfm.201808522

    5. [5]

      H.R. Oliveira Filho, H. Zanin, R.S. Monteiro, M.H.P. Barbosa, R.F. Teófilo, J. Energy Storage 82 (2024) 110536.  doi: 10.1016/j.est.2024.110536

    6. [6]

      C. Wang, C. Yang, Z. Zheng, Adv. Sci. 9 (2022) 2105213.  doi: 10.1002/advs.202105213

    7. [7]

      Q. Wang, L. Liu, H. Li, et al., J. Mater. Sci. Technol. 207 (2025) 274–294.  doi: 10.1016/j.jmst.2024.02.094

    8. [8]

      Z. Xu, K. Song, X. Chang, et al., Carbon Neutr. 3 (2024) 832–856.  doi: 10.1002/cnl2.162

    9. [9]

      X.T. Zhao, J.Z. Guo, W.L. Li, J.P. Zhang, X.L. Wu, Chin. Chem. Lett. 35 (2024) 108715.  doi: 10.1016/j.cclet.2023.108715

    10. [10]

      J. Huang, F. Li, M. Wu, et al., Sci. China Chem. 65 (2022) 840–857.  doi: 10.1007/s11426-021-1235-2

    11. [11]

      J. Chen, G. Adit, L. Li, et al., Energy Environ. Mater. 6 (2023) e12633.  doi: 10.1002/eem2.12633

    12. [12]

      S. Lou, F. Zhang, C. Fu, et al., Adv. Mater. 33 (2021) 2000721.  doi: 10.1002/adma.202000721

    13. [13]

      Z. Ju, Q. Zhao, D. Chao, et al., Adv. Energy Mater. 12 (2022) 2201074.  doi: 10.1002/aenm.202201074

    14. [14]

      G. Yang, Y. Zhu, Z. Hao, et al., Adv. Mater. 35 (2023) 2301898.  doi: 10.1002/adma.202301898

    15. [15]

      S. Zhang, G. Yang, X. Li, et al., Int. J. Miner. Metall. Mater. 29 (2022) 953–964.  doi: 10.1007/s12613-022-2442-3

    16. [16]

      H. Wang, J. Liu, J. He, et al., eScience 2 (2022) 557–565.  doi: 10.6023/cjoc202107050

    17. [17]

      J. Liu, X. Li, D. Wu, et al., Acta Phys. Chim. Sin. 40 (2024) 2306039.  doi: 10.3866/PKU.WHXB202306039

    18. [18]

      Z.X. Chen, M. Zhao, L.P. Hou, et al., Adv. Mater. 34 (2022) 2201555.  doi: 10.1002/adma.202201555

    19. [19]

      E.R. Ezeigwe, L. Dong, R. Manjunatha, et al., Nano Energy 95 (2022) 106964.  doi: 10.1016/j.nanoen.2022.106964

    20. [20]

      J. Han, P. Wang, H. Zhang, et al., Chin. Chem. Lett. 35 (2024) 109543.  doi: 10.1016/j.cclet.2024.109543

    21. [21]

      W. Zhang, J. Yin, W. Wang, Z. Bayhan, H.N. Alshareef, Nano Energy 83 (2021) 105792.  doi: 10.1016/j.nanoen.2021.105792

    22. [22]

      Y. Zhao, Y. Wang, J. Li, et al., eScience (2024) 100331.  doi: 10.1016/j.esci.2024.100331

    23. [23]

      Q. Sun, S. Luo, R. Huang, S. Yan, X. Lin, Coord. Chem. Rev. 515 (2024) 215956.  doi: 10.1016/j.ccr.2024.215956

    24. [24]

      M. Sun, Z. Wang, J. Jiang, X. Wang, C. Yu, Chin. Chem. Lett. 35 (2024) 109393.  doi: 10.1016/j.cclet.2023.109393

    25. [25]

      L. Li, S. Jia, M. Cao, et al., Chin. Chem. Lett. 34 (2023) 108307.  doi: 10.1016/j.cclet.2023.108307

    26. [26]

      Y. Lu, Q. Zhang, J. Chen, CCS Chem. 5 (2023) 1491–1508.  doi: 10.31635/ccschem.023.202302740

    27. [27]

      G. Yang, Y. Zhu, Q. Zhao, et al., Sci. China Chem. 67 (2024) 137–164.  doi: 10.1007/s11426-023-1654-5

    28. [28]

      Z. Li, Y.C. Lu, Adv. Mater. 32 (2020) 2002132.  doi: 10.1002/adma.202002132

    29. [29]

      K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull. 15 (1980) 783–789.  doi: 10.1016/0025-5408(80)90012-4

    30. [30]

      L. Wang, B. Chen, J. Ma, G. Cui, L. Chen, Chem. Soc. Rev. 47 (2018) 6505–6602.  doi: 10.1039/c8cs00322j

    31. [31]

      C. Lin, J. Li, Z.W. Yin, et al., Adv. Mater. 36 (2023) 2307404.  doi: 10.1002/adma.202307404

    32. [32]

      Y. Lyu, X. Wu, K. Wang, et al., Adv. Energy Mater. 11 (2020) 2000982.  doi: 10.1002/aenm.202000982

    33. [33]

      Q. Yang, J. Huang, Y. Li, et al., J. Power Sources 388 (2018) 65–70.  doi: 10.1016/j.jpowsour.2018.03.076

    34. [34]

      J.B. Goodenough, K.S. Park, J. Am. Chem. Soc. 135 (2013) 1167–1176.  doi: 10.1021/ja3091438

    35. [35]

      Z. Zhuang, J. Wang, K. Jia, et al., Adv. Mater. 35 (2023) 2212059.  doi: 10.1002/adma.202212059

    36. [36]

      W. Ding, H. Ren, Z. Li, et al., Adv. Energy Mater. 14 (2024) 2303926.  doi: 10.1002/aenm.202303926

    37. [37]

      C. Sun, X. Liao, F. Xia, et al., ACS. Nano 14 (2020) 6181–6190.  doi: 10.1021/acsnano.0c02237

    38. [38]

      Z. Wu, G. Zeng, J. Yin, et al., ACS Energy Lett. 8 (2023) 4806–4817.  doi: 10.1021/acsenergylett.3c01954

    39. [39]

      Y. Huang, Y. Zhu, H. Fu, et al., Angew. Chem. Int. Ed. 60 (2020) 4682–4688.

    40. [40]

      W. Zhang, X. Zhang, F. Cheng, et al., J. Energy Chem. 76 (2023) 557–565.  doi: 10.1016/j.jechem.2022.09.034

    41. [41]

      W. Kong, J. Zhang, D. Wong, et al., Angew. Chem. Int. Ed. 60 (2021) 27102–27112.  doi: 10.1002/anie.202112508

    42. [42]

      H. Ren, J. Hu, H. Ji, et al., Adv. Mater. 2 (2024) 2408875.  doi: 10.1002/adma.202408875

    43. [43]

      W. Zhang, F. Cheng, M. Chang, et al., Nano Energy 119 (2024) 109031.  doi: 10.1016/j.nanoen.2023.109031

    44. [44]

      Z. Zhu, D. Yu, Z. Shi, et al., Energy Environ. Sci. 13 (2020) 1865–1878.  doi: 10.1039/d0ee00231c

    45. [45]

      Y. Yan, S. Zhou, Y. Zheng, et al., Adv. Funct. Mater. 34 (2023) 2310799.  doi: 10.1002/adfm.202310799

    46. [46]

      Y. Yan, Q. Fang, X. Kuai, et al., Adv. Mater. 36 (2023) 2308656.  doi: 10.1002/adma.202308656

    47. [47]

      W. Dong, B. Ye, M. Cai, et al., ACS Energy Lett. 8 (2023) 881–888.  doi: 10.1021/acsenergylett.2c02434

    48. [48]

      W. Zhang, M. Wang, M. Chang, et al., Energy Storage Mater. 70 (2024) 103446.  doi: 10.1016/j.ensm.2024.103446

    49. [49]

      W. Zhang, F. Cheng, M. Wang, et al., Adv. Funct. Mater. 33 (2023) 2304008.  doi: 10.1002/adfm.202304008

    50. [50]

      M. Cai, Y. Dong, M. Xie, et al., Nat. Energy 8 (2023) 159–168.  doi: 10.1038/s41560-022-01179-3

    51. [51]

      A. Manthiram, Nat. Commun. 11 (2020) 1550.  doi: 10.1038/s41467-020-15355-0

    52. [52]

      J. Yang, X. Liang, H.H. Ryu, C.S. Yoon, Y.K. Sun, Energy Storage Mater. 63 (2023) 102969.  doi: 10.1016/j.ensm.2023.102969

    53. [53]

      Y.H. Luo, Q.L. Pan, H.X. Wei, et al., Adv. Energy Mater. 13 (2023) 2300125.  doi: 10.1002/aenm.202300125

    54. [54]

      X. He, J. Shen, B. Zhang, et al., Adv. Funct. Mater. 34 (2024) 2401300.  doi: 10.1002/adfm.202401300

    55. [55]

      Y.H. Luo, Q. l. Pan, H.X. Wei, et al., Mater. Today (2023) 54–65.

    56. [56]

      Y.H. Luo, Q.L. Pan, H.X. Wei, et al., eScience 4 (2024) 100229.  doi: 10.1016/j.esci.2024.100229

    57. [57]

      H. Zhang, X. He, Z. Chen, et al., Adv. Energy Mater. 12 (2022) 2202022.  doi: 10.1002/aenm.202202022

    58. [58]

      L. Ni, S. Zhang, A. Di, et al., Adv. Energy Mater. 12 (2022) 2201510.  doi: 10.1002/aenm.202201510

    59. [59]

      Z. Xue, F. Wu, M. Ge, et al., eScience 4 (2024) 100251.  doi: 10.1016/j.esci.2024.100251

    60. [60]

      M. Yoon, Y. Dong, Y. Huang, et al., Nat. Energy 8 (2023) 482–491.  doi: 10.1038/s41560-023-01233-8

    61. [61]

      Y. Zou, Y. Tang, Q. Zheng, et al., Adv. Funct. Mater. (2024) 2406068.  doi: 10.1002/adfm.202406068

    62. [62]

      T. Shi, F. Liu, W. Liu, et al., Nano Energy 123 (2024) 109410.  doi: 10.1016/j.nanoen.2024.109410

    63. [63]

      L. Wang, T. Liu, T. Wu, J. Lu, Nature 611 (2022) 61–67.  doi: 10.1038/s41586-022-05238-3

    64. [64]

      N.Y. Park, S.B. Kim, M.C. Kim, et al., Adv. Energy Mater. 13 (2023) 2301530.  doi: 10.1002/aenm.202301530

    65. [65]

      U.H. Kim, G.T. Park, B.K. Son, et al., Nat. Energy 5 (2020) 860–869.  doi: 10.1038/s41560-020-00693-6

    66. [66]

      Y.D. Huang, H.X. Wei, P.Y. Li, et al., J. Energy Chem. 75 (2022) 301–309.  doi: 10.1016/j.jechem.2022.08.010

    67. [67]

      D.H. Kim, J.H. Song, C.H. Jung, et al., Adv. Energy Mater. 12 (2022) 2200136.  doi: 10.1002/aenm.202200136

    68. [68]

      X.M. Fan, Y.D. Huang, H.X. Wei, et al., Adv. Funct. Mater. 32 (2021) 2109421.  doi: 10.1002/adfm.202109421

    69. [69]

      Y.D. Huang, P.Y. Li, H.X. Wei, et al., Chem. Eng. J. 477 (2023) 146850.  doi: 10.1016/j.cej.2023.146850

    70. [70]

      T. Liu, L. Yu, J. Liu, et al., Nat. Energy 9 (2024) 1252–1263.  doi: 10.1038/s41560-024-01605-8

    71. [71]

      Z. Li, Y. Wang, J. Wang, et al., Nat. Commun. 15 (2024) 10216.  doi: 10.1038/s41467-024-54637-9

    72. [72]

      X. Xu, S. Deng, H. Wang, J. Liu, H. Yan, Nano-Micro Lett. 9 (2017) 22.  doi: 10.1007/s40820-016-0123-3

    73. [73]

      F. Degen, M. Winter, D. Bendig, J. Tübke, Nat. Energy 8 (2023) 1284–1295.  doi: 10.1038/s41560-023-01355-z

    74. [74]

      X. Zhu, A. Huang, I. Martens, et al., Adv. Energy Mater. 36 (2024) 2403482.  doi: 10.1002/aenm.202403482

    75. [75]

      P. Stüble, V. Mereacre, H. Geßwein, J.R. Binder, Adv. Energy Mater. 13 (2023) 2203778.  doi: 10.1002/aenm.202203778

    76. [76]

      G. Liang, V.K. Peterson, Z. Wu, et al., Adv. Energy Mater. 33 (2021) 2101413.

    77. [77]

      J. Liu, J. Wang, Y. Ni, K. Zhang, F. Cheng, J. Chen, Mater. Today 43 (2021) 132–165.  doi: 10.1016/j.mattod.2020.10.028

    78. [78]

      M. Kuenzel, G.T. Kim, M. Zarrabeitia, et al., Mater. Today 39 (2020) 127–136.  doi: 10.1016/j.mattod.2020.04.003

    79. [79]

      F. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 49 (2020) 1569–1614.  doi: 10.1039/c7cs00863e

    80. [80]

      X. Zhang, P. Xu, J. Duan, et al., Nat. Commun. 15 (2024) 536.  doi: 10.1038/s41467-024-44858-3

    81. [81]

      J. Lee, D.A. Kitchaev, D.H. Kwon, et al., Nature 556 (2018) 185–190.  doi: 10.1038/s41586-018-0015-4

    82. [82]

      W. Zuo, M. Luo, X. Liu, et al., Energy Environ. Sci. 13 (2020) 4450–4497.  doi: 10.1039/d0ee01694b

    83. [83]

      W. He, W. Guo, H. Wu, et al., Adv. Mater. 33 (2021) 2005937.  doi: 10.1002/adma.202005937

    84. [84]

      H. Zheng, X. Han, W. Guo, et al., Mater. Today Energy 18 (2020) 100518.  doi: 10.1016/j.mtener.2020.100518

    85. [85]

      X. He, J. Wu, Z. Zhu, et al., Energy Environ. Sci. 15 (2022) 4137–4147.  doi: 10.1039/d2ee01229d

    86. [86]

      R.A. House, J.-J. Marie, M.A. Pérez-Osorio, et al., Nat. Energy 6 (2021) 781–789.  doi: 10.1038/s41560-021-00780-2

    87. [87]

      S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Angew. Chem. Int. Ed. 60 (2021) 2208–2220.  doi: 10.1002/anie.202000262

    88. [88]

      Y. Zuo, H. Shang, J. Hao, et al., J. Am. Chem. Soc. 145 (2023) 5174–5182.  doi: 10.1021/jacs.2c11640

    89. [89]

      B. Kim, J.H. Song, D. Eum, et al., Nat. Sustain. 5 (2022) 708–716.  doi: 10.1038/s41893-022-00890-z

    90. [90]

      Q. Li, D. Ning, D. Wong, et al., Nat. Commun. 13 (2022) 1123.  doi: 10.1038/s41467-022-28793-9

    91. [91]

      R.A. House, G.J. Rees, K. McColl, et al., Nat. Energy 8 (2023) 351–360.  doi: 10.1038/s41560-023-01211-0

    92. [92]

      M.D. Radin, J. Vinckeviciute, R. Seshadri, A. Van Der Ven, Nat. Energy 4 (2019) 639–646.  doi: 10.1038/s41560-019-0439-6

    93. [93]

      H. Ren, Y. Li, Q. Ni, et al., Adv. Mater. 34 (2022) 2106171.  doi: 10.1002/adma.202106171

    94. [94]

      X. Li, Y. Qiao, S. Guo, et al., Adv. Mater. 30 (2018) 1705197.  doi: 10.1002/adma.201705197

    95. [95]

      X. Gou, Z. Hao, G. Yang, et al., Adv. Funct. Mater. 32 (2022) 2112088.  doi: 10.1002/adfm.202112088

    96. [96]

      P. Kou, Z. Zhang, Z. Wang, et al., Energy Fuels. 37 (2023) 18243–18265.  doi: 10.1021/acs.energyfuels.3c02447

    97. [97]

      Y. Jin, Z. Zhao, P.G. Ren, et al., Adv. Energy Mater. 14 (2024) 2402061.  doi: 10.1002/aenm.202402061

    98. [98]

      C. Shen, L. Hu, Q. Duan, et al., Adv. Energy Mater. 13 (2023) 2302957.  doi: 10.1002/aenm.202302957

    99. [99]

      M. Zhou, J. Zhao, X. Wang, et al., Chin. Chem. Lett. 34 (2023) 107793.  doi: 10.1016/j.cclet.2022.107793

    100. [100]

      X. Cao, J. Sun, Z. Chang, et al., Adv. Funct. Mater. 32 (2022) 2205199.  doi: 10.1002/adfm.202205199

    101. [101]

      J. Sun, C. Sheng, X. Cao, et al., Adv. Funct. Mater. 32 (2022) 2110295.  doi: 10.1002/adfm.202110295

    102. [102]

      Y. Yu, Z. Yang, J. Zhong, et al., ACS Appl. Mater. Interfaces 12 (2020) 13996–14004.  doi: 10.1021/acsami.0c00944

    103. [103]

      P. Liu, H. Zhang, W. He, et al., J. Am. Chem. Soc. 141 (2019) 10876–10882.  doi: 10.1021/jacs.9b04974

    104. [104]

      B. Jiang, J. Li, B. Luo, et al., J. Energy Chem. 60 (2021) 564–571.  doi: 10.1016/j.jechem.2021.01.024

    105. [105]

      Q. Li, D. Zhou, L. Zhang, et al., Adv. Funct. Mater. 29 (2019) 1806706.  doi: 10.1002/adfm.201806706

    106. [106]

      Y. Li, X. Zhu, C. Wei, et al., Chin. Chem. Lett. 35 (2024) 109536.  doi: 10.1016/j.cclet.2024.109536

    107. [107]

      B. Zhou, S.Y. An, D. Kitsche, et al., Small. Struct. 5 (2024) 2400005.  doi: 10.1002/sstr.202400005

    108. [108]

      Z.L. Yu, X.Y. Qu, et al., Ceram. Int. 47 (2021) 1758–1765.  doi: 10.1016/j.ceramint.2020.09.001

    109. [109]

      C. Baur, I. Källquist, J. Chable, et al., J. Mater. Chem. A 7 (2019) 21244–21253.  doi: 10.1039/c9ta06291b

    110. [110]

      P.C. Zhong, Z.J. Cai, Y.Q. Zhang, et al., Chem. Mater. 32 (2020) 10728–10736.  doi: 10.1021/acs.chemmater.0c04109

    111. [111]

      Y.X. Zhang, A.Y. Hu, J. Liu, et al., Adv. Funct. Mater. 32 (2022) 2110502.  doi: 10.1002/adfm.202110502

    112. [112]

      Z.Y. Lun, B. Ouyang, D.A. Kitchaev, et al., Adv. Energy Mater. 9 (2019) 1802959.  doi: 10.1002/aenm.201802959

    113. [113]

      V.C. Wu, P.C. Zhong, J. Ong, et al., ACS Energy Lett. 9 (2024) 3027–3035.  doi: 10.1021/acsenergylett.4c01075

    114. [114]

      Z.Y. Lun, B. Ouyang, D.H. Kwon, et al., Nat. Mater. 20 (2021) 214–221.  doi: 10.1038/s41563-020-00816-0

    115. [115]

      Z.J. Cai, B. Ouyang, H.M. Hau, et al., Nat. Energy 9 (2024) 27–36.

    116. [116]

      H.M. Hau, T. Mishra, C. Ophus, et al., Nat. Nanotechnol. 19 (2024) 1831–1839.  doi: 10.1038/s41565-024-01787-y

    117. [117]

      Y.M. Huang, Y.H. Dong, Y. Yang, et al., Nat. Energy 9 (2024) 1497–1505.  doi: 10.1038/s41560-024-01615-6

    118. [118]

      A. Manthiram, J.B. Goodenough, Nat. Energy 6 (2021) 844–845.  doi: 10.1038/s41560-021-00865-y

    119. [119]

      A.K. Padhi, V. Manivannan, J.B. Goodenough, J. Electrochem. Soc. 145 (1998) 1518–1520.  doi: 10.1149/1.1838513

    120. [120]

      S.K. Martha, J. Grinblat, O. Haik, et al., Angew. Chem. Int. Ed. 48 (2009) 8559–8563.  doi: 10.1002/anie.200903587

    121. [121]

      M. Kim, S. Lee, B. Kang, Adv. Sci. 3 (2016) 27774395.

    122. [122]

      W. Zhang, Z. Hu, C. Fan, et al., ACS Appl. Mater. Interfaces 13 (2021) 15190–15204.  doi: 10.1021/acsami.0c22958

    123. [123]

      L. Lander, J.M. Tarascon, A. Yamada, Chem. Rec. 18 (2018) 1394–1408.  doi: 10.1002/tcr.201800071

    124. [124]

      L. Zhang, J.M. Tarascon, M.T. Sougrati, G. Rousse, G. Chen, J. Mater. Chem. A 3 (2015) 16988–16997.  doi: 10.1039/C5TA05107J

    125. [125]

      M. Sun, G. Rousse, A.M. Abakumov, et al., J. Am. Chem. Soc. 136 (2014) 12658–12666.  doi: 10.1021/ja505268y

    126. [126]

      Y. Lan, W. Yao, X.H. Song, Y. Tang, Angew. Chem. Int. Ed. 59 (2020) 255–9262.

    127. [127]

      J. Wang, H. Liu, C. Du, et al., eScience 4 (2024) 100224.  doi: 10.1016/j.esci.2023.100224

    128. [128]

      D. Xu, M. Liang, S. Qi, et al., ACS Nano 15 (2021) 47–80.  doi: 10.1021/acsnano.0c05896

    129. [129]

      T.B. Schon, B.T. McAllister, P.F. Li, D.S. Seferos, Chem. Soc. Rev. 45 (2016) 6345–6404.  doi: 10.1039/C6CS00173D

    130. [130]

      Y. Lu, J. Chen, Nat. Rev. Chem. 4 (2020) 127–142.  doi: 10.1038/s41570-020-0160-9

    131. [131]

      J. Kim, Y. Kim, J. Yoo, et al., Nat. Rev. Mater. 8 (2023) 54–70.  doi: 10.4055/jkoa.2023.58.1.54

    132. [132]

      J. Wang, A.E. Lakraychi, X. Liu, et al., Nat. Mater. 20 (2021) 665–673.  doi: 10.1038/s41563-020-00869-1

    133. [133]

      C. Han, H. Li, R. Shi, et al., J. Mater. Chem. A 7 (2019) 23378–23415.  doi: 10.1039/c9ta05252f

    134. [134]

      P. Poizot, J. Gaubicher, S. Renault, et al., Chem. Rev. 120 (2020) 6490–6557.  doi: 10.1021/acs.chemrev.9b00482

    135. [135]

      J. Liang, X. Li, J.T. Kim, et al., Angew. Chem. Int. Ed. 62 (2023) e202217081.  doi: 10.1002/anie.202217081

    136. [136]

      K. Wang, Z. Gu, Z. Xi, L. Hu, C. Ma, Nat. Commun. 14 (2023) 1396.  doi: 10.1108/compel-09-2022-0326

    137. [137]

      Z. Song, Y. Dai, T. Wang, et al., Adv. Mater. 36 (2024) e2405277.  doi: 10.1002/adma.202405277

    138. [138]

      X. Yang, X. Gao, M. Jiang, et al., Angew. Chem. Int. Ed. 135 (2023) e202215680.  doi: 10.1002/ange.202215680

    139. [139]

      X. Li, J. Liang, X. Yang, et al., Energy Environ. Sci. 13 (2020) 1429–1461.  doi: 10.1039/c9ee03828k

    140. [140]

      Z. Liu, G. Zhang, J. Pepas, Y. Ma, H. Chen, ACS Energy Lett. 9 (2024) 5464–5470.  doi: 10.1021/acsenergylett.4c02376

    141. [141]

      Z. Liu, J. Liu, S. Zhao, et al., Nat. Sustain. 7 (2024) 1492–1500.  doi: 10.1038/s41893-024-01431-6

    142. [142]

      X. Zhou, M. Jiang, Y. Duan, et al., Angew. Chem. Int. Ed. 64 (2025) e202416635.  doi: 10.1002/anie.202416635

    143. [143]

      W. Li, J. Liang, M. Li, et al., Chem. Mater. 32 (2020) 7019–7027.  doi: 10.1021/acs.chemmater.0c02419

    144. [144]

      Y. Li, Y. Lu, P. Adelhelm, M.M. Titirici, Y.S. Hu, Chem. Soc. Rev. 48 (2019) 4655–4687.  doi: 10.1039/c9cs00162j

    145. [145]

      J.R. Dahn, Phys. Rev. B 44 (1991) 9170.  doi: 10.1103/PhysRevB.44.9170

    146. [146]

      G. Yang, S. Zhang, S. Weng, et al., Nano Lett. 21 (2021) 5316–5323.  doi: 10.1021/acs.nanolett.1c01436

    147. [147]

      J. Liu, H. Shi, K. Yu, et al., Chin. Chem. Lett. 34 (2023) 108274.  doi: 10.1016/j.cclet.2023.108274

    148. [148]

      A. Mabuchi, K. Tokumitsu, H. Fujimoto, T. Kasuh, J. Electrochem. Soc. 142 (1995) 1041.  doi: 10.1149/1.2044128

    149. [149]

      S. Qiu, L. Xiao, M.L. Sushko, et al., Adv. Energy Mater. 7 (2017) 1700403.  doi: 10.1002/aenm.201700403

    150. [150]

      N. Sun, Z. Guan, Y. Liu, et al., Adv. Energy Mater. 9 (2019) 1901351.  doi: 10.1002/aenm.201901351

    151. [151]

      Y.H. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Carbon 34 (1996) 193.  doi: 10.1016/0008-6223(96)00177-7

    152. [152]

      E. Buiel, J.R. Dahn, J. Electrochem. Soc. 145 (1998) 1977.  doi: 10.1149/1.1838585

    153. [153]

      M.F. El-Kady, Y. Shao, R.B. Kaner, Nat. Rev. Mater. 1 (2016) 16033.  doi: 10.1038/natrevmats.2016.33

    154. [154]

      A.J. Clancy, M.K. Bayazit, S.A. Hodge, et al., Chem. Rev. 118 (2018) 7363–7408.  doi: 10.1021/acs.chemrev.8b00128

    155. [155]

      G. Yang, Z. Liu, S. Weng, et al., Energy Storage Mater. 36 (2021) 459–465.  doi: 10.1016/j.ensm.2021.01.022

    156. [156]

      Y. Fang, Y. Liu, L. Qi, Y. Xue, Y. Li, Chem. Soc. Rev. 51 (2022) 2681–2709.  doi: 10.1039/d1cs00592h

    157. [157]

      Z. Zhao, F. Chen, J. Han, et al., Adv. Energy Mater. 13 (2023) 2300367.  doi: 10.1002/aenm.202300367

    158. [158]

      Y. Cui, Nat. Energy 6 (2021) 995–996.  doi: 10.1038/s41560-021-00918-2

    159. [159]

      J. Shen, S. Zhang, H. Wang, et al., eScience 4 (2024) 100207.  doi: 10.1016/j.esci.2023.100207

    160. [160]

      X. Pan, Y. Cui, Z. Wang, et al., Chin. Chem. Lett. 35 (2024) 109567.  doi: 10.1016/j.cclet.2024.109567

    161. [161]

      M. Gu, Y. He, J. Zheng, C. Wang, Nano Energy 17 (2015) 366–383.  doi: 10.1016/j.nanoen.2015.08.025

    162. [162]

      W. An, P. He, Z. Che, et al., ACS Appl. Mater. 14 (2022) 10308–10318.  doi: 10.1021/acsami.1c22656

    163. [163]

      C.L. Berhaut, M. Mirolo, D.Z. Dominguez, et al., Adv. Energy Mater. 13 (2023) 2301874.  doi: 10.1002/aenm.202301874

    164. [164]

      B.S. Lee, S.H. Oh, Y.J. Choi, et al., Nat. Commun. 14 (2023) 150.  doi: 10.1038/s41467-022-35769-2

    165. [165]

      S. Pan, J. Han, Y. Wang, et al., Adv. Mater. 34 (2022) 2203617.  doi: 10.1002/adma.202203617

    166. [166]

      Q. Meng, M. Fan, X. Chang, et al., Adv. Energy Mater. 13 (2023) 2300507.  doi: 10.1002/aenm.202300507

    167. [167]

      H. Wang, A. Shao, R. Pan, et al., ACS Nano 17 (2023) 21850–21864.  doi: 10.1021/acsnano.3c07869

    168. [168]

      K.L. Browning, R.L. Sacci, M. Doucet, J.F. Browning, J.R. Kim, G.M. Veith, ACS Appl. Mater. 12 (2020) 10018–10030.  doi: 10.1021/acsami.9b22382

    169. [169]

      T. Chen, J. Hu, L. Zhang, et al., J. Power Sources 362 (2017) 236–242.  doi: 10.1117/12.2295929

    170. [170]

      F. Wang, Y. Wang, Z. Liu, et al., Adv. Energy Mater. 13 (2023) 2301456.  doi: 10.1002/aenm.202301456

    171. [171]

      F. Lindgren, C. Xu, L. Niedzicki, et al., ACS Appl. Mater. 8 (2016) 15758–15766.  doi: 10.1021/acsami.6b02650

    172. [172]

      H. Adenusi, G.A. Chass, S. Passerini, K.V. Tian, G. Chen, Adv. Energy Mater. 13 (2023) 2203307.  doi: 10.1002/aenm.202203307

    173. [173]

      L.B. Huang, G. Li, Z.Y. Lu, et al., ACS Appl. Mater. 13 (2021) 24916–24924.  doi: 10.1021/acsami.1c05379

    174. [174]

      M.G. Oh, S. Kwak, K. An, et al., Adv. Funct. Mater. 33 (2023) 2212890.  doi: 10.1002/adfm.202212890

    175. [175]

      J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, Adv. Energy Mater. 11 (2021) 2100046.  doi: 10.1002/aenm.202100046

    176. [176]

      E.W.C. Spotte-Smith, T.B. Petrocelli, H.D. Patel, S.M. Blau, K.A. Persson, ACS Energy Lett. 8 (2023) 347–355.  doi: 10.1021/acsenergylett.2c02351

    177. [177]

      Y. Wu, S.H. Bo, Y. Xia, J. Power Sources 467 (2020) 228292.  doi: 10.1016/j.jpowsour.2020.228292

    178. [178]

      C. Cao, I.I. Abate, E. Sivonxay, et al., Joule 3 (2019) 762–781.  doi: 10.1016/j.joule.2018.12.013

    179. [179]

      H. Zeng, K. Yu, J. Li, et al., ACS Nano 18 (2024) 1969–1981.  doi: 10.1021/acsnano.3c07038

    180. [180]

      H.M. Bintang, S. Lee, J.T. Kim, H.G. Jung, H.D. Lim, ACS Appl. Mater. 14 (2022) 805–813.  doi: 10.1021/acsami.1c19260

    181. [181]

      D. Cao, X. Sun, Y. Li, et al., Adv. Mater. 34 (2022) 2200401.  doi: 10.1002/adma.202200401

    182. [182]

      Z. Zhang, Y. Cui, R. Vila, et al., Acc. Chem. Res. 54 (2021) 3505–3517.  doi: 10.1021/acs.accounts.1c00183

    183. [183]

      J. Wang, D. Yu, X. Sun, H. Wang, J. Li, eScience 4 (2024) 100252.  doi: 10.1016/j.esci.2024.100252

    184. [184]

      H. Jin, Y. Huang, C. Wang, H. Ji, Small. Sci. 2 (2022) 2200015.  doi: 10.1002/smsc.202200015

    185. [185]

      C.M. Park, H.J. Sohn, Adv. Mater. 19 (2007) 2465–2468.  doi: 10.1002/adma.200602592

    186. [186]

      J. Sun, G.Y. Zheng, H.W. Lee, et al., Nano Lett. 14 (2014) 4573–4580.  doi: 10.1021/nl501617j

    187. [187]

      H.C. Jin, H.Y. Wang, Z.K. Qi, et al., Angew. Chem. Int. Ed. 59 (2020) 2318–2322.  doi: 10.1002/anie.201913129

    188. [188]

      H.C. Jin, S. Xin, C.H. Chuang, et al., Science 370 (2020) 192–197.  doi: 10.1126/science.aav5842

    189. [189]

      P. Li, H.C. Jin, G.M. Zhong, et al., ACS Appl. Mater. Interfaces 14 (2022) 18506–18512.  doi: 10.1021/acsami.2c01494

    190. [190]

      Y.D. Ye, Q. Xiao, H.Y. Xie, H.C. Jin, H.X. Ji, Chem. Commun. 60 (2024) 14077–14080.  doi: 10.1039/d4cc03317e

    191. [191]

      T.Y. Zhu, H.Y. Xie, Y.S. Xie, et al., J. Phys. Chem C 128 (2024) 18200–18207.  doi: 10.1021/acs.jpcc.4c06158

    192. [192]

      E. Zhou, H.C. Jin, H.F. Lv, et al., J. Am. Chem. Soc. 146 (2024) 20700–20708.  doi: 10.1021/jacs.4c03680

    193. [193]

      S. Zhang, Y. Wan, Y. Cao, Y. Zhang, et al., eScience 5 (2025) 100328.  doi: 10.1016/j.esci.2024.100328

    194. [194]

      X.P. Han, H.C. Gong, H. Li, J. Sun, Chem. Rev. 124 (2024) 6903–6951.  doi: 10.1021/acs.chemrev.3c00646

    195. [195]

      X. Kong, Y. Su, C. Xing, et al., Chin. Chem. Lett. 35 (2024) 109428.  doi: 10.1016/j.cclet.2023.109428

    196. [196]

      S. Lou, X. Cheng, Y. Zhao, et al., Nano Energy 34 (2017) 15–25.  doi: 10.1016/j.nanoen.2017.01.058

    197. [197]

      S. Lou, X. Cheng, L. Wang, et al., J. Power Sources 361 (2017) 80–86.  doi: 10.1016/j.jpowsour.2017.06.0231

    198. [198]

      J. Gao, X. Cheng, S. Lou, et al., J. Alloys Compd. 728 (2017) 534–540.  doi: 10.1016/j.jallcom.2017.09.045

    199. [199]

      Y. Zhang, C. Kang, W. Zhao, et al., Energy Storage Mater. 47 (2022) 178–186.  doi: 10.1016/j.ensm.2022.01.061

    200. [200]

      A. Shi, Y. Zhang, S. Geng, et al., Nano Energy 123 (2024) 109349.  doi: 10.1016/j.nanoen.2024.109349

    201. [201]

      S. Geng, Y. Zhang, L. Shi, et al., Energy Storage Mater. 68 (2024) 103339.  doi: 10.1016/j.ensm.2024.103339

    202. [202]

      Y. Zhang, W. Zhao, C. Kang, et al., Matter. 6 (2023) 1928–1944.  doi: 10.1016/j.matt.2023.03.026

    203. [203]

      Y. Zhang, Y. Wang, W. Zhao, et al., Nat. Commun. 15 (2024) 6299.  doi: 10.1038/s41467-024-50455-1

    204. [204]

      K. Xu, Chem. Rev. 114 (2014) 11503–11618.  doi: 10.1021/cr500003w

    205. [205]

      R. Rauh, S.J.E.A. Brummer, J. Electrochem. Soc. 22 (1977) 75–83.

    206. [206]

      R. Selim, P.J.J.o.T.E.S. Bro, J. Electrochem. Soc. 121 (1974) 1457.  doi: 10.1149/1.2401708

    207. [207]

      K.J.C.r. Xu, Chem. Rev. 104 (2004) 4303–4418.  doi: 10.1021/cr030203g

    208. [208]

      M.S.J.S. Whittingham, Science 192 (1976) 1126–1127.  doi: 10.1126/science.192.4244.1126

    209. [209]

      J. Quinn, J.M. Kim, R. Yi, et al., Adv. Energy Mater. 36 (2024) 2402625.

    210. [210]

      X. Tang, C. Zhu, Y. Yang, et al., Chin. Chem. Lett. 35 (2024) 110014.  doi: 10.1016/j.cclet.2024.110014

    211. [211]

      D. Aurbach, E. Markevich, G. Salitra, J. Am. Chem. Soc. 143 (2021) 21161–21176.  doi: 10.1021/jacs.1c11315

    212. [212]

      Q. Yu, Y. Xiao, S. Zhao, et al., Adv. Energy Mater. 34 (2024) 2401868.

    213. [213]

      M. Qin, Z. Zeng, F. Ma, et al., Adv. Energy Mater. 9 (2024) 2536–2544.  doi: 10.1021/acsenergylett.4c00790

    214. [214]

      J. Wang, P. Kumar, Z. Ma, et al., Adv. Energy Mater. 9 (2024) 4386–4398.  doi: 10.1021/acsenergylett.4c01920

    215. [215]

      M. Yeddala, L. Rynearson, B.L.J.A.E.L. Lucht, J. Electrochem. Soc. 8 (2023) 4782–4793.  doi: 10.1021/acsenergylett.3c01709

    216. [216]

      X. Tang, S. Qi, J. He, et al., Chin. Chem. Lett. 35 (2024) 110622.

    217. [217]

      W. Zhang, T. Yang, X. Liao, Y. Song, Y.J.E.S.M. Zhao, J. Electrochem. Soc. 57 (2023) 249–259.

    218. [218]

      Z. Wen, W. Fang, F. Wang, et al., J. Electrochem. Soc. 63 (2024) e202314876.

    219. [219]

      A. Zhang, Z. Bi, G. Wang, et al., eScience 17 (2024) 3021–3031.  doi: 10.1039/d4ee00676c

    220. [220]

      K. Xu, Nat. Energy 6 (2021) 763-763.

    221. [221]

      S. Wang, J. Shi, Z. Liu, Y. Xia, Adv. Energy Mater. 14 (2024) 2401526.

    222. [222]

      Y. Yang, W. Yang, H. Yang, H. Zhou, eScience 3 (2023) 100170.

    223. [223]

      Y. Xia, P. Zhou, X. Kong, et al., Nat. Energy 8 (2023) 934–945.  doi: 10.1038/s41560-023-01282-z

    224. [224]

      M. Ma, R. Huang, M. Ling, Y.S. Hu, H. Pan, Interdiscip. Mater. 2 (2023) 833–854.  doi: 10.1002/idm2.12131

    225. [225]

      L.L. Jiang, C. Yan, Y.X. Yao, et al., Angew. Chem. Int. Ed. 60 (2020) 3402–3406.  doi: 10.1021/acsanm.0c00152

    226. [226]

      X. Peng, B. Liu, J. Chen, et al., ACS Energy Lett. 8 (2023) 3586–3594.  doi: 10.1021/acsenergylett.3c01091

    227. [227]

      X. Zhu, Y. Mo, J. Chen, et al., Chin. Chem. Lett. 35 (2024) 109146.

    228. [228]

      J. Huang, J. He, Q. Liu, J. Ma, Adv. Funct. Mater. 33 (2023) 2213811.

    229. [229]

      L. Liu, Z. Shadike, N. Wang, et al., eScience 4 (2024) 100268.

    230. [230]

      S. Duan, S. Zhang, Y. Li, et al., ACS Energy Lett. 9 (2024) 3578–3586.  doi: 10.1021/acsenergylett.4c00917

    231. [231]

      M.C. Liu, Q.S. Liu, Y.Z. Quan, et al., Chin. Chem. Lett. 35 (2024) 109123.

    232. [232]

      C. Zhu, D. Wu, C. Wang, J. Ma, Adv. Funct. Mater. 34 (2024) 2406764.

    233. [233]

      Z. Ni, C. Wei, Z. Wang, et al., Energy Storage Mater. 71 (2024) 103603.

    234. [234]

      Z. Wang, Y. Wang, B. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202206682.

    235. [235]

      Q. Guo, R. Luo, Z. Tang, et al., ACS Nano 17 (2023) 24227–24241.  doi: 10.1021/acsnano.3c09643

    236. [236]

      H. Chen, K. Chen, J. Yang, et al., J. Am. Chem. Soc. 146 (2024) 15751–15760.  doi: 10.1021/jacs.4c01395

    237. [237]

      X.Z. Zhang, P. Xu, J.N. Duan, et al., Nat. Commun. 15 (2024) 536.

    238. [238]

      L. Xia, L.P. Yu, D. Hu, C.Z. George, Acta Chim. Sin. 75 (2017) 1183–1195.  doi: 10.6023/A17060284

    239. [239]

      L. Lv, H. Zhang, D. Lu, et al., Energy Mater. 2 (2022) 200030.  doi: 10.20517/energymater.2022.38

    240. [240]

      J.H. Zhou, C. Zhang, H.M. Wang, et al., Adv. Sci. 11 (2024) 2410129.

    241. [241]

      W.B. Hou, D.L. Zhu, S.D. Ma, et al., J. Power Sources 517 (2022) 8.

    242. [242]

      S. Tan, Y.J. Ji, Z.R. Zhang, Y. Yang, Chemphyschem 15 (2014) 1956–1969.  doi: 10.1002/cphc.201402175

    243. [243]

      F. Hai, X.L. Tian, Y.K. Yi, et al., Energy Storage Mater. 54 (2023) 641–650.

    244. [244]

      L.W. Dong, Y.P. Liu, D.J. Chen, et al., Energy Storage Mater. 44 (2022) 527–536.

    245. [245]

      T.L. Chen, M.T. Liu, X.Y. Fan, et al., ACS Energy Lett. 9 (2024) 5452–5460.  doi: 10.1021/acsenergylett.4c02458

    246. [246]

      S.B. Lee, T. Yim, J. Power Sources 551 (2022) 232202.

    247. [247]

      W.H. Hou, Y. Ou, T.Y. Zeng, et al., Energy Environ. Sci. 17 (2024) 8325–8336.  doi: 10.1039/d4ee03280b

    248. [248]

      Y.L. Huang, B.W. Cao, X.L. Xu, et al., Adv. Energy Mater. 14 (2024) 2400943.

    249. [249]

      Z.Q. Chen, Y.F. Chao, W.H. Li, et al., Adv. Sci. 8 (2021) 2003694.

    250. [250]

      M.M. Rahman, E.Y. Hu, Angew. Chem. Int. Ed. 62 (2023) e202311051.

    251. [251]

      C. Wu, Y. Zhou, X.L. Zhu, et al., Acta Phys. Chim. Sin. 37 (2021) 2008044.

    252. [252]

      Z.Y. Tang, Z.Y.T. Xie, Q.Q. Cai, et al., Energy Storage Mater. 67 (2024) 103309.

    253. [253]

      C.C. Su, M.N. He, J.Y. Shi, et al., Energy Environ. Sci. 14 (2021) 3029–3034.  doi: 10.1039/d0ee03890c

    254. [254]

      X.D. Ren, S.R. Chen, H. Lee, et al., Chem 4 (2018) 1877–1892.

    255. [255]

      J.L. Fu, X. Ji, J. Chen, et al., Angew. Chem. Int. Ed. 59 (2020) 22194–22201.  doi: 10.1002/anie.202009575

    256. [256]

      W. Li, S. Han, C. Xiao, et al., Angew. Chem. Int. Ed. 63 (2024) e202410392.

    257. [257]

      C. Guo, Y. Guo, S. Yao, et al., Energy Storage Mater. 71 (2024) 103683.

    258. [258]

      Z. Li, Y. Zhao, W.E. Tenhaeff, ACS Appl. Energy Mater. 2 (2019) 3264–3273.  doi: 10.1021/acsaem.9b00103

    259. [259]

      M. Ue, K. lda, S. Mori, J. Electrochem. Soc. 141 (1994) 2989–2996.  doi: 10.1149/1.2059270

    260. [260]

      S.H. Lee, J.Y. Hwang, S.J. Park, G.T. Park, Y.K. Sun, Adv. Funct. Mater. 29 (2019) 1902496.

    261. [261]

      Y.S. Kim, T.H. Kim, H. Lee, H.K. Song, Energy Environ. Sci. 4 (2011) 4038–4045.  doi: 10.1039/c1ee01272j

    262. [262]

      A. Narayanan Kirshnamoorthy, K. Oldiges, M. Winter, et al., Phys. Chem. Chem. Phys. 20 (2018) 25701–25715.  doi: 10.1039/c8cp04102d

    263. [263]

      L. Luo, K. Chen, H. Chen, et al., Adv. Mater. 36 (2023) 2308881.

    264. [264]

      X. Huang, R. Li, C. Sun, et al., ACS Energy Lett. 7 (2022) 3947–3957.  doi: 10.1021/acsenergylett.2c02240

    265. [265]

      P. Prakash, B. Fall, J. Aguirre, et al., Nat. Mater. 22 (2023) 627–635.  doi: 10.1038/s41563-023-01508-1

    266. [266]

      D. Farhat, D. Lemordant, J. Jacquemin, F. Ghamouss, J. Electrochem. Soc. 166 (2019) A3487–A3495.  doi: 10.1149/2.1261914jes

    267. [267]

      Z. Peng, X. Cao, P. Gao, et al., Adv. Funct. Mater. 30 (2020) 2001285.

    268. [268]

      Z. Hu, F. Xian, Z. Guo, et al., Chem. Mater. 32 (2020) 3405–3413.  doi: 10.1021/acs.chemmater.9b05003

    269. [269]

      J. Zhang, H. Wu, X. Du, et al., Adv. Energy Mater. 13 (2022) 2202529.

    270. [270]

      L. Zhao, A. Xu, Y. Cheng, et al., Angew. Chem. Int. Ed. 63 (2024) e202411224.

    271. [271]

      P. Xiao, X. Yun, Y. Chen, et al., Chem. Soc. Rev. 52 (2023) 5255–5316.  doi: 10.1039/d3cs00151b

    272. [272]

      M. Li, Y. Liu, X. Yang, et al., Adv. Mater. 36 (2024) 2404271.

    273. [273]

      S.Y. Yuan, K. Ding, X.Y. Zeng, et al., Adv. Mater. 35 (2023) 2206228.

    274. [274]

      X. Wu, Y. Dai, N.W. Li, X.C. Chen, L. Yu, eScience 4 (2024) 100173.

    275. [275]

      K.X. Liu, Z.Y. Wang, L.Y. Shi, S. Jungsuttiwong, S. Yuan, J. Energy Chem. 59 (2021) 320–333.

    276. [276]

      S. Lee, K. Park, B. Koo, et al., Adv. Funct. Mater. 30 (2020) 2003132.

    277. [277]

      H. Sun, G.Z. Zhu, Y.M. Zhu, et al., Adv. Mater. 32 (2020) 2001741.

    278. [278]

      W.H. Zou, J. Zhang, M.Y. Liu, et al., Adv. Mater. 36 (2024) 2400537.

    279. [279]

      K. Ding, E.J. Begin, S.Y. Yuan, et al., Adv. Energy Mater. 13 (2023) 2302443.

    280. [280]

      F.W. Ding, Y.X. Li, G.X. Zhang, et al., Adv. Mater. 36 (2024) 2400177.

    281. [281]

      Q. Liu, W. Jiang, J.Y. Xu, et al., Nat. Commun. 14 (2023) 3678.

    282. [282]

      C.N. Hong, M.W. Yan, O. Borodin, et al., Energy Environ. Sci. 17 (2024) 4137–4146.  doi: 10.1039/d4ee00296b

    283. [283]

      Y. Guo, S. Wu, Y.-B. He, et al., eScience 2 (2022) 138–163.

    284. [284]

      W. Zhang, V. Koverga, S. Liu, et al., Nat. Energy 9 (2024) 386–400.  doi: 10.1038/s41560-023-01443-0

    285. [285]

      R. Chen, W. Zhang, C. Guan, et al., Angew. Chem. Int. Ed. 63 (2024) e202401987.

    286. [286]

      J. Peng, D. Lu, S. Wu, et al., J. Am. Chem. Soc. 146 (2024) 11897–11905.  doi: 10.1021/jacs.4c00882

    287. [287]

      L. Liu, Y. Shi, M. Liu, et al., Adv. Funct. Mater. 34 (2024) 2403154.

    288. [288]

      N. Yang, Y. Cui, H. Su, et al., Angew. Chem. Int. Ed. 62 (2023) e202304339.

    289. [289]

      Y. Li, Y. Xu, X. Han, et al., Chin. Chem. Lett. 35 (2024) 109189.

    290. [290]

      S. Zhao, J. Lu, B. Sheng, et al., Chin. Chem. Lett. 36 (2025) 110008.

    291. [291]

      A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2 (2017) 16103.

    292. [292]

      Q. Zhao, S. Stalin, C.Z. Zhao, L.A. Archer, Nat. Rev. Mater. 5 (2020) 229–252.  doi: 10.1038/s41578-019-0165-5

    293. [293]

      R. Wei, S. Chen, T. Gao, W. Liu, Nano Select 2 (2021) 2256–2274.  doi: 10.1002/nano.202100110

    294. [294]

      A. Schreiber, M. Rosen, K. Waetzig, et al., Green. Chem. 25 (2023) 399–414.  doi: 10.1039/d2gc03368b

    295. [295]

      X. Su, X.P. Xu, Z.Q. Ji, et al., Electrochem. Energy Rev. 7 (2024) 2.

    296. [296]

      X. Yu, A. Manthiram, Energy Storage Mater. 34 (2021) 282–300.

    297. [297]

      C. Wang, J. Liang, Y. Zhao, et al., Energy Environ. Sci. 14 (2021) 2577–2619.  doi: 10.1039/d1ee00551k

    298. [298]

      Y. Kato, S. Hori, T. Saito, et al., Nat. Energy 1 (2016) 16030.

    299. [299]

      A.R. Stamminger, B. Ziebarth, M. Mrovec, T. Hammerschmidt, R. Drautz, Chem. Mater. 31 (2019) 8673–8678.  doi: 10.1021/acs.chemmater.9b02047

    300. [300]

      W. Huang, N. Matsui, S. Hori, et al., J. Am. Chem. Soc. 144 (2022) 4989–4994.  doi: 10.1021/jacs.1c13178

    301. [301]

      T.T. Zuo, R. Rueß, R. Pan, et al., Nat. Commun. 12 (2021) 6669.  doi: 10.1038/s41467-021-26895-4

    302. [302]

      J. Jang, Y.T. Chen, G. Deysher, et al., ACS Energy Lett. 7 (2022) 2531–2539.  doi: 10.1021/acsenergylett.2c01397

    303. [303]

      J.S. Kim, G. Yoon, S. Kim, et al., Nat. Commun. 14 (2023) 782.  doi: 10.6109/jkiice.2023.27.6.782

    304. [304]

      R. Li, W. Li, A. Singh, et al., Energy Storage Mater. 52 (2022) 395–429.  doi: 10.1016/j.ensm.2022.07.034

    305. [305]

      H. Gamo, A. Nagai, A. Matsuda, Sci. Rep. 11 (2021) 21097.  doi: 10.1038/s41598-021-00662-3

    306. [306]

      Y. Nikodimos, C.J. Huang, B.W. Taklu, W.N. Su, B.J. Hwang, Energy Environ. Sci. 15 (2022) 991–1033.  doi: 10.1039/d1ee03032a

    307. [307]

      X. Nie, J. Hu, C. Li, Interdisciplinary Mater. 2 (2023) 365–389.  doi: 10.1002/idm2.12090

    308. [308]

      T. Asano, A. Sakai, S. Ouchi, et al., Adv. Mater. 30 (2018) e1803075.  doi: 10.1002/adma.201803075

    309. [309]

      Y. Tanaka, K. Ueno, K. Mizuno, et al., Angew. Chem. Int. Ed. 62 (2023) e202217581.  doi: 10.1002/anie.202217581

    310. [310]

      Y.C. Yin, J.T. Yang, J.D. Luo, et al., Nature 616 (2023) 77–83.  doi: 10.1038/s41586-023-05899-8

    311. [311]

      F.H. Richter, Nat. Energy 8 (2023) 1182–1183.  doi: 10.1038/s41560-023-01379-5

    312. [312]

      L. Hu, J. Wang, K. Wang, et al., Nat. Commun. 14 (2023) 3807.  doi: 10.1038/s41467-023-39522-1

    313. [313]

      D. Lee, Z. Cui, J.B. Goodenough, A. Manthiram, Small 20 (2024) 2306053.  doi: 10.1002/smll.202306053

    314. [314]

      X. Li, J. Liang, J. Luo, et al., Energ. Environ. Sci. 12 (2019) 2665–2671.  doi: 10.1039/c9ee02311a

    315. [315]

      J. Liang, X. Li, S. Wang, et al., J. Am. Chem. Soc. 142 (2020) 7012–7022.  doi: 10.1021/jacs.0c00134

    316. [316]

      Z. Li, H.B. Wu, X.W. Lou, Energy Environ. Sci. 9 (2016) 3061–3070.  doi: 10.1039/C6EE02364A

    317. [317]

      Z. Wang, H. Che, W. Lu, et al., Adv. Sci. 10 (2023) 2301355.  doi: 10.1002/advs.202301355

    318. [318]

      H. Dong, D. Xu, Y. Ji, et al., Chem. Commun. 60 (2024) 11080–11083.  doi: 10.1039/d4cc03855j

    319. [319]

      S. Luo, F. Wu, G. Yushin, Mater. Today 49 (2021) 253–270.  doi: 10.1016/j.mattod.2021.03.017

    320. [320]

      Y. Chen, T. Wang, H. Tian, et al., Adv. Mater. 33 (2021) 2003666.  doi: 10.1002/adma.202003666

    321. [321]

      Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Nat. Commun. 5 (2014) 4759.  doi: 10.1038/ncomms5759

    322. [322]

      J. Feng, C. Zhang, W. Liu, et al., Angew. Chem. Int. Ed. 63 (2024) e202407042.  doi: 10.1002/anie.202407042

    323. [323]

      Y. Miao, Y. Zheng, F. Tao, et al., Chin. Chem. Lett. 34 (2023) 107121.  doi: 10.1016/j.cclet.2022.01.014

    324. [324]

      J. Feng, C. Shi, H. Dong, et al., J. Energy Chem. 86 (2023) 135–145.  doi: 10.1016/j.jechem.2023.07.007

    325. [325]

      H. Duan, K. Li, M. Xie, et al., J. Am. Chem. Soc. 143 (2021) 19446–19453.  doi: 10.1021/jacs.1c08675

    326. [326]

      Y. Chen, K. Zou, X. Dai, et al., Adv. Funct. Mater. 31 (2021) 2102458.  doi: 10.1002/adfm.202102458

    327. [327]

      H. Kwon, J.H. Lee, Y. Roh, et al., Nat. Commun. 12 (2021) 5537.  doi: 10.1038/s41467-021-25848-1

    328. [328]

      C. Chen, J. Guan, N.W. Li, et al., Adv. Mater. 33 (2021) 2100608.  doi: 10.1002/adma.202100608

    329. [329]

      G. Yang, Y. Li, S. Liu, et al., Energy Storage Mater. 23 (2019) 350–357.  doi: 10.1016/j.ensm.2019.04.041

    330. [330]

      C. Lai, G. Li, S. Ye, X. Gao, Prog. Chem 23 (2011) 527–532.

    331. [331]

      Q. Zhang, X. Cheng, J. Huang, H. Peng, F. Wei, New Carbon Mater. 29 (2014) 241–264.

    332. [332]

      L. Chen, Y. Yuan, R. Orenstein, et al., Energy Storage Mater. 60 (2023) 102817.  doi: 10.1016/j.ensm.2023.102817

    333. [333]

      B. Li, S. Li, J. Liu, B. Wang, S. Yang, Nano Lett. 15 (2015) 3073–3079.  doi: 10.1021/acs.nanolett.5b00064

    334. [334]

      L. Sun, D. Wang, Y. Luo, et al., ACS Nano 10 (2015) 1300–1308.  doi: 10.1021/acsnano.5b06675

    335. [335]

      Y. Song, X. Long, Z. Luo, et al., ACS Appl. Mater. Interfaces 14 (2022) 32183–32195.  doi: 10.1021/acsami.2c09331

    336. [336]

      C. Yuan, S. Zhu, H. Cao, L. Hou, J. Lin, Nanotechnology 27 (2016) 045403  doi: 10.1088/0957-4484/27/4/045403

    337. [337]

      Y. Li, Q. Cai, L. Wang, et al., ACS Appl. Mater. Interfaces 8 (2016) 23784–23792.  doi: 10.1021/acsami.6b09479

    338. [338]

      K. Cai, T. Wang, Z. Wang, et al., Compos. Part B: Eng. 249 (2023) 110410.  doi: 10.1016/j.compositesb.2022.110410

    339. [339]

      L. Wang, H. Shi, Y. Xie, Z.S. Wu, Carbon Neutraliz. 2 (2023) 262–270.  doi: 10.1002/cnl2.61

    340. [340]

      Y. Li, X. Yan, Z. Zhou, et al., Appl. Surf. Sci. 574 (2022) 151586.  doi: 10.1016/j.apsusc.2021.151586

    341. [341]

      S. Liu, X. Liu, M. Chen, et al., Nano Res. 15 (2022) 7199–7208.  doi: 10.1007/s12274-022-4381-8

    342. [342]

      H. Wan, Z. Wang, S. Liu, et al., Nat. Energy 8 (2023) 473–481.  doi: 10.1038/s41560-023-01231-w

    343. [343]

      D. Wang, W. Zhang, W. Zheng, et al., Adv. Sci. 4 (2017) 1600168.  doi: 10.1002/advs.201600168

    344. [344]

      C. Qin, D. Wang, Y. Liu, et al., Nat. Commun. 12 (2021) 7184.  doi: 10.1038/s41467-021-27494-z

    345. [345]

      T. Liu, Z. Lin, D. Wang, et al., Mater. Today Energy 17 (2020) 100465.  doi: 10.1016/j.mtener.2020.100465

    346. [346]

      D. Wang, T. Xie, C. Qin, et al., Adv. Funct. Mater. 32 (2022) 2206405.  doi: 10.1002/adfm.202206405

    347. [347]

      Z. Zhang, X. Liu, D. Wang, et al., Energy Storage Mater. 69 (2024) 103419.  doi: 10.1016/j.ensm.2024.103419

    348. [348]

      X. He, K. Zhang, Z. Zhu, Z. Tong, X. Liang, Chem. Soc. Rev. 53 (2024) 9–24.  doi: 10.1039/d3cs00495c

    349. [349]

      Z. Zhang, J. Wang, H. Qin, et al., ACS Nano 18 (2024) 2250–2260.  doi: 10.1021/acsnano.3c09849

    350. [350]

      L. Chen, Y. Sun, X. Wei, et al., Adv. Mater. 35 (2023) 2300771.  doi: 10.1002/adma.202300771

    351. [351]

      D. Wang, C. Luan, W. Zhang, et al., Adv. Energy Mater. 8 (2018) 1800650.  doi: 10.1002/aenm.201800650

    352. [352]

      F. Ding, W. Xu, G.L. Graff, et al., J. Am. Chem. Soc. 135 (2013) 4450–4456.  doi: 10.1021/ja312241y

    353. [353]

      S. Bertolini, A. Delcorte, P. Venezuela, Chem. Mater. 36 (2024) 8477–8487.  doi: 10.1021/acs.chemmater.4c01601

    354. [354]

      C. Jin, T. Liu, O. Sheng, et al., Nat. Energy 6 (2021) 378–387.  doi: 10.1038/s41560-021-00789-7

    355. [355]

      D. Wang, C. Qin, X. Li, et al., iScience 23 (2020). 100781.  doi: 10.1016/j.isci.2019.100781

    356. [356]

      W. Jia, J. Zhang, L. Zheng, et al., eScience 4 (2024) 100266.  doi: 10.1016/j.esci.2024.100266

    357. [357]

      A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, 2022, p. 1104.

    358. [358]

      B.P. Boudreau, Diffusion, chemical, in: G.V. Middleton, M.J. Church, M. Coniglio, L.A. Hardie, F.J. Longstaffe (Eds.), Encyclopedia of Sediments and Sedimentary Rocks, Springer, Netherlands, Dordrecht, 2003, pp. 225–226.

    359. [359]

      S. Jin, Y. Ye, Y. Niu, et al., J. Am. Chem. Soc. 142 (2020) 8818–8826.  doi: 10.1021/jacs.0c01811

    360. [360]

      A. Dey, J. Electrochem. Soc. 118 (1971) 1547.  doi: 10.1149/1.2407783

    361. [361]

      Y. Ye, H. Xie, Y. Yang, et al., J. Am. Chem. Soc. 145 (2023) 24775–24784.  doi: 10.1021/jacs.3c08711

    362. [362]

      Y.W. Song, L. Shen, N. Yao, et al., Chem 8 (2022) 3031–3050.  doi: 10.1016/j.chempr.2022.07.004

    363. [363]

      Y.W. Song, L. Shen, X.Y. Li, et al., Nat. Chem. Eng. 1 (2024) 588–596.  doi: 10.1038/s44286-024-00115-4

    364. [364]

      X.Y. Li, S. Feng, M. Zhao, et al., Angew. Chem. Int. Ed. 61 (2022) e202114671.

    365. [365]

      C.X. Bi, Y.J. Zhu, Z. Li, et al., Adv. Energy Mater. 14 (2024) 2402609.  doi: 10.1002/aenm.202402609

    366. [366]

      C.X. Bi, N. Yao, X.Y. Li, et al., Adv. Mater. 36 (2024) 2411197.  doi: 10.1002/adma.202411197

    367. [367]

      Y.W. Song, L. Shen, N. Yao, et al., Angew. Chem. Int. Ed. 63 (2024) e202400343.

    368. [368]

      C.X. Bi, L.P. Hou, Z. Li, et al., Energy Mater. Adv. 4 (2023) 0010.

    369. [369]

      H. Yamin, A. Gorenshtein, J. Penciner, Y. Sternberg, E. Peled, J. Electrochem. Soc. 135 (1988) 1045.  doi: 10.1149/1.2095868

    370. [370]

      E. Peled, Y. Sternberg, A. Gorenshtein, Y. Lavi, J. Electrochem. Soc. 136 (1989) 1621–1625.  doi: 10.1149/1.2096981

    371. [371]

      P. Prabhu, T.P. Kumar, P.N.N. Namboodiri, R. Gangadharan, J. Appl. Electrochem. 23 (1993) 151.

    372. [372]

      Y.V. Mikhaylik, J.R. Akridge, J. Electrochem. Soc. 150 (2003) A306–A311.

    373. [373]

      Y.V. Mikhaylik, J.R. Akridge, J. Electrochem. Soc. 151 (2004) A1969–A1976.

    374. [374]

      Y.V. Mikhaylik, Electrolyte for lithium sulfur battery, US Patent, 7352680, 2008.

    375. [375]

      X. Song, X. Liang, H. Kim, Y.K. Sun, ACS Energy Lett. 9 (2024) 5576–5586.  doi: 10.1021/acsenergylett.4c02535

    376. [376]

      M. Zhao, B.Q. Li, X.Q. Zhang, J.Q. Huang, Q. Zhang, ACS Cent. Sci. 6 (2020) 1095–1104.  doi: 10.1021/acscentsci.0c00449

    377. [377]

      J. Liu, Y. Zhou, T. Yan, X.P. Gao, Adv. Funct. Mater. 34 (2024) 2309625.  doi: 10.1002/adfm.202309625

    378. [378]

      M. He, K.I. Ozoemena, D. Aurbach, Q. Pang, Curr. Opin. Electrochem. 39 (2023) 101285.

    379. [379]

      Z.J. Li, Y.C. Zhou, Y. Wang, Y.C. Lu, Adv. Energy Mater. 9 (2018) 1802207.  doi: 10.1002/aenm.201802207

    380. [380]

      G. Zhang, H.J. Peng, C.Z. Zhao, et al., Angew. Chem. Int. Ed. 57 (2018) 16732–16736.  doi: 10.1002/anie.201810132

    381. [381]

      A. Gupta, A. Bhargav, A. Manthiram, Adv. Energy Mater. 9 (2018) 1803096.  doi: 10.1002/aenm.201803096

    382. [382]

      T. Kang, N. Kang, J.W. Choi, Korean J. Chem. Eng. 41 (2024) 375–383.  doi: 10.1007/s11814-024-00103-7

    383. [383]

      L.P. Hou, X.Q. Zhang, B.Q. Li, Q. Zhang, Mater. Today 45 (2021) 62–76.

    384. [384]

      L. Cheng, L.A. Curtiss, K.R. Zavadil, et al., ACS Energy Lett. 1 (2016) 503–509.  doi: 10.1021/acsenergylett.6b00194

    385. [385]

      Q. Pang, A. Shyamsunder, B. Narayanan, et al., Nat. Energy 3 (2018) 783–791.  doi: 10.1038/s41560-018-0214-0

    386. [386]

      E.S. Shin, K. Kim, S.H. Oh, W.I. Cho, Chem. Commun. 49 (2013) 2004.

    387. [387]

      L.M. Suo, Y.S. Hu, H. Li, M. Armand, L.Q. Chen, Nat. Commun. 4 (2013) 1481.

    388. [388]

      J. Zheng, X.L. Fan, G.B. Ji, et al., Nano Energy 50 (2018) 431–440.

    389. [389]

      S. Chen, J. Zheng, D. Mei, et al., Adv. Mater. 30 (2018) 1706102.  doi: 10.1002/adma.201706102

    390. [390]

      H. Moon, T. Mandai, R. Tatara, et al., J. Phys. Chem. C 119 (2015) 3957–3970.  doi: 10.1021/jp5128578

    391. [391]

      J. Zheng, G.B. Ji, X.L. Fan, et al., Adv. Energy Mater. 9 (2019) 1803774.  doi: 10.1002/aenm.201803774

    392. [392]

      R. Amine, J. Liu, I. Acznik, et al., Adv. Energy Mater. 10 (2020) 2000901.  doi: 10.1002/aenm.202000901

    393. [393]

      F. Huang, G. Ma, Z. Wen, et al., J. Mater. Chem. A 6 (2018) 1612–1620.  doi: 10.1039/c7ta08274f

    394. [394]

      Z. Hou, P.F. Wang, X. Sun, W. Li, C. Sheng, P. He, J. Electron. Mater. 51 (2022) 4772–4779.  doi: 10.1007/s11664-022-09751-z

    395. [395]

      X.Q. Zhang, Q. Jin, Y.L. Nan, et al., Angew. Chem. Int. Ed. 60 (2021) 15503–15509.  doi: 10.1002/anie.202103470

    396. [396]

      L.P. Hou, X.Q. Zhang, N. Yao, et al., Chem 8 (2022) 1083–1098.

    397. [397]

      L.L. Su, N. Yao, Z. Li, et al., Angew. Chem. Int. Ed. 63 (2024) e202318785.  doi: 10.1002/anie.202318785

    398. [398]

      X.Y. Li, S. Feng, Y.W. Song, et al., J. Am. Chem. Soc. 146 (2024) 14754–14764.  doi: 10.1021/jacs.4c02603

    399. [399]

      Z. Li, L.P. Hou, N. Yao, et al., Angew. Chem. Int. Ed. 62 (2023) e202309968.  doi: 10.1002/anie.202309968

    400. [400]

      J.Y. Hwang, H.M. Kim, Y.K. Sun, J. Electrochem. Soc. 165 (2017) A5006.

    401. [401]

      Z. Guan, X. Chen, F. Chu, et al., Adv. Energy Mater. 13 (2023) 2302850.  doi: 10.1002/aenm.202302850

    402. [402]

      H. Ji, Z. Wang, Y. Sun, et al., Adv. Mater. 35 (2022) 2208590.

    403. [403]

      R. Glaser, O. Borodin, B. Johnson, S. Jhulki, G. Yushin, J. Electrochem. Soc. 168 (2021) 090543.  doi: 10.1149/1945-7111/ac2467

    404. [404]

      X.Q. Zhang, S. Tang, Y.Z. Fu, J. Electrochem. 29 (2023) 2217005.

    405. [405]

      L.Y. Yao, L.P. Hou, Y.W. Song, et al., J. Mater. Chem. A 11 (2023) 7441–7446.  doi: 10.1039/d3ta00096f

    406. [406]

      W. Jia, C. Fan, L. Wang, et al., ACS Appl. Mater. Interfaces 8 (2016) 15399–15405.  doi: 10.1021/acsami.6b03897

    407. [407]

      J.S. Kim, D.J. Yoo, J. Min, et al., ChemNanoMat 1 (2015) 240–245.  doi: 10.1002/cnma.201500055

    408. [408]

      G.G. Eshetu, X. Judez, C. Li, et al., Angew. Chem. Int. Ed. 56 (2017) 15368–15372.  doi: 10.1002/anie.201709305

    409. [409]

      J.Y. Wu, X.W. Li, Z.X. Rao, et al., Nano Energy 72 (2020) 104725.  doi: 10.1016/j.nanoen.2020.104725

    410. [410]

      J. Xie, S.Y. Sun, X. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202204776.  doi: 10.1002/anie.202204776

    411. [411]

      H.J. Peng, J.Q. Huang, X.Y. Liu, et al., J. Am. Chem. Soc. 139 (2017) 8458–8466.  doi: 10.1021/jacs.6b12358

    412. [412]

      W.Y. Li, H.B. Yao, K. Yan, et al., Nat. Commun. 6 (2015) 7436.  doi: 10.1038/ncomms8436

    413. [413]

      J. Song, H. Noh, H. Lee, et al., J. Mater. Chem. A 3 (2015) 323–330.  doi: 10.1039/C4TA03625E

    414. [414]

      G. Li, Y. Gao, X. He, et al., Nat. Commun. 8 (2017) 850.  doi: 10.1038/s41467-017-00974-x

    415. [415]

      Y.X. Ren, T.S. Zhao, M. Liu, Y.K. Zeng, H.R. Jiang, J. Power Sources 361 (2017) 203–210.  doi: 10.1016/j.jpowsour.2017.06.083

    416. [416]

      D. Zeng, J. Yao, L. Zhang, et al., Nat. Commun. 13 (2022) 1909.  doi: 10.1038/s41467-022-29596-8

    417. [417]

      M. Zhao, H.J. Peng, B.Q. Li, J.Q. Huang, Acc. Chem. Res. 57 (2024) 545–557.  doi: 10.3390/systems12120545

    418. [418]

      M. Zhao, H.J. Peng, J.Y. Wei, et al., Small. Methods 4 (2020) 1900344.  doi: 10.1002/smtd.201900344

    419. [419]

      J. Xie, H.J. Peng, Y.W. Song, et al., Angew. Chem. Int. Ed. 59 (2020) 17670–17675.  doi: 10.1002/anie.202007740

    420. [420]

      Y.Q. Peng, M. Zhao, Z.X. Chen, et al., Nano Res. 16 (2023) 8253–8259.  doi: 10.1007/s12274-022-4584-z

    421. [421]

      M. Zhao, B.Q. Li, X. Chen, et al., Chem 6 (2020) 3297–3311.  doi: 10.1016/j.chempr.2020.09.015

    422. [422]

      M. Zhao, X.Y. Li, X. Chen, et al., eScience 1 (2021) 44–52.  doi: 10.1016/j.esci.2021.08.001

    423. [423]

      Y.R. Liu, M. Zhao, L.P. Hou, et al., Angew. Chem. Int. Ed. 62 (2023) 202303363.  doi: 10.1002/anie.202303363

    424. [424]

      Y.Q. Peng, M. Zhao, Z.X. Chen, et al., Batteries Supercaps 5 (2022) e202100359.  doi: 10.1002/batt.202100359

    425. [425]

      Q. Cheng, Z.X. Chen, X.-Y. Li, et al., J. Energy Chem. 76 (2023) 181–186.  doi: 10.1016/j.jechem.2022.09.029

    426. [426]

      W.J. Kwak, D.Sharon Rosy, et al., Chem. Rev. 120 (2020) 6626–6683.  doi: 10.1021/acs.chemrev.9b00609

    427. [427]

      Y. Li, J. Lu, ACS Energy Lett. 2 (2017) 1370–1377.  doi: 10.1021/acsenergylett.7b00119

    428. [428]

      C. Zhao, C. Yu, S. Li, et al., Small 14 (2018) 1803310.  doi: 10.1002/smll.201803310

    429. [429]

      C. Zhao, Z. Wang, X. Tan, et al., Small. Methods 3 (2019) 1800546.  doi: 10.1002/smtd.201800546

    430. [430]

      C. Zhao, J. Liang, Q. Sun, et al., Small. Methods 3 (2019) 1800437.  doi: 10.1002/smtd.201800437

    431. [431]

      C. Zhao, J. Liang, X. Li, et al., Nano Energy 75 (2020) 105036.  doi: 10.1016/j.nanoen.2020.105036

    432. [432]

      C. Zhao, Q. Sun, J. Luo, et al., Chem. Mater. 32 (2020) 10113–10119.  doi: 10.1021/acs.chemmater.0c03529

    433. [433]

      Y.C. Lu, B.M. Gallant, D.G. Kwabi, et al., Energy Environ. Sci. 6 (2013) 750–768.  doi: 10.1039/c3ee23966g

    434. [434]

      Z. Chang, J. Xu, X. Zhang, Adv. Energy Mater. 7 (2017) 1700875.  doi: 10.1002/aenm.201700875

    435. [435]

      H.F. Wang, Q. Xu, Matter 1 (2019) 565–595.  doi: 10.1016/j.matt.2019.05.008

    436. [436]

      J.H. Kang, J. Lee, J.W. Jung, et al., ACS Nano 14 (2020) 14549–14578.  doi: 10.1021/acsnano.0c07907

    437. [437]

      D. Wang, X. Mu, P. He, H. Zhou, Mater. Today 26 (2019) 87–99.  doi: 10.1016/j.mattod.2019.01.016

    438. [438]

      C. Yu, C. Zhao, S. Liu, et al., Chem. Commun. 51 (2015) 13233–13236.  doi: 10.1039/C5CC03806E

    439. [439]

      Y. Li, J. Wang, X. Li, et al., Chem. Commun. 47 (2011) 9438–9440.  doi: 10.1039/c1cc13464g

    440. [440]

      J. Wang, Y. Li, X. Sun, Nano Energy 2 (2013) 443–467.  doi: 10.1016/j.nanoen.2012.11.014

    441. [441]

      C. Zhao, C. Yu, S. Liu, et al., Adv. Funct. Mater. 25 (2015) 6913–6920.  doi: 10.1002/adfm.201503077

    442. [442]

      C. Zhao, C. Yu, M.N. Banis, et al., Nano Energy 34 (2017) 399–407.  doi: 10.1016/j.nanoen.2017.02.030

    443. [443]

      S. Liu, Z. Wang, C. Yu, et al., J. Mater. Chem. A 1 (2013) 12033–12037.  doi: 10.1039/c3ta13069j

    444. [444]

      Z. Su, I. Temprano, N. Folastre, et al., Small Methods 8 (2024) 2300452.  doi: 10.1002/smtd.202300452

    445. [445]

      Y. Zhang, L. Wang, Z. Guo, et al., Angew. Chem. Int. Ed. 55 (2016) 4487–4491.  doi: 10.1002/anie.201511832

    446. [446]

      Q. Liu, Z. Chang, Z. Li, X. Zhang, Small Methods 2 (2018) 1700231.  doi: 10.1002/smtd.201700231

    447. [447]

      L. Zhong, R.R. Mitchell, Y. Liu, et al., Nano Lett. 13 (2013) 2209–2214.  doi: 10.1021/nl400731w

    448. [448]

      H. Zheng, D. Xiao, X. Li, et al., Nano Lett. 14 (2014) 4245–4249.  doi: 10.1021/nl500862u

    449. [449]

      C. Zhao, Y. Zhu, Q. Sun, et al., Angew. Chem. Int. Ed. 60 (2021) 5821–5826.  doi: 10.1002/anie.202014061

    450. [450]

      X. Lu, J. Deng, W. Si, et al., Adv. Sci. 2 (2015) 1500113.  doi: 10.1002/advs.201500113

    451. [451]

      J.B. Park, J. Lee, C.S. Yoon, Y.K. Sun, ACS Appl. Mater. Interfaces 5 (2013) 13426–13431.  doi: 10.1021/am404336f

    452. [452]

      G. Zhao, L. Zhang, J. Lv, C. Li, K. Sun, Chem. Commun. 52 (2016) 6403–6406.  doi: 10.1039/C6CC01418F

    453. [453]

      G. Liu, S. Qin, X. Zhang, et al., Nano Res. Energy 4 (2025) e9120142.  doi: 10.26599/nre.2024.9120142

    454. [454]

      W.J. Kwak, Rosy, D. Sharon, et al., Chem. Rev. 120 (2020) 6626–6683.  doi: 10.1021/acs.chemrev.9b00609

    455. [455]

      B.Y. Sun, W. Zheng, C. Kang, et al., Small 19 (2023) 2207461.  doi: 10.1002/smll.202207461

    456. [456]

      P. Jia, Y. Guo, D. Chen, et al., Chin. Chem. Lett. 35 (2024) 108624.  doi: 10.1016/j.cclet.2023.108624

    457. [457]

      Z.Y. Qian, B.Y. Sun, X.D. Li, et al., J. Alloy. Compd. 832 (2020) 155009.  doi: 10.1016/j.jallcom.2020.155009

    458. [458]

      J.J. Xu, Z.W. Chang, Y.B. Yin, X.B. Zhang, ACS Cent. Sci. 3 (2017) 598–604.  doi: 10.1021/acscentsci.7b00120020.155009

    459. [459]

      Z.Y. Qian, X.D. Li, L.G. Wang, et al., ACS Sustain. Chem. Eng. 8 (2020) 16115–16123.  doi: 10.1021/acssuschemeng.0c02154

    460. [460]

      J.Z. Zhu, F. Wang, B.Z. Wang, et al., J. Am. Chem. Soc. 137 (2015) 13572–13579.  doi: 10.1021/jacs.5b07792

    461. [461]

      S.Z. Zhao, L.N. Song, M.R. Xie, et al., ACS Catal. 14 (2024) 7332–7344.  doi: 10.1021/acscatal.4c01127

    462. [462]

      Y.H. Chen, S.A. Freunberger, Z.Q. Peng, O. Fontaine, P.G. Bruce, Nat. Chem. 5 (2013) 489–494.  doi: 10.1038/nchem.1646

    463. [463]

      B.J. Bergner, A. Schürmann, K. Peppler, A. Garsuch, J. Janek, J. Am. Chem. Soc. 136 (2014) 15054–15064.  doi: 10.1021/ja508400m

    464. [464]

      Y.G. Zhu, C.K. Jia, J. Yang, et al., Chem. Commun. 51 (2015) 9451–9454.  doi: 10.1039/C5CC01616A

    465. [465]

      W. Zhang, Y. Shen, D. Sun, et al., Nano Energy 30 (2016) 43–51.  doi: 10.1142/9789814759984_0005

    466. [466]

      N.N. Feng, P. He, H.S. Zhou, ChemSusChem 8 (2015) 600–602.  doi: 10.1002/cssc.201403338

    467. [467]

      D. Kundu, R. Black, B. Adams, L.F. Nazar, ACS Cent. Sci. 1 (2015) 510–515.  doi: 10.1021/acscentsci.5b00267

    468. [468]

      Y.G. Zhu, X.Z. Wang, C.K. Jia, J. Yang, Q. Wang, ACS Catal. 6 (2016) 6191–6197.  doi: 10.1021/acscatal.6b01478

    469. [469]

      W.J. Kwak, S.A. Freunberger, H. Kim, et al., ACS Catal. 9 (2019) 9914–9922.  doi: 10.1021/acscatal.9b01337

    470. [470]

      S.C. Wu, Y. Qiao, H. Deng, Y.B. He, H.S. Zhou, J. Phys. Chem. Lett. 9 (2018) 6761–6766.  doi: 10.1021/acs.jpclett.8b02899

    471. [471]

      S. Matsuda, S. Mori, K. Hashimoto, S. Nakanishi, J. Phys. Chem. C 118 (2014) 28435–28439.  doi: 10.1021/jp5088465

    472. [472]

      C.C. Zhu, Y.P. Wang, L. Shuai, et al., Chin. Chem. Lett. 31 (2020) 1997–2002.  doi: 10.1016/j.cclet.2019.11.046

    473. [473]

      M.J. Lacey, J.T. Frith, J.R. Owen, Electrochem. Commun. 26 (2013) 74–76.  doi: 10.1016/j.elecom.2012.10.009

    474. [474]

      L. Yang, J.T. Frith, N. Garcia-Araez, J.R. Owen, Chem. Commun. 51 (2015) 1705–1708.  doi: 10.1039/C4CC09208B

    475. [475]

      X. Gao, Y. Chen, L. Johnson, P.G. Bruce, Nat. Mater. 15 (2016) 882–888.  doi: 10.1038/nmat4629

    476. [476]

      Y.T. Zhang, L. Wang, X.Z. Zhang, et al., Adv. Mater. 30 (2018) 1705571.  doi: 10.1002/adma.201705571

    477. [477]

      S.S. Wu, N. Qin, H. Zhang, et al., Chem. Commun. 58 (2022) 1025–1028.  doi: 10.1039/d1cc05538k

    478. [478]

      Y.G. Zhu, F.W.T. Goh, R.T. Yan, et al., Phys. Chem. Chem. Phys. 20 (2018) 27930–27936.  doi: 10.1039/c8cp04744h

    479. [479]

      P. Zhang, L.L. Liu, X.F. He, et al., J. Am. Chem. Soc. 141 (2019) 6263–6270.  doi: 10.1021/jacs.8b13568

    480. [480]

      H. Wan, Y.J. Sun, Z.D. Li, et al., Energy Storage Mater. 40 (2021) 159–165.  doi: 10.1016/j.ensm.2021.05.00727

    481. [481]

      Q. Xiong, G. Huang, X.B. Zhang, Angew. Chem. Int. Ed. 59 (2020) 19311–19319.  doi: 10.1002/anie.202009064

    482. [482]

      Y. Ko, H. Park, J. Kim, et al., Adv. Funct. Mater. 29 (2019) 1805623.  doi: 10.1002/adfm.201805623

    483. [483]

      W. Weng, C.J. Barile, P. Du, et al., Electrochim. Acta 119 (2014) 138–143.  doi: 10.1016/j.electacta.2013.12.027

    484. [484]

      S. Matsuda, K. Hashimoto, S. Nakanishi, J. Phys. Chem. C 118 (2014) 18397–18400.  doi: 10.1021/jp504894e

    485. [485]

      Z.M. Huang, J. Ren, W. Zhang, et al., Adv. Mater. 30 (2018) 1803270.  doi: 10.1002/adma.201803270

    486. [486]

      X. Zhang, Q.M. Zhang, X.G. Wang, et al., Angew. Chem. Int. Ed. 57 (2018) 12814–12818.  doi: 10.1002/anie.201807985

    487. [487]

      G. Huang, J.H. Han, C.C. Yang, et al., npg Asia Mater. 10 (2018) 1037–1045.  doi: 10.1038/s41427-018-0095-5

    488. [488]

      B. Liu, W. Xu, P.F. Yan, et al., Adv. Energy Mater. 7 (2017) 1602605.  doi: 10.1002/aenm.201602605

    489. [489]

      H. Zhang, Z. Zeng, Q. Wu, et al., J. Energy Chem. 90 (2024) 380–387.  doi: 10.1016/j.jechem.2023.10.050

    490. [490]

      D.J. Lee, H. Lee, Y.J. Kim, J.K. Park, H.T. Kim, Adv. Mater. 28 (2016) 857–863.  doi: 10.1002/adma.201503169

    491. [491]

      B.G. Kim, J.S. Kim, J. Min, et al., Adv. Funct. Mater. 26 (2016) 1747–1756.  doi: 10.1002/adfm.201504437

    492. [492]

      L. Ye, M. Liao, H. Sun, et al., Angew. Chem. Int. Ed. 58 (2019) 2437–2442.  doi: 10.1002/anie.201814324

    493. [493]

      Z.Q. Li, X.L. Huang, L. Kong, et al., Energy Storage Mater. 45 (2022) 40–47.  doi: 10.1016/j.ensm.2021.11.037

    494. [494]

      H. Chen, D. Yang, G. Huang, X. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2305059.  doi: 10.3866/PKU.WHXB202305059

    495. [495]

      J.S. Lee, S. Tai Kim, R. Cao, et al., Adv. Energy Mater. 1 (2011) 34–50.  doi: 10.1002/aenm.201000010

    496. [496]

      L. Grande, E. Paillard, J. Hassoun, et al., Adv. Mater. 27 (2015) 784–800.  doi: 10.1002/adma.201403064

    497. [497]

      H. Guo, W. Luo, J. Chen, et al., Adv. Sustain. Syst. 2 (2018) 1700183.  doi: 10.1002/adsu.201700183

    498. [498]

      B.D. McCloskey, D.S. Bethune, R.M. Shelby, G. Girishkumar, A.C. Luntz, J. Phys. Chem. Lett. 2 (2011) 1161–1166.  doi: 10.1021/jz200352v

    499. [499]

      V.S. Bryantsev, M. Blanco, J. Phys. Chem. Lett. 2 (2011) 379–383.  doi: 10.1021/jz1016526

    500. [500]

      J. Read, J. Electrochem. Soc. 153 (2006) A96–A100.  doi: 10.1149/1.2131827

    501. [501]

      B.D. McCloskey, R. Scheffler, A. Speidel, et al., J. Am. Chem. Soc. 133 (2011) 18038–18041.  doi: 10.1021/ja207229n

    502. [502]

      H.G. Jung, J. Hassoun, J.B. Park, Y.K. Sun, B. Scrosati, Nat. Chem. 4 (2012) 579–585.  doi: 10.1038/nchem.1376

    503. [503]

      R. Black, S.H. Oh, J.H. Lee, et al., J. Am. Chem. Soc. 134 (2012) 2902–2905.  doi: 10.1021/ja2111543

    504. [504]

      D. Sharon, V. Etacheri, A. Garsuch, et al., J. Phys. Chem. Lett. 4 (2012) 127–131.

    505. [505]

      S.A. Freunberger, Y. Chen, N.E. Drewett, et al., Angew. Chem. Int. Ed. 50 (2011) 8609–8613.  doi: 10.1002/anie.201102357

    506. [506]

      Z. Peng, S.A. Freunberger, L.J. Hardwick, et al., Angew. Chem. Int. Ed. 50 (2011) 6351–6355.  doi: 10.1002/anie.201100879

    507. [507]

      H.K. Lim, H.D. Lim, K.Y. Park, J. Am. Chem. Soc. 135 (2013) 9733–9742.  doi: 10.1021/ja4016765

    508. [508]

      Z. Zhao, L. Pang, Y. Wu, Y. Chen, Z. Peng, Adv. Energy Mater. 13 (2023) 2301127.  doi: 10.1002/aenm.202301127

    509. [509]

      Y. Chen, S.A. Freunberger, Z. Peng, F. Barde, P.G. Bruce, J. Am. Chem. Soc. 134 (2012) 7952–7957.  doi: 10.1021/ja302178w

    510. [510]

      C.J. Allen, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, J. Phys. Chem. Lett. 2 (2011) 2420–2424.  doi: 10.1021/jz201070t

    511. [511]

      Y. Chen, S. Liu, Z. Bi, et al., Green Energy Environ. 9 (2024) 966–991.  doi: 10.3390/aerospace11120966

    512. [512]

      Y. Chen, J. Xu, P. He, et al., Sci. Bull. 67 (2022) 2449–2486.  doi: 10.1016/j.scib.2022.11.027

    513. [513]

      K. Pan, M. Li, W. Wang, et al., Green Energy Environ. 8 (2023) 939–944.  doi: 10.1016/j.gee.2023.02.010

    514. [514]

      J. Kumar, B. Kumar, J. Power Sources 194 (2009) 1113–1119.  doi: 10.1016/j.jpowsour.2009.06.020

    515. [515]

      X. Chi, M. Li, J. Di, et al., Nature 592 (2021) 551–557.  doi: 10.1038/s41586-021-03410-9

    516. [516]

      X.X. Wang, X.W. Chi, M.L. Li, et al., Adv. Funct. Mater. 32 (2022) 2113235.  doi: 10.1002/adfm.202113235

    517. [517]

      C. Li, Z.Y. Guo, B.C. Yang, et al., Angew. Chem. Int. Ed. 56 (2017) 9126–9130.  doi: 10.1002/anie.201705017

    518. [518]

      F.S. Cai, Z. Hu, S.L. Chou, Adv. Sustain. Syst. 2 (2018) 1800060.  doi: 10.1002/adsu.201800060

    519. [519]

      K. Takechi, T. Shiga, T. Asaoka, Chem. Commun. 47 (2011) 3463–3465.  doi: 10.1039/c0cc05176d

    520. [520]

      M. Goodarzi, F. Nazari, F. Illas, J. Phys. Chem. C. 122 (2018) 25776–25784.  doi: 10.1021/acs.jpcc.8b06395

    521. [521]

      B.W. Huang, G. Frapper, J. Am. Chem. Soc. 140 (2018) 413–422.  doi: 10.1021/jacs.7b11123

    522. [522]

      Y.L. Liu, R. Wang, Y.C. Lyu, H. Li, L.Q. Chen, Energy Environ. Sci. 7 (2014) 677–681.  doi: 10.1039/c3ee43318h

    523. [523]

      S.X. Yang, Y. Qiao, P. He, et al., Energy Environ. Sci. 10 (2017) 972–978.  doi: 10.1039/C6EE03770D

    524. [524]

      Z.W. Zhao, J. Huang, Z.Q. Peng, Angew. Chem. Int. Ed. 57 (2018) 3874–3886.  doi: 10.1002/anie.201710156

    525. [525]

      P. Wang, S. Sun, X. Rui, et al., Small. Methods 7 (2023) e2201728.  doi: 10.1002/smtd.202201728

    526. [526]

      L. Zhao, Y. Tao, Y. Zhang, et al., Adv. Mater. 36 (2024) e2402337.  doi: 10.1002/adma.202402337

    527. [527]

      T. Wu, M. Jing, L. Yang, et al., Adv. Energy Mater. 9 (2019) 1803478.  doi: 10.1002/aenm.201803478

    528. [528]

      Y. Qi, M. Xu, Energy Storage Mater. 72 (2024) 103704.  doi: 10.1016/j.ensm.2024.103704

    529. [529]

      X. Yu, A. Manthiram, J. Phys. Chem. C 118 (2014) 22952–22959.  doi: 10.1021/jp507655u

    530. [530]

      A. Kumar, A. Ghosh, A. Ghosh, et al., Energy Storage Mater. 42 (2021) 608–617.  doi: 10.1016/j.ensm.2021.08.014

    531. [531]

      J. Ruan, Y.J. Lei, Y. Fan, et al., Adv. Mater. 36 (2024) 2312207.  doi: 10.1002/adma.202312207

    532. [532]

      L. Ou, J. Mou, J. Peng, et al., ACS Appl. Mater. Interfaces. 16 (2024) 3302–3310.  doi: 10.1021/acsami.3c14578

    533. [533]

      F. Jin, Y. Ning, B. Wang, et al., J. Power Sources 565 (2023) 232917.  doi: 10.1016/j.jpowsour.2023.232917

    534. [534]

      K. Tang, X. Peng, Z. Zhang, et al., Small 20 (2024) 2311151.  doi: 10.1002/smll.202311151

    535. [535]

      T. Wu, Z. Ding, M. Jing, et al., Adv. Funct. Mater. 29 (2019) 1809014.  doi: 10.1002/adfm.201809014

    536. [536]

      Z. Li, L.X. Yuan, Z.Q. Yil, Y. Liu, Y.H. Huang, Nano Energy 9 (2014) 229–236.  doi: 10.1016/j.nanoen.2014.07.012

    537. [537]

      J.T. Xu, J.M. Ma, Q.H. Fan, S.J. Guo, S.X. Dou, Adv. Mater. 29 (2017) 1606454.  doi: 10.1002/adma.201606454

    538. [538]

      P. Hartmann, C.L. Bender, M. Vracar, et al., Nat. Mater. 12 (2013) 228–232.  doi: 10.1038/nmat3486

    539. [539]

      B. Sun, C. Pompe, S. Dongmo, et al., Adv. Mater. Technol. 3 (2018) 1800110.  doi: 10.1002/admt.201800110

    540. [540]

      J.Q. Wang, Y.X. Ni, J.X. Liu, et al., J. Chen, ACS Cent. Sci. 6 (2020) 1955–1963.  doi: 10.1021/acscentsci.0c00849

    541. [541]

      H. Yadegari, M.N. Banis, B.W. Xiao, et al., Chem. Mater. 27 (2015) 3040–3047.  doi: 10.1021/acs.chemmater.5b00435

    542. [542]

      C.L. Bender, P. Hartmann, M. Vracar, P. Adelhelm, J. Janek, Adv. Energy Mater. 4 (2014) 1301863.  doi: 10.1002/aenm.201301863

    543. [543]

      B. Lee, D.H. Seo, H.D. Lim, et al., Chem. Mater. 26 (2014) 1048–1055.  doi: 10.1021/cm403163c

    544. [544]

      S. Kang, Y.F. Mo, S.P. Ong, G. Ceder, Nano Lett. 14 (2014) 1016–1020.  doi: 10.1021/nl404557w

    545. [545]

      X. Yu, A. Manthiram, Adv. Funct. Mater. 30 (2020) 2004084.  doi: 10.1002/adfm.202004084

    546. [546]

      W. Zhang, Y. Liu, Z. Guo, Sci. Adv. 5 (2019) eaav7412.  doi: 10.1126/sciadv.aav7412

    547. [547]

      L. Medenbach, P. Adelhelm, Top. Curr. Chem. 375 (2017) 81.  doi: 10.1007/s41061-017-0168-x

    548. [548]

      K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Chem. Rec. 18 (2018) 459–479.  doi: 10.1002/tcr.201700057

    549. [549]

      J. Jin, X.C. Tian, N. Srikanth, L.B. Kong, K. Zhou, J. Mater. Chem. A 5 (2017) 10110–10126.  doi: 10.1039/C7TA01384A

    550. [550]

      Y.J. Liu, Z.X. Tai, Q. Zhang, et al., Nano Energy 35 (2017) 36–43.  doi: 10.1016/j.nanoen.2017.03.029

    551. [551]

      X.D. Ren, Y.Y. Wu, J. Am. Chem. Soc. 135 (2013) 2923–2926.  doi: 10.1021/ja312059q

    552. [552]

      X.L. Huang, Z.P. Guo, S.X. Dou, Z.M.M. Wang, Adv. Funct. Mater. 31 (2021) 2102326.  doi: 10.1002/adfm.202102326

    553. [553]

      H.L. Ye, Y.G. Li, InfoMat 4 (2022) e12291.  doi: 10.1002/inf2.12291

    554. [554]

      Q.L. Zou, Y.C. Lu, EcoMat 3 (2021) e12115.  doi: 10.1002/eom2.12115

    555. [555]

      Q.L. Zou, Z.J. Liang, G.Y. Du, et al., J. Am. Chem. Soc. 140 (2018) 10740–10748.  doi: 10.1021/jacs.8b04536

    556. [556]

      S.H. Chung, A. Manthiram, Adv. Mater. 31 (2019) 1901125.  doi: 10.1002/adma.201901125

    557. [557]

      C.X. Zhao, J.N. Liu, N. Yao, et al., Angew. Chem. Int. Ed. 60 (2021) 15281–15285.  doi: 10.1002/anie.202104171

    558. [558]

      X. Liu, X. Fan, B. Liu, et al., Adv. Mater. 33 (2021) 2006461.  doi: 10.1002/adma.202006461

    559. [559]

      M. Lin, C. Huang, P. Cheng, J. Cheng, C. Wang, J. Mater. Chem. A 8 (2020) 20637–20649.  doi: 10.1039/d0ta06929a

    560. [560]

      R. Khezri, S. Hosseini, A. Lahiri, et al., Int. J. Mol. Sci. 21 (2020) 21197303.

    561. [561]

      H. Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 28 (2018) 1803329.  doi: 10.1002/adfm.201803329

    562. [562]

      Y. Zeng, X. Zhang, R. Qin, et al., Adv. Mater. 31 (2019) 1903675.  doi: 10.1002/adma.201903675

    563. [563]

      S. Wang, Q. Ran, R. Yao, et al., Nat. Commun. 11 (2020) 1634.  doi: 10.1038/s41467-020-15478-4

    564. [564]

      P. Liu, Z. Zhang, R. Hao, et al., Chem. Eng. J. 403 (2021) 126425.  doi: 10.1016/j.cej.2020.126425

    565. [565]

      P. Wang, F. Zhao, H. Chang, Q. Sun, Z. Zhang, J. Mater. Sci. Mater. Electron. 31 (2020) 17953–17966.  doi: 10.1007/s10854-020-04347-x

    566. [566]

      J.C. Riede, T. Turek, U. Kunz, Electrochem. Acta 269 (2018) 217–224.  doi: 10.1016/j.electacta.2018.02.110

    567. [567]

      W. Sun, F. Wang, B. Zhang, et al., Science 371 (2021) 46–51.  doi: 10.1126/science.abb9554

    568. [568]

      S.Q. Huang, H. Zhang, J.H. Zhuang, et al., Adv. Energy Mater. 12 (2022) 03622.

    569. [569]

      Y. Dai, J. Yu, P. Tan, et al., J. Power Sources 525 (2022) 231108.  doi: 10.1016/j.jpowsour.2022.231108

    570. [570]

      W. Tian, J. Ren, X. Lv, Z. Yuan, Chem. Eng. J. 431 (2022) 133210.  doi: 10.1016/j.cej.2021.133210

    571. [571]

      W. Liu, J. Zhang, Z. Bai, et al., Adv. Funct. Mater. 28 (2018) 1706675.  doi: 10.1002/adfm.201706675

    572. [572]

      F. Wang, H. Zhao, Y. Ma, et al., J. Energy Chem. 50 (2020) 52–62.  doi: 10.1016/j.jechem.2020.03.006

    573. [573]

      T. Wu, H. Hu, Y. Wu, et al., Chem. Eng. J. 500 (2024) 157023.  doi: 10.1016/j.cej.2024.157023

    574. [574]

      G. Yang, J. Zhu, P. Yuan, et al., Nat. Commun. 12 (2021) 1734.  doi: 10.1038/s41467-021-21919-5

    575. [575]

      W. Deng, T. Wu, Y. Wu, et al., J. Mater. Chem. A 12 (2024) 10349–10358.  doi: 10.1039/d4ta00849a

    576. [576]

      X. Liu, C. Zhu, T. Xu, et al., Chem. Eng. J. 497 (2024) 154304.  doi: 10.1016/j.cej.2024.154304

    577. [577]

      Y. Li, Y. Mei, H. Liu, et al., Nano Energy 130 (2024) 110107.  doi: 10.1016/j.nanoen.2024.110107

    578. [578]

      H. Zhang, L. Wang, L. Ma, et al., Adv. Sci. 11 (2023) 2306168.

    579. [579]

      J. Li, Y. Chen, S. He, et al., Chem. Eng. J. 452 (2023) 139311.  doi: 10.1016/j.cej.2022.139311

    580. [580]

      H. Ma, B. Zhao, J. Bai, et al., Adv. Sci. 10 (2022) 2203552.

    581. [581]

      L. Liang, X. Li, F. Zhao, et al., Adv. Energy Mater. 11 (2021) 2100287.  doi: 10.1002/aenm.202100287

    582. [582]

      X. Zhao, X. Wang, Z. Gu, et al., Adv. Funct. Mater. 34 (2024) 2402447.  doi: 10.1002/adfm.202402447

    583. [583]

      Y. Wang, Z. Wang, X. Xu, et al., Nano-Micro Lett. 16 (2024) 254.  doi: 10.1007/s40820-024-01474-6

    584. [584]

      S. Jyothilakshmi, Y.S. Lee, V. Aravindan, Small 21 (2025) 2403935.  doi: 10.1002/smll.202403935

    585. [585]

      Y. Li, Y. Mei, Y. Huang, et al., ACS Nano 18 (2024) 25053–25068.  doi: 10.1021/acsnano.4c06571

    586. [586]

      Y. Fan, Z. Chang, Z. Wu, et al., Adv. Funct. Mater. 34 (2024) 2314288.  doi: 10.1002/adfm.202314288

    587. [587]

      C. Xu, J. Zhao, Y.A. Wang, et al., Adv. Energy Mater. 12 (2022) 2200966.  doi: 10.1002/aenm.202200966

    588. [588]

      T. Jin, X. Ji, P.F. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 11943–11948.  doi: 10.1002/anie.202017167

    589. [589]

      R. Huang, D. Yan, Q. Zhang, et al., Adv. Energy Mater. 14 (2024) 2400595.  doi: 10.1002/aenm.202400595

    590. [590]

      Y. Zhou, G. Xu, J. Lin, et al., Adv. Mater. 35 (2023) 2304428.  doi: 10.1002/adma.202304428

    591. [591]

      S. Park, Z. Wang, K. Choudhary, et al., Nat. Mater. 24 (2024) 234–242.  doi: 10.13050/foodengprog.2024.28.3.234

    592. [592]

      K. Liang, D. Wu, Y. Ren, X. Huang, J. Ma, Chin. Chem. Lett. 34 (2023) 107978.  doi: 10.1016/j.cclet.2022.107978

    593. [593]

      L. Gao, G. Li, Q. Chen, et al., ACS Nano 18 (2024) 12468–12476.  doi: 10.1021/acsnano.4c01831

    594. [594]

      C. Xu, Q. Fu, W. Hua, et al., ACS Nano 18 (2024) 18758–18768.  doi: 10.1021/acsnano.4c06510

    595. [595]

      Z.Y. Gu, J.M. Cao, K. Li, et al., Angew. Chem. Int. Ed. 63 (2024) e202402371.  doi: 10.1002/anie.202402371

    596. [596]

      Q. Huang, L. Shao, X. Shi, et al., Chem. Eng. J. 468 (2023) 143738.  doi: 10.1016/j.cej.2023.143738

    597. [597]

      J. Yang, N. Liu, G. Jiang, et al., Chem. Eng. J. 485 (2024) 149834.  doi: 10.1016/j.cej.2024.149834

    598. [598]

      H. Zhou, Z. Cao, Y. Zhou, et al., Nano Energy 114 (2023) 108604.  doi: 10.1016/j.nanoen.2023.108604

    599. [599]

      Y.M. Yin, C. Pei, W. Xia, X. Luo, D.S. Li, Small 19 (2023) 2303666.  doi: 10.1002/smll.202303666

    600. [600]

      G. Su, Y. Wang, J. Mu, et al., Adv. Energy Mater. 15 (2025) 2403282.  doi: 10.1002/aenm.202403282

    601. [601]

      X. Shen, Q. Zhou, M. Han, et al., Nat. Commun. 12 (2021) 2848.  doi: 10.1038/s41467-021-23132-w

    602. [602]

      S. Li, X. Lu, Y. Li, et al., Adv. Mater. 36 (2024) 2413013.  doi: 10.1002/adma.202413013

    603. [603]

      C. Delmas, C. Fouassier, P. Hagenmuller, Phys. B+C 99 (1980) 81–85.  doi: 10.1016/0378-4363(80)90214-4

    604. [604]

      H. Yoshida, N. Yabuuchi, K. Kubota, et al., Chem. Commun. 50 (2014) 3677–3680.  doi: 10.1039/C3CC49856E

    605. [605]

      S. Okada, Y. Takahashi, T. Kiyabu, et al., Layered transition metal oxides as cathodes for sodium secondary battery, in: 210th ECS Meeting, Cancun, Mexico, 2006, p. 201.

    606. [606]

      L.Q. Mu, S.Y. Xu, Y.M. Li, et al., Adv. Mater. 27 (2015) 6928.  doi: 10.1002/adma.201502449

    607. [607]

      X. Rong, D. Xiao, Q. Li, et al., eScience 3 (2023) 100159.  doi: 10.1016/j.esci.2023.100159

    608. [608]

      X. Cao, H.F. Li, Y. Qiao, et al., Adv. Energy Mater. 10 (2020) 1903785.  doi: 10.1002/aenm.201903785

    609. [609]

      N. Yabuuchi, R. Hara, M. Kajiyama, et al., Adv. Energy Mater. 4 (2014) 1301453.  doi: 10.1002/aenm.201301453

    610. [610]

      J. Billaud, G. Singh, A.R. Armstrong, et al., Energy Environ. Sci. 7 (2014) 1387–1391.  doi: 10.1039/C4EE00465E

    611. [611]

      C. Cheng, M.L. Ding, T.R. Yan, et al., Small Methods 6 (2022) 2101524.  doi: 10.1002/smtd.202101524

    612. [612]

      N. Yabuuchi, R. Hara, K. Kubota, et al., J. Mater. Chem. A 2 (2014) 16851–16855.  doi: 10.1039/C4TA04351K

    613. [613]

      B.M. de Boisse, S. Nishimura, E. Watanabe, et al., Adv. Energy Mater. 8 (2018) 1800409.  doi: 10.1002/aenm.201800409

    614. [614]

      Y. Yu, D. Ning, Q.Y. Li, et al., Energy Storage Mater. 38 (2021) 130–140.  doi: 10.1016/j.ensm.2021.03.004

    615. [615]

      Y. Wang, X.D. Zhao, J.T. Jin, et al., J. Am. Chem. Soc. 145 (2023) 22708–22719.  doi: 10.1021/jacs.3c08070

    616. [616]

      X.H. Rong, J. Liu, E.Y. Hu, et al., Joule 2 (2018) 125–140.  doi: 10.1016/j.joule.2017.10.008

    617. [617]

      X.H. Rong, E.Y. Hu, Y.X. Lu, et al., Joule 3 (2019) 503–517.  doi: 10.1016/j.joule.2018.10.022

    618. [618]

      C. Liu, K. Chen, H. Xiong, et al., eScience 4 (2024) 100186.  doi: 10.1016/j.esci.2023.100186

    619. [619]

      P. Barpanda, G. Oyama, S.I. Nishimura, S.C. Chung, A. Yamada, Nat. Commun. 5 (2014) 4358.  doi: 10.1038/ncomms5358

    620. [620]

      X. Xiao, Y. Lan, L. Tan, et al., Adv. Funct. Mater. 34 (2024) 2411280.  doi: 10.1002/adfm.202411280

    621. [621]

      J. Zhang, Y. Yan, X. Wang, et al., Nat. Commun. 14 (2023) 3701.  doi: 10.1038/s41467-023-39384-7

    622. [622]

      W. Pan, W. Guan, S. Liu, et al., J. Mater. Chem. A 7 (2019) 13197–13204.  doi: 10.1039/c9ta02188d

    623. [623]

      Z. Zheng, X. Li, Y. Wang, et al., Energy Storage Mater. 74 (2025) 103882.  doi: 10.1016/j.ensm.2024.103882

    624. [624]

      G. Yao, X. Zhang, Y. Yan, et al., J. Energy Chem. 50 (2020) 387–394.  doi: 10.1016/j.jechem.2020.03.047

    625. [625]

      Y.R. Wang, Y. Yang, Y.L. Nie, et al., J. Energy Storage 83 (2024) 110629.  doi: 10.1016/j.est.2024.110629

    626. [626]

      Y. Niu, Y. Zhao, M. Xu, Carbon Neutral. 2 (2023) 150–168.  doi: 10.1002/cnl2.48

    627. [627]

      H. Kim, I. Park, S. Lee, et al., Chem. Mater. 25 (2013) 3614–3622.  doi: 10.1021/cm4013816

    628. [628]

      X. Qi, Q. Dong, H. Dong, et al., Energy Storage Mater. 73 (2024) 103861.  doi: 10.1016/j.ensm.2024.103861

    629. [629]

      X. Qi, H. Dong, H. Yan, et al., Angew. Chem. Int. Ed. 63 (2024) e202410590.  doi: 10.1002/anie.202410590

    630. [630]

      X. Li, Y. Zhang, B. Zhang, et al., J. Power Sources 521 (2022) 230922.  doi: 10.1016/j.jpowsour.2021.230922

    631. [631]

      F. Xiong, J. Li, C. Zuo, et al., Adv. Funct. Mater. 33 (2022) 2211257.

    632. [632]

      W. Fei, X. Zhang, K. Sun, et al., Energy Storage Mater. 73 (2024) 103848.  doi: 10.1016/j.ensm.2024.103848

    633. [633]

      B.J. Xin, X.L. Wu, Battery Energy 3 (2024) 20230074.  doi: 10.1002/bte2.20230074

    634. [634]

      L. Xu, Y. Liu, M. Chen, et al., Chem. Eng. Sci. 302 (2025) 120848.  doi: 10.1016/j.ces.2024.120848

    635. [635]

      J. Peng, W. Zhang, Q. Liu, et al., Adv. Mater. 34 (2022) 2108384.  doi: 10.1002/adma.202108384

    636. [636]

      L. Xu, H. Li, T. Du, et al., Battery Energy 1 (2022) 20210003.  doi: 10.1002/bte2.20210003

    637. [637]

      T. Meng, Z. Chen, X. Lai, et al., Small 20 (2024) 2405822.  doi: 10.1002/smll.202405822

    638. [638]

      Y. Gao, X. Wu, L. Wang, et al., Adv. Funct. Mater. 34 (2024) 2314860.  doi: 10.1002/adfm.202314860

    639. [639]

      J. Peng, W. Zhang, Z. Hu, et al., Nano Lett. 22 (2022) 1302–1310.  doi: 10.1021/acs.nanolett.1c04492

    640. [640]

      J. Peng, Y. Gao, H. Zhang, et al., Angew. Chem. Int. Ed. 61 (2022) e202205867.  doi: 10.1002/anie.202205867

    641. [641]

      Z. Xu, F. Chen, Y. Li, et al., Adv. Sci. 11 (2024) 2406842.  doi: 10.1002/advs.202406842

    642. [642]

      J. Peng, W. Hua, Z. Yang, et al., ACS Nano 18 (2024) 19854–19864.

    643. [643]

      Y. Luo, J. Shen, Y. Yao, et al., Adv. Mater. 36 (2024) 2405458.  doi: 10.1002/adma.202405458

    644. [644]

      J. Dai, S. Tan, L. Wang, et al., ACS Nano 17 (2023) 20949–20961.  doi: 10.1021/acsnano.3c02323

    645. [645]

      Y. He, S.L. Dreyer, Y.Y. Ting, et al., Angew. Chem. Int. Ed. 63 (2024) e202315371.  doi: 10.1002/anie.202315371

    646. [646]

      H. Cheng, H. Xu, J. Shang, et al., Angew. Chem. Int. Ed. 64 (2025) e202414302.  doi: 10.1002/anie.202414302

    647. [647]

      C. Xu, Y. Ma, J. Zhao, et al., Angew. Chem. Int. Ed. 62 (2023) e202217761.  doi: 10.1002/anie.202217761

    648. [648]

      Y. Wei, M. Zheng, W. Zhu, H. Pang, Carbon Neutral. 2 (2023) 271–299.  doi: 10.1002/cnl2.64

    649. [649]

      M. Jiang, Z. Hou, H. Ma, et al., Nano Lett. 23 (2023) 10423–10431.  doi: 10.1021/acs.nanolett.3c03065

    650. [650]

      J. Zhang, J. Zhang, H. Wang, et al., ACS Energy Lett. 7 (2022) 4472–4482.  doi: 10.1021/acsenergylett.2c02369

    651. [651]

      X. Liu, J. Zhao, H. Dong, et al., Adv. Funct. Mater. 34 (2024) 2402310.  doi: 10.1002/adfm.202402310

    652. [652]

      R. Rajagopalan, Y.G. Tang, C.K. Jia, X.B. Ji, H.Y. Wang, Energy Environ. Sci. 13 (2020) 1568–1592.  doi: 10.1039/c9ee03637g

    653. [653]

      Q. Zhao, Y. Lu, J. Chen, Adv. Energy Mater. 7 (2017) 11220–11252.

    654. [654]

      X.Y. Wu, S.F. Jin, Z.Z. Zhang, et al., Sci. Adv. 1 (2015) e1500330.  doi: 10.1126/sciadv.1500330

    655. [655]

      J.K. Kim, Y. Kim, S. Park, H. Ko, Y. Kim, Energy Environ. Sci. 9 (2016) 1264–1269.  doi: 10.1039/C5EE02806J

    656. [656]

      Z. Wang, J. Tang, Y. Li, et al., Ionics 31 (2024) 1–21.

    657. [657]

      H. Wu, S. Luo, H. Wang, et al., Nano Micro Lett. 16 (2024) 252.  doi: 10.1007/s40820-024-01470-w

    658. [658]

      J. Liu, L. Huang, H. Wang, et al., Electrochem. Energy Rev. 7 (2024) 34.  doi: 10.1007/s41918-024-00234-9

    659. [659]

      S.A. Riza, R. g. Xu, Q. Liu, et al., New Carbon Mater. 39 (2024) 743–769.  doi: 10.1016/S1872-5805(24)60886-3

    660. [660]

      D.A. Stevens, J.R. Dahn, J. Electrochem. Soc. 147 (2000) 1271.  doi: 10.1149/1.1393348

    661. [661]

      S. Komaba, W. Murata, T. Ishikawa, et al., Adv. Funct. Mater. 21 (2011) 3859–3867.  doi: 10.1002/adfm.201100854

    662. [662]

      Y. Cao, L. Xiao, M.L. Sushko, et al., Nano Lett. 12 (2012) 3783–3787.  doi: 10.1021/nl3016957

    663. [663]

      Y. Li, Y.S. Hu, M.M. Titirici, L. Chen, X. Huang, Adv. Energy Mater. 6 (2016) 1600659.  doi: 10.1002/aenm.201600659

    664. [664]

      X. Chen, Y.S. Huang, M.B. Zhang, et al., Mater. Res. Express. 11 (2024) 035501.  doi: 10.1088/2053-1591/ad2c3d

    665. [665]

      A. Verdianto, H. Lim, J. Park, S.O. Kim, J. Alloys Compd. 942 (2023) 168950.  doi: 10.1016/j.jallcom.2023.168950

    666. [666]

      A. Sohan, A. Kumar, T.N. Narayanan, P. Kollu, J. Energy Storage 74 (2023) 109312.  doi: 10.1016/j.est.2023.109312

    667. [667]

      X.Y. Li, L.X. Zeng, W.B. Lai, et al., Energy Fuels 38 (2024) 16966–1697  doi: 10.1021/acs.energyfuels.4c02349

    668. [668]

      J. Liang, G. Fang, X. Niu, et al., Surfaces 6 (2023) 239–248.  doi: 10.3390/surfaces6030016

    669. [669]

      F. Zhang, H. Wang, X.J. Liu, G. Wang, B.B. Wang, Chem. Eng. J. 475 (2023) 146131.  doi: 10.1016/j.cej.2023.146131

    670. [670]

      X.Y. Han, X.M. Zheng, J.H. You, et al., Chem. Eng. J. 490 (2024) 151975.  doi: 10.1016/j.cej.2024.151975

    671. [671]

      J.J. Zhao, B.Y. Liu, W. Yao, X.L. Ding, J. Energy Storage 93 (2024) 112407.  doi: 10.1016/j.est.2024.112407

    672. [672]

      J.Y. Liao, B. De Luna, A. Manthiram, J. Mater. Chem. A 4 (2016) 801–806.  doi: 10.1039/C5TA07064C

    673. [673]

      S. Nie, L. Liu, J.F. Liu, et al., Nano-Micro Lett. 10 (2018) 71.  doi: 10.1007/s40820-018-0225-1

    674. [674]

      B.X. Peng, T.X. Cai, S.N. Zhang, et al., Sci. China Chem. 67 (2024) 336–342.  doi: 10.1007/s11426-023-1699-x

    675. [675]

      H.W. Tao, M. Zhou, R.X. Wang, et al., Adv. Sci. 5 (2018) 1801021.  doi: 10.1002/advs.201801021

    676. [676]

      Y. Zhang, V. Srot, I. Moudrakovski, et al., Adv. Energy Mater. 9 (2019) 1901470.  doi: 10.1002/aenm.201901470

    677. [677]

      Y. Wang, Z. Peng, Y. Li, et al., J. Colloid Interface Sci. 626 (2022) 1–12.  doi: 10.1016/j.jcis.2022.06.123

    678. [678]

      P. Wei, Y. Liu, Y. Su, et al., ACS Appl. Mater. Interfaces 11 (2019) 3116–3124.  doi: 10.1021/acsami.8b19637

    679. [679]

      M. Li, L. Liu, P. Wang, et al., Electrochim. Acta 252 (2017) 523–531.  doi: 10.1016/j.electacta.2017.09.020

    680. [680]

      Z. Huang, L. Liu, L. Yi, et al., J. Power Sources 325 (2016) 474–481.  doi: 10.1016/j.jpowsour.2016.06.066

    681. [681]

      L. Zhong, M. Yue, W. Xie, et al., J. Energy Chem. 98 (2024) 623–633.  doi: 10.1016/j.jechem.2024.07.029

    682. [682]

      D. Wang, Q. Ma, H. He, et al., Rare Met. 43 (2024) 2067–2079.  doi: 10.1007/s12598-023-02550-3

    683. [683]

      P.F. Huang, H.J. Ying, S.L. Zhang, Z. Zhang, W.Q. Han, Chem. Eng. J. 429 (2022) 132396.  doi: 10.1016/j.cej.2021.132396

    684. [684]

      G.H. Li, S.H. Lian, F. Song, et al., Small 17 (2021) 2103626.  doi: 10.1002/smll.202103626

    685. [685]

      X. Wang, X. Shen, Y. Gao, et al., J. Am. Chem. Soc. 137 (2015) 2715–2721.  doi: 10.1021/ja512820k

    686. [686]

      H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, J. Phys. Chem. Lett. 2 (2011) 2560–2565.  doi: 10.1021/jz2012066

    687. [687]

      J. Chen, G. Zou, H. Hou, et al., J. Mater. Chem. A 4 (2016) 12591–12601.

    688. [688]

      W. Li, M. Fukunishi, B.J. Morgan, et al., Chem. Mater. 29 (2017) 1836–1844.  doi: 10.1021/acs.chemmater.7b00098

    689. [689]

      Z. Bi, M.P. Paranthaman, P.A. Menchhofer, et al., J. Power Sources 222 (2013) 461–466.  doi: 10.1016/j.jpowsour.2012.09.019

    690. [690]

      C.J. Deng, C.R. Ma, M.L. Lau, et al., Electrochim. Acta 321 (2019) 134723.  doi: 10.1016/j.electacta.2019.134723

    691. [691]

      M.L. Kang, Y.R. Ruan, Y.Z. Lu, et al., J. Mater. Chem. A. 7 (2019) 16937–16946.  doi: 10.1039/c9ta05299b

    692. [692]

      L.M. Wu, D. Bresser, D. Buchholz, S. Passerini, J. Electrochem. Soc. 162 (2015) A3052–A3058.  doi: 10.1149/2.0091502jes

    693. [693]

      H. Usui, S. Yoshioka, K. Wasada, M. Shimizu, H. Sakaguchi, ACS Appl. Mater. Interfaces 7 (2015) 6567–6573.  doi: 10.1021/am508670z

    694. [694]

      G. Zou, J. Chen, Y. Zhang, et al., J. Power Sources 325 (2016) 25–34.  doi: 10.1016/j.jpowsour.2016.06.017

    695. [695]

      J.C. Pérez-Flores, C. Baehtz, A. Kuhn, F. García-Alvarado, J. Mater. Chem. A 2 (2014) 1825–1833.  doi: 10.1039/C3TA13394J

    696. [696]

      Y. Song, Y.C. Kang, W. Ma, H.B. Li, RSC Adv. 12 (2022) 12219–12225.  doi: 10.1039/d2ra01589g

    697. [697]

      G.L. Liu, L.F. Xu, Y.Q. Li, et al., Chem. Eng. J. 430 (2022) 132689.  doi: 10.1016/j.cej.2021.132689

    698. [698]

      P. Senguttuvan, G. Rousse, V. Seznec, et al., Chem. Mater. 23 (2011) 4109–4111.  doi: 10.1021/cm202076g

    699. [699]

      H. Tao, R. Wang, Y. Tang, et al., J. Mater. Chem. A. 9 (2021) 10458–10465.  doi: 10.1039/d0ta12552k

    700. [700]

      Q.C. Wang, S. He, H. Chen, Z.Q. Peng, et al., Green. Chem. 26 (2024) 2114–2123.  doi: 10.1039/d3gc04008a

    701. [701]

      H.K. Roh, M.S. Kim, K.Y. Chung, et al., J. Mater. Chem. A 5 (2017) 17506–17516.  doi: 10.1039/C7TA05252A

    702. [702]

      J. Pan, N.N. Wang, L.L. Li, et al., Nano Res. 14 (2021) 139–147.  doi: 10.1007/s12274-020-3057-5

    703. [703]

      W. Zhang, S. Liu, J. Chen, et al., ACS Appl. Mater. Interfaces 13 (2021) 22341–22350.  doi: 10.1021/acsami.1c02470

    704. [704]

      D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, ACS Appl. Mater. Interfaces 6 (2014) 11173–11179.  doi: 10.1021/am501144q

    705. [705]

      G.Q. Zou, H.S. Hou, Y. Zhang, et al., J. Electrochem. Soc. 163 (2016) A3117–A3125.  doi: 10.1149/2.1341614jes

    706. [706]

      T. Yao, L. Li, H. Wang, Chin. Chem. Lett. 34 (2023) 108186.  doi: 10.1016/j.cclet.2023.108186

    707. [707]

      J. Dai, J. Jing, J.P. Yang, et al., Rare Met. 42 (2023) 3387–3398.  doi: 10.1007/s12598-023-02332-x

    708. [708]

      W.L. Feng, C.C. Meng, X.L. Guo, et al., Adv. Energy Mater. 14 (2024) 2400558.  doi: 10.1002/aenm.202400558

    709. [709]

      Z. Hong, M. Kang, X. Chen, et al., ACS Appl. Mater. Interfaces 9 (2017) 32071–32079.  doi: 10.1021/acsami.7b06290

    710. [710]

      T.H. Yao, H.K. Wang, X. Ji, et al., Small 19 (2023) 2302831.  doi: 10.1002/smll.202302831

    711. [711]

      A. Eitner, A.K. Al-Kamal, M.Y. Ali, et al., Appl. Energy Combust. Sci. 17 (2024) 100252.

    712. [712]

      J. Irranious, P. Iyngaran, P. Abiman, N. Kuganathan, AIP Adv. 14 (2024) 105110.  doi: 10.1063/5.0232184

    713. [713]

      L. Que, F. Yu, L. Deng, D. Gu, Z. Wang, Energy Storage Mater. 25 (2020) 537–546.  doi: 10.1016/j.ensm.2019.09.029

    714. [714]

      S. Stanchovska, M. Kalapsazova, S. Harizanova, V. Koleva, R. Stoyanova, Batteries-Basel. 9 (2023) 271.  doi: 10.3390/batteries9050271

    715. [715]

      Q. Zhang, Y. He, P. Mei, et al., J. Mater. Chem. A. 7 (2019) 19241–19247.  doi: 10.1039/c9ta04406j

    716. [716]

      Q. Zhang, Y. Guo, K. Guo, T. Zhai, H. Li, Chem. Commun. 52 (2016) 6229–6232.  doi: 10.1039/C6CC01057A

    717. [717]

      C. Zhao, Y. Cai, K. Yin, et al., Chem. Eng. J. 350 (2018) 201–208.  doi: 10.1016/j.cej.2018.05.194

    718. [718]

      Q. Liao, H. Hou, J. Duan, et al., Int. J. Hydrogen Energy 42 (2017) 12414–12419.  doi: 10.1016/j.ijhydene.2017.03.116

    719. [719]

      J.P. Huang, D.D. Yuan, H.Z. Zhang, et al., RSC. Adv. 3 (2013) 12593–12597.  doi: 10.1039/c3ra42413h

    720. [720]

      Y. Zhang, X.L. Pu, Y.C. Yang, et al., Phys. Chem. Chem. Phys. 17 (2015) 15764–15770.  doi: 10.1039/C5CP01227A

    721. [721]

      Z. Yan, L. Liu, J. Tan, Q. Zhou, et al., J. Power Sources 269 (2014) 37–45.  doi: 10.1016/j.jpowsour.2014.06.150

    722. [722]

      Y.F. Qin, Z.J. Zhao, T. Wang, et al., Small 19 (2023) 2204980.  doi: 10.1002/smll.202204980

    723. [723]

      X. Ma, Z.H. Zhang, J.L.Y. Tian, et al., Funct. Mater. Lett. 11 (2018) 1850021.  doi: 10.1142/S1793604718500212

    724. [724]

      Y.C. Chang, Y.X. Wang, C.Y. Lee, H.T. Chiu, ChemNanoMat 2 (2016) 1092–1097.  doi: 10.1002/cnma.201600231

    725. [725]

      S. Nie, L. Liu, M. Li, et al., ChemElectroChem. 5 (2018) 3498–3505.  doi: 10.1002/celc.201800941

    726. [726]

      S. Nie, L. Liu, J. Liu, et al., J. Alloys Compd. 772 (2019) 314–323.  doi: 10.1016/j.jallcom.2018.09.044

    727. [727]

      W. Sheng, J. Yang, G. Jiang, et al., New J. Chem. 48 (2024) 1510–1517.  doi: 10.1039/d3nj05137d

    728. [728]

      D.D. Li, J.Z. Li, H.R. Liu, et al., Chem. Eng. J. 477 (2023) 147045.  doi: 10.1016/j.cej.2023.147045

    729. [729]

      H. Liu, P. He, J.X. Cao, et al., J. Power Sources 521 (2022) 230946.  doi: 10.1016/j.jpowsour.2021.230946

    730. [730]

      K. Ma, Y. Dong, H. Jiang, et al., Chem. Eng. J. 413 (2021) 127479.  doi: 10.1016/j.cej.2020.127479

    731. [731]

      Y. Wu, P. Nie, J. Jiang, et al., ChemElectroChem. 4 (2017) 1560–1565.  doi: 10.1002/celc.201700060

    732. [732]

      R. Meng, J. Huang, Y. Feng, et al., Adv. Energy Mater. 8 (2018) 1801514.  doi: 10.1002/aenm.201801514

    733. [733]

      S. Zhang, X. Li, W. Yang, et al., ACS Appl. Mater. Interfaces 11 (2019) 42086–42093.  doi: 10.1021/acsami.9b13308

    734. [734]

      H. Wang, X.L. Song, M. Lv, et al., Small 18 (2022) 2104293.  doi: 10.1002/smll.202104293

    735. [735]

      W. Deng, J. Chen, L. Yang, et al., Small 17 (2021) 2101058.  doi: 10.1002/smll.202101058

    736. [736]

      X. Zou, S. Ye, C. Ou, et al., Energy Storage Mater. 71 (2024) 103573.  doi: 10.1016/j.ensm.2024.103573

    737. [737]

      P. Wang, M. Xie, X. Liao, et al., ACS Appl. Mater. Interfaces 16 (2024) 52210–52219.  doi: 10.1021/acsami.4c09171

    738. [738]

      S. Luo, J. Shang, Y.N. Xu, et al., Adv. Funct. Mater. 34 (2024) 2403166.  doi: 10.1002/adfm.202403166

    739. [739]

      Y. Zhang, J. Li, X. Li, et al., Nano Lett. 24 (2024) 3331–3338.  doi: 10.1021/acs.nanolett.3c04208

    740. [740]

      E. Li, M. Wang, X. Hu, et al., Small 20 (2024) 2308630.  doi: 10.1002/smll.202308630

    741. [741]

      H. Zhang, S. Zhang, B. Guo, et al., Angew. Chem. Int. Ed. 63 (2024) e202400285.  doi: 10.1002/anie.202400285

    742. [742]

      Z. Zhao, G. Sun, Y. Zhang, et al., Adv. Funct. Mater. 34 (2024) 2314679.  doi: 10.1002/adfm.202314679

    743. [743]

      Y. Zhang, Y. Chen, Y. Jiang, et al., Adv. Funct. Mater. 33 (2023) 2212785.  doi: 10.1002/adfm.202212785

    744. [744]

      H. Zheng, D. Ma, M. Pei, et al., Adv. Funct. Mater. 35 (2025) 2411651.  doi: 10.1002/adfm.202411651

    745. [745]

      Z.H. Sun, D.Y. Qu, D.X. Han, et al., Adv. Mater. 36 (2024) 2308987.  doi: 10.1002/adma.202308987

    746. [746]

      Y. Zhang, J. Wang, L. Shan, et al., Adv. Energy Mater. 14 (2023) 2303464.

    747. [747]

      Y. Zhang, B. Han, Q. Gao, et al., Nano Energy 128 (2024) 109941.  doi: 10.1016/j.nanoen.2024.109941

    748. [748]

      X. Yin, S. Sarkar, S. Shi, et al., Adv. Funct. Mater. 30 (2020) 1908445.  doi: 10.1002/adfm.201908445

    749. [749]

      J. Hu, Y. Hong, M. Guo, et al., Energy Storage Mater. 56 (2023) 267–299.  doi: 10.1016/j.ensm.2023.01.021

    750. [750]

      A. Abouimrane, W. Weng, H. Eltayeb, et al., Energy Environ. Sci. 5 (2012) 9632–9638.  doi: 10.1039/c2ee22864e

    751. [751]

      C. Wang, Y. Xu, Y. Fang, et al., J. Am. Chem. Soc. 137 (2015) 3124–3130.  doi: 10.1021/jacs.5b00336

    752. [752]

      M. López-Herraiz, E. Castillo-Martínez, J. Carretero-González, et al., Energy Environ. Sci. 8 (2015) 3233–3241.  doi: 10.1039/C5EE01832C

    753. [753]

      J. Hong, M. Lee, B. Lee, et al., Nat. Commun. 5 (2014) 5335.  doi: 10.1038/ncomms6335

    754. [754]

      C. Luo, G.L. Xu, X. Ji, et al., Angew. Chem. Int. Ed. 57 (2018) 2879–2883.  doi: 10.1002/anie.201713417

    755. [755]

      F. Glöcklhofer, A.J. Morawietz, B. Stöger, M.M. Unterlass, J. Fröhlich, ACS Omega 2 (2017) 1594–1600.  doi: 10.1021/acsomega.7b00245

    756. [756]

      L. Zhao, J. Zhao, Y.S. Hu, et al., Adv. Energy Mater. 2 (2012) 962–965.  doi: 10.1002/aenm.201200166

    757. [757]

      Y. Park, D.S. Shin, S.H. Woo, et al., Adv. Mater. 24 (2012) 3562–3567.  doi: 10.1002/adma.201201205

    758. [758]

      A. Choi, Y.K. Kim, T.K. Kim, et al., J. Mater. Chem. A 2 (2014) 14986–14993.  doi: 10.1039/C4TA02424A

    759. [759]

      M. Veerababu, U.V. Varadaraju, R. Kothandaraman, Int. J. Hydrogen Energy. 40 (2015) 14925–14931.  doi: 10.1016/j.ijhydene.2015.09.001

    760. [760]

      W. Kaim, B. Schwederski, O. Heilmann, F.M. Hornung, Coord. Chem. Rev. 182 (1999) 323–342.  doi: 10.1016/S0010-8545(98)00193-3

    761. [761]

      C. Li, H. Xu, L. Ni, et al., Adv. Energy Mater. 13 (2023) 2301758.  doi: 10.1002/aenm.202301758

    762. [762]

      Z. Piao, R. Gao, Y. Liu, G. Zhou, H. Cheng, Adv. Mater. 35 (2023) e2206009.

    763. [763]

      S. Zhong, Y. Yu, Y. Yang, et al., Angew. Chem. Int. Ed. 62 (2023) e202301169.  doi: 10.1002/anie.202301169

    764. [764]

      C. Zhu, D. Wu, Z. Wang, et al., Adv. Funct. Mater. 34 (2024) 2214195.  doi: 10.1002/adfm.202214195

    765. [765]

      A. Ponrouch, E. Marchante, M. Courty, J.M. Tarascon, M.R. Palacín, Energy Environ. Sci. 5 (2012) 8572–8583.  doi: 10.1039/c2ee22258b

    766. [766]

      M. Shakourian-Fard, G. Kamath, K. Smith, H. Xiong, S.K.R.S. Sankaranarayanan, J. Phys. Chem. C 119 (2015) 22747–22759.  doi: 10.1021/acs.jpcc.5b04706

    767. [767]

      A. Ponrouch, R. Dedryvère, D. Monti, et al., Energy Environ. Sci. 6 (2013) 2361–2369.  doi: 10.1039/c3ee41379a

    768. [768]

      T.D. Hatchard, M.N. Obrovac, J. Electrochem. Soc. 161 (2014) A1748.  doi: 10.1149/2.1131410jes

    769. [769]

      C. Hu, S. Guo, F. Huang, et al., Angew. Chem. Int. Ed. 63 (2024) e202407075.  doi: 10.1002/anie.202407075

    770. [770]

      Y. Wang, Z. Cao, Z. Ma, et al., ACS Energy Lett. 8 (2023) 1477–1484.  doi: 10.1021/acsenergylett.3c00052

    771. [771]

      Y. Li, F. Wu, Y. Li, et al., Chem. Soc. Rev. 51 (2022) 4484–4536.  doi: 10.1039/d1cs00948f

    772. [772]

      K. Lei, F. Li, C. Mu, et al., Energy Environ. Sci. 10 (2017) 552–557.  doi: 10.1039/C6EE03185D

    773. [773]

      C. Wang, L. Wang, F. Li, F. Cheng, J. Chen, Adv. Mater. 29 (2017) 1702212.  doi: 10.1002/adma.201702212

    774. [774]

      K. Lei, C. Wang, L. Liu, et al., Angew. Chem. Int. Ed. 57 (2018) 4687–4691.  doi: 10.1002/anie.201801389

    775. [775]

      H. Liang, Z. Gu, X. Zhao, et al., Angew. Chem. Int. Ed. 60 (2021) 26837–26846.  doi: 10.1002/anie.202112550

    776. [776]

      Z. Tian, Y. Zou, G. Liu, et al., Adv. Sci. 9 (2022) 2201207.  doi: 10.1002/advs.202201207

    777. [777]

      J. Li, S. Sui, X. Zhou, et al., Angew. Chem. Int. Ed. 63 (2024) e202400406.  doi: 10.1002/anie.202400406

    778. [778]

      M. Gu, X. Zhou, Q. Yang, et al., Angew. Chem. Int. Ed. 63 (2024) e202402946.  doi: 10.1002/anie.202402946

    779. [779]

      Y. Sun, P. Shi, H. Xiang, X. Liang, Y. Yu, Small 15 (2019) 1805479.  doi: 10.1002/smll.201805479

    780. [780]

      X. Chang, Z. Yang, Y. Liu, et al., Energy Storage Mater. 69 (2024) 103407.  doi: 10.1016/j.ensm.2024.103407

    781. [781]

      X. Wang, E. Yasukawa, S. Kasuya, J. Electrochem. Soc. 148 (2001) A1058.  doi: 10.1149/1.1397773

    782. [782]

      Z. Zeng, X. Jiang, R. Li, et al., Adv. Sci. 3 (2016) 1600066.  doi: 10.1002/advs.201600066

    783. [783]

      K. Du, C. Wang, P. Balaya, S.R. Gajjela, M. Law, Chem. Commun. 58 (2022) 533–536.  doi: 10.1039/d1cc04958e

    784. [784]

      M. Zhu, L. Li, Y. Zhang, et al., Energy Storage Mater. 42 (2021) 145–153.  doi: 10.1016/j.ensm.2021.07.012

    785. [785]

      R. Mogensen, S. Colbin, A.S. Menon, E. Björklund, R. Younesi, ACS Appl. Energy Mater. 3 (2020) 4974–4982.  doi: 10.1021/acsaem.0c00522

    786. [786]

      J. Welch, R. Mogensen, W. van Ekeren, et al., J. Electrochem. Soc. 169 (2022) 120523.  doi: 10.1149/1945-7111/acaa5e

    787. [787]

      R. Mogensen, A. Buckel, S. Colbin, R. Younesi, Chem. Mater. 33 (2021) 1130–1139.  doi: 10.1021/acs.chemmater.0c03570

    788. [788]

      L.O.S. Colbin, R. Mogensen, A. Buckel, et al., Adv. Mater. Interfaces 8 (2021) 2101135.  doi: 10.1002/admi.202101135

    789. [789]

      C.A. Hall, L.O.S. Colbin, A. Buckel, R. Younesi, Batteries Supercaps 7 (2024) e202300338.  doi: 10.1002/batt.202300338

    790. [790]

      J. Wang, Y. Yamada, K. Sodeyama, et al., Nat. Energy 3 (2018) 22–29.  doi: 10.3390/inventions3020022

    791. [791]

      X.Y. Jiang, X.W. Liu, Z.Q. Zeng, et al., Adv. Energy Mater. 8 (2018) 1802176.  doi: 10.1002/aenm.201802176

    792. [792]

      Z. Yang, J. He, W.H. Lai, et al., Angew. Chem. Int. Ed. 60 (2021) 27086–27094.  doi: 10.1002/anie.202112382

    793. [793]

      X. Liu, X. Zheng, Y. Dai, et al., Adv. Funct. Mater. 31 (2021) 2103522.  doi: 10.1002/adfm.202103522

    794. [794]

      M. Ma, B. Chen, X. Yang, et al., ACS Energy Lett. 8 (2022) 477–485.  doi: 10.3390/membranes12050477

    795. [795]

      X. Jiang, X. Liu, Z. Zeng, et al., iScience 10 (2018) 114–122.  doi: 10.1016/j.isci.2018.11.020

    796. [796]

      Y.W. Zheng, Q.W. Pan, M. Clites, et al., Adv. Energy Mater. 8 (2018) 1801885.  doi: 10.1002/aenm.201801885

    797. [797]

      C.L. Zhao, L.L. Liu, X.G. Qi, et al., Adv. Energy Mater. 8 (2018) 1703012.  doi: 10.1002/aenm.201703012

    798. [798]

      F. Ahmad, A. Shahzad, S. Sarwar, et al., J. Power Sources 619 (2024) 235221.  doi: 10.1016/j.jpowsour.2024.235221

    799. [799]

      J.Y. Zheng, W.J. Li, X.X. Liu, et al., Energy Environ. Mater. 6 (2023) e12422.  doi: 10.1002/eem2.12422

    800. [800]

      F. Gebert, J. Knott, R. Gorkin, S.L. Chou, S.X. Dou, Energy Storage Mater. 36 (2021) 10–30.  doi: 10.1016/j.ensm.2020.11.030

    801. [801]

      H. Yin, C.J. Han, Q.R. Liu, F.Y. Wu, F. Zhang, Y.B. Tang, Small 17 (2021) 2006627.  doi: 10.1002/smll.202006627

    802. [802]

      D. Zhou, R.L. Liu, J. Zhang, et al., Nano Energy 33 (2017) 45–54.  doi: 10.1016/j.nanoen.2017.01.027

    803. [803]

      Y.B. Liao, X.J. Xu, X.W. Luo, et al., Batteries-Basel 9 (2023) 439.  doi: 10.3390/batteries9090439

    804. [804]

      D. Fenton, Polymer 14 (1973) 589.

    805. [805]

      S. Song, M. Kotobuki, F. Zheng, et al., J. Mater. Chem. A 5 (2017) 6424–6431.  doi: 10.1039/C6TA11165C

    806. [806]

      S. Janakiraman, A. Surendran, R. Biswal, et al., Mater. Res. Express 6 (2019) 086318.  doi: 10.1088/2053-1591/ab226a

    807. [807]

      X. Zhang, X. Wang, S. Liu, Z. Tao, J. Chen, Nano Res. 11 (2018) 6244–6251.  doi: 10.1007/s12274-018-2144-3

    808. [808]

      C. Maheshwaran, D. Kanchan, K. Mishra, P. Kumar, D. Kumar, Ionics 30 (2024) 2155–2166.  doi: 10.1007/s11581-024-05408-5

    809. [809]

      M. Sahu, N. Kumar, R. Agrawal, Y. Mahipal, Macromol. Symp. 413 (2024) 2200212.  doi: 10.1002/masy.202200212

    810. [810]

      Y.L. Ni’Mah, M.Y. Cheng, J.H. Cheng, J. Rick, B.J. Hwang, J. Power Sources 278 (2015) 375–381.  doi: 10.1016/j.jpowsour.2014.11.047

    811. [811]

      Q. Wang, X. He, D. Zhang, et al., Inorg. Chem. Front. 11 (2024) 2300–2311.  doi: 10.1039/d4qi00391h

    812. [812]

      P. Zou, C. Wang, Y. He, H. Xin, Angew. Chem. Int. Ed. 63 (2024) e202319427.  doi: 10.1002/anie.202319427

    813. [813]

      Y.B. Niu, Y.X. Yin, W.P. Wang, et al., CCS Chem. 2 (2020) 589–597.  doi: 10.31635/ccschem.019.201900055

    814. [814]

      S.H. Zou, Y. Yang, J.R. Wang, et al., Energy Environ. Sci. 17 (2024) 4426–4460.  doi: 10.1039/d4ee00822g

    815. [815]

      H. Zhang, X. Xu, W. Fan, J. Zhao, Y. Huo, Chem. Eur. J. 30 (2024) e202402798.  doi: 10.1002/chem.202402798

    816. [816]

      W. Zhang, J. Zhang, X. Liu, et al., Adv. Funct. Mater. 32 (2022) 2201205.  doi: 10.1002/adfm.202201205

    817. [817]

      T. Deng, X. Ji, L. Zou, et al., Nat. Nanotechnol. 17 (2021) 269–277.

    818. [818]

      Q. Zhang, Q. Zhou, Y. Lu, et al., Engineering 8 (2022) 170–180.  doi: 10.1016/j.eng.2021.04.028

    819. [819]

      J.F. Wu, Q. Wang, X. Guo, J. Power Sources 402 (2018) 513–518.  doi: 10.1016/j.jpowsour.2018.09.048

    820. [820]

      Y. Li, Z. Deng, J. Peng, et al., Chem. Eur. J. 24 (2018) 1057–1061.  doi: 10.1002/chem.201705466

    821. [821]

      B. Ouyang, J. Wang, T. He, et al., Nat. Commun. 12 (2021) 5752.  doi: 10.1038/s41467-021-26006-3

    822. [822]

      Y. Zeng, B. Ouyang, J. Liu, et al., Science 378 (2022) 1320–1324.  doi: 10.1126/science.abq1346

    823. [823]

      G. Sun, X. Yang, N. Chen, et al., Energy Storage Mater. 41 (2021) 196–202.  doi: 10.1016/j.ensm.2021.06.003

    824. [824]

      G. Sun, C. Lou, B. Yi, et al., Nat. Commun. 14 (2023) 6501.  doi: 10.1038/s41467-023-42308-0

    825. [825]

      R.D. Shannon, B.E. Taylor, T.E. Gier, H.Y. Chen, T. Berzins, Inorg. Chem. 17 (1978) 958–964.  doi: 10.1021/ic50182a033

    826. [826]

      B. Yi, Z. Wei, W. Jia, et al., Nano Lett. 24 (2024) 8911–8919.  doi: 10.1021/acs.nanolett.4c01743

    827. [827]

      X. Chi, Y. Zhang, F. Hao, et al., Nat. Commun. 13 (2022) 2854.  doi: 10.1038/s41467-022-30517-y

    828. [828]

      T. Dai, S. Wu, Y. Lu, et al., Nat. Energy 8 (2023) 1221–1228.  doi: 10.1038/s41560-023-01356-y

    829. [829]

      G. Wang, S. Zhang, H. Wu, et al., Adv. Mater. 37 (2025) e2410402.  doi: 10.1002/adma.202410402

    830. [830]

      S. Zhang, Y. Xu, H. Wu, et al., Angew. Chem. Int. Ed. 63 (2024) e202401373.  doi: 10.1002/anie.202401373

    831. [831]

      E. Ruoff, S. Kmiec, A. Manthiram, Adv. Energy Mater. 14 (2024) 2402091.

    832. [832]

      L. Duchêne, R.S. Kühnel, E. Stilp, et al., Energy Environ. Sci. 10 (2017) 2609–2615.  doi: 10.1039/C7EE02420G

    833. [833]

      Y. Sun, Y. Wang, X. Liang, et al., J. Am. Chem. Soc. 141 (2019) 5640–5644.  doi: 10.1021/jacs.9b01746

    834. [834]

      G. Deysher, J.A.S. Oh, Y.T. Chen, et al., Nat. Energy 9 (2024) 1161–1172.

    835. [835]

      S. Li, L.K. Zhao, Y.H. Bian, et al., Chem. Eng. J. 496 (2024) 154382.  doi: 10.1016/j.cej.2024.154382

    836. [836]

      H. Shi, X.W. Gao, X. Wang, et al., Chem. Eng. J. 484 (2024) 149574.  doi: 10.1016/j.cej.2024.149574

    837. [837]

      Z. Liu, Z. Gong, K. He, et al., Sci. China Mater. 68 (2025) 709–723.  doi: 10.1007/s40843-024-3056-0

    838. [838]

      Z. Liu, S. Li, J. Mu, et al., Mater. Today Chem. 40 (2024) 102251.  doi: 10.1016/j.mtchem.2024.102251

    839. [839]

      Z. Liu, D. Wang, S. Li, et al., Rare Met. 43 (2024) 5070–5081.  doi: 10.1007/s12598-024-02719-4

    840. [840]

      H. Tang, L. Duan, J. Liao, et al., Energy Storage Mater. 62 (2023) 102935.  doi: 10.1016/j.ensm.2023.102935

    841. [841]

      K. Sun, S.H. Luo, L. Qian, et al., Chem. Rec. 24 (2024) e202300327.  doi: 10.1002/tcr.202300327

    842. [842]

      Y. Zheng, H. Xie, J. Li, et al., Adv. Energy Mater. 14 (2024) 2400461.  doi: 10.1002/aenm.202400461

    843. [843]

      X. Wang, Z. Xiao, K. Han, et al., Adv. Energy Mater. 13 (2022) 2202861.

    844. [844]

      Z.X. Huang, Z.Y. Gu, Y.L. Heng, et al., Chem. Eng. J. 452 (2023) 139438.  doi: 10.1016/j.cej.2022.139438

    845. [845]

      H. Xia, H. Lou, L. Nie, et al., Chem. Eng. J. 506 (2025) 159970.  doi: 10.1016/j.cej.2025.159970

    846. [846]

      A. Nimkar, F. Malchick, B. Gavriel, et al., ACS Energy Lett. 6 (2021) 2638–2644.  doi: 10.1021/acsenergylett.1c01007

    847. [847]

      Z. Liu, H. Su, Y. Yang, et al., Energy Storage Mater. 34 (2021) 211–228.  doi: 10.1016/j.ensm.2020.09.010

    848. [848]

      J. Liao, Y. Han, Z. Zhang, et al., Energy Environ. Mater. 4 (2021) 178–200.  doi: 10.1002/eem2.12166

    849. [849]

      S. Liu, L. Kang, S.C. Jun, Adv. Mater. 33 (2021) 2004689.  doi: 10.1002/adma.202004689

    850. [850]

      Z. Wu, J. Zou, S. Chen, et al., J. Power Sources 484 (2021) 229307.  doi: 10.1016/j.jpowsour.2020.229307

    851. [851]

      J. Cong, S.H. Luo, K. Li, et al., J. Electroanal. Chem. 927 (2022) 116971.  doi: 10.1016/j.jelechem.2022.116971

    852. [852]

      L. Deng, T. Wang, Y. Hong, et al., ACS Energy Lett. 5 (2020) 1916–1922.  doi: 10.1021/acsenergylett.0c00912

    853. [853]

      A. Gao, M. Li, N. Guo, et al., Adv. Energy Mater. 9 (2019) 1802739.  doi: 10.1002/aenm.201802739

    854. [854]

      H. Kim, D.H. Seo, J.C. Kim, et al., Adv. Mater. 29 (2017) 1702480.  doi: 10.1002/adma.201702480

    855. [855]

      W. Han, X.W. Gao, Y. Song, et al., Small 20 (2024) 2400252.  doi: 10.1002/smll.202400252

    856. [856]

      X.C. Wang, L.K. Zhao, Z.M. Liu, et al., ACS Energy Lett. 10 (2025) 48–57.  doi: 10.1021/acsenergylett.4c03191

    857. [857]

      K. Sada, J. Darga, A. Manthiram, Adv. Energy Mater. 13 (2023) 2302321.  doi: 10.1002/aenm.202302321

    858. [858]

      T. Hosaka, T. Shimamura, K. Kubota, S. Komaba, Chem. Rec. 19 (2019) 735–745.  doi: 10.1002/tcr.201800143

    859. [859]

      X. Min, J. Xiao, M. Fang, et al., Energy Environ. Sci. 14 (2021) 2186–2243.  doi: 10.1039/d0ee02917c

    860. [860]

      Y. Liu, Z.Y. Gu, Y.L. Heng, et al., Green Energy Environ. 9 (2024) 1724–1733.  doi: 10.3390/nano14211724

    861. [861]

      J. Huang, X. Cai, H. Yin, et al., J. Phys. Chem. Lett. 12 (2021) 2721–2726.  doi: 10.1021/acs.jpclett.1c00286

    862. [862]

      Z. Liu, W. Peng, K. Shih, et al., J. Power Sources 315 (2016) 294–301.  doi: 10.1016/j.jpowsour.2016.02.083

    863. [863]

      Z. Liu, J. Wang, B. Lu, Sci. Bull. 65 (2020) 1242–1251.  doi: 10.1016/j.scib.2020.04.010

    864. [864]

      J. Wang, Z. Liu, G. Yan, et al., J. Power Sources 329 (2016) 553–557.  doi: 10.1016/j.jpowsour.2016.08.131

    865. [865]

      P.R. Kumar, T. Hosaka, T. Shimamura, D. Igarashi, S. Komaba, ACS Appl. Energy Mater. 5 (2022) 13470–13479.  doi: 10.1021/acsaem.2c02148

    866. [866]

      R.J. Luo, C.Y. Du, C. Ma, et al., Chem. Eng. J. 491 (2024) 151968.  doi: 10.1016/j.cej.2024.151968

    867. [867]

      M. Ragupathi, R.K. Selvan, Ceram. Int. 50 (2024) 14490–14496.  doi: 10.1016/j.ceramint.2024.01.361

    868. [868]

      F. Qiao, J. Wang, R. Yu, et al., Small Methods 8 (2024) 2300865.  doi: 10.1002/smtd.202300865

    869. [869]

      J. Liao, X. Zhang, Q. Zhang, et al., Nano Lett. 22 (2022) 4933–4940.  doi: 10.1021/acs.nanolett.2c01604

    870. [870]

      X. Yang, D. Yan, T. Chou, J.C. Kim, J. Mater. Chem. A 11 (2023) 14304.  doi: 10.1039/d3ta01310c

    871. [871]

      J. Liao, Q. Hu, B. Che, et al., J. Mater. Chem. A 7 (2019) 15244.  doi: 10.1039/c9ta03192h

    872. [872]

      J. Wang, B. Ouyang, H. Kim, et al., J. Mater. Chem. A 9 (2021) 18564.  doi: 10.1039/d1ta05300k

    873. [873]

      S. Li, M. Li, R. Shen, et al., J. Alloys Compd. 1008 (2024) 176692.  doi: 10.1016/j.jallcom.2024.176692

    874. [874]

      J. Zhao, Y. Qin, L. Li, et al., Sci. Bull. 68 (2023) 593–602.  doi: 10.1016/j.scib.2023.02.029

    875. [875]

      R. Wernert, L.H.B. Nguyen, A. Iadecola, et al., ACS Appl. Energy Mater. 5 (2022) 14913–14921.  doi: 10.1021/acsaem.2c02379

    876. [876]

      J. Xu, J. Liao, Y. Xu, et al., J. Energy Chem. 68 (2022) 284–292.  doi: 10.1016/j.jechem.2021.12.023

    877. [877]

      Y. Bai, K. ’e. YuChi, X. Liu, et al., Eur. J. Inorg. Chem. 26 (2023) e202300246.  doi: 10.1002/ejic.202300246

    878. [878]

      W. Shu, C. Han, X. Wang, Adv. Funct. Mater. 34 (2024) 2309636.  doi: 10.1002/adfm.202309636

    879. [879]

      A. Simonov, T. De Baerdemaeker, H.L.B. Boström, et al., Nature 578 (2020) 256–260.  doi: 10.1038/s41586-020-1980-y

    880. [880]

      A. Eftekhari, J. Power Sources 126 (2004) 221–228.  doi: 10.1016/j.jpowsour.2003.08.007

    881. [881]

      W. Shu, M. Huang, L. Geng, F. Qiao, X. Wang, Small 19 (2023) 2207080.  doi: 10.1002/smll.202207080

    882. [882]

      L. Deng, J. Qu, X. Niu, et al., Nat. Commun. 12 (2021) 2167.  doi: 10.1038/s41467-021-22499-0

    883. [883]

      J. Ge, L. Fan, A.M. Rao, J. Zhou, B. Lu, Nat. Sustain. 5 (2021) 225–234.  doi: 10.1038/s41893-021-00810-7

    884. [884]

      S. Chong, J. Yang, L. Sun, et al., ACS Nano 14 (2020) 9807–9818.  doi: 10.1021/acsnano.0c02047

    885. [885]

      Y.H. Zhu, Y.B. Yin, X. Yang, et al., Angew. Chem. Int. Ed. 56 (2017) 7881–7885.  doi: 10.1002/anie.201702711

    886. [886]

      X. Yi, H. Fu, A.M. Rao, et al., Nat. Sustain. 7 (2024) 326–337.  doi: 10.1038/s41893-024-01275-0

    887. [887]

      Y. Fu, Y. Dong, Y. Shen, et al., Small 20 (2024) 2406630.  doi: 10.1002/smll.202406630

    888. [888]

      M. Qin, C. Chen, B. Zhang, J. Yan, J. Qiu, Adv. Mater. 36 (2024) 2407570.  doi: 10.1002/adma.202407570

    889. [889]

      J. Ruan, S. Luo, Q. Li, et al., Electrochem. Energy Rev. 7 (2024) 24.  doi: 10.1007/s41918-024-00227-8

    890. [890]

      S. Dong, X. Gu, Y. Li, et al., Carbon 232 (2025) 119791.  doi: 10.1016/j.carbon.2024.119791

    891. [891]

      K. Share, A.P. Cohn, R. Carter, B. Rogers, C.L. Pint, ACS Nano 10 (2016) 9738–9744.  doi: 10.1021/acsnano.6b05998

    892. [892]

      Y. Luan, R. Hu, Y. Fang, et al., Nano-Micro Lett. 11 (2019) 13.  doi: 10.1007/s40820-019-0245-5

    893. [893]

      X. Chang, X. Zhou, X. Ou, et al., Adv. Energy Mater. 9 (2019) 1902672.  doi: 10.1002/aenm.201902672

    894. [894]

      Y. He, J. Xue, M. Yang, et al., Chem. Eng. J. 409 (2021) 127383.  doi: 10.1016/j.cej.2020.127383

    895. [895]

      G. Yang, X. Li, Z. Guan, et al., Nano Lett. 20 (2020) 3836–3843.  doi: 10.1021/acs.nanolett.0c00943

    896. [896]

      Y. Wang, J.J. Zeng, Y.J. Wang, et al., Adv. Mater. 36 (2024) 2410132.  doi: 10.1002/adma.202410132

    897. [897]

      H.H. Ou, B.Y. Pei, Y.F. Zhou, et al., Small. Methods 9 (2025) 2400839.  doi: 10.1002/smtd.202400839

    898. [898]

      K.X. Lei, J. Wang, C. Chen, et al., Rare Met. 39 (2020) 989–1004.  doi: 10.1007/s12598-020-01463-9

    899. [899]

      G. Luo, X. Feng, M. Qian, et al., Mater. Chem. Front. 7 (2023) 3011–3036.  doi: 10.1039/d3qm00031a

    900. [900]

      H. Yang, F.X. He, F.F. Liu, et al., Adv. Mater. 36 (2024) 2306512.  doi: 10.1002/adma.202306512

    901. [901]

      G.H. Qin, Y.H. Liu, F.S. Liu, et al., Adv. Energy Mater. 11 (2021) 2003429.  doi: 10.1002/aenm.202003429

    902. [902]

      W. Zhang, J. Mao, S. Li, Z. Chen, Z. Guo, J. Am. Chem. Soc. 139 (2017) 3316–3319.  doi: 10.1021/jacs.6b12185

    903. [903]

      C. Zhao, H. Chen, H. Liu, et al., J. Mater. Chem. A 9 (2021) 6274–6283.  doi: 10.1039/d0ta12141j

    904. [904]

      Q.X. Wang, F.S. Liu, Z.G. Qi, et al., Adv. Energy Mater. 15 (2025) 2403188.  doi: 10.1002/aenm.202403188

    905. [905]

      J. Wang, L. Fan, Z. Liu, et al., ACS Nano 13 (2019) 3703–3713.  doi: 10.1021/acsnano.9b00634

    906. [906]

      W. Guo, Z. Chen, Z. Sun, et al., J. Energy Storage 89 (2024) 111574.  doi: 10.1016/j.est.2024.111574

    907. [907]

      Z. Yang, Y.W. Song, C.F. Zhang, et al., Adv. Energy Mater. 11 (2021) 2101197.  doi: 10.1002/aenm.202101197

    908. [908]

      J. Graetz, C.C. Ahn, R. Yazami, B. Fultz, J. Electrochem. Soc. 151 (2004) A698–A702.  doi: 10.1149/1.169741201197

    909. [909]

      D. Li, C. Feng, H.K. Liu, Z. Guo, J. Mater. Chem. A 3 (2015) 978–981.  doi: 10.1039/C4TA05982D

    910. [910]

      Q. Yang, Z. Wang, W. Xi, G. He, Electrochem. Commun. 101 (2019) 68–72.  doi: 10.1016/j.elecom.2019.02.016

    911. [911]

      R. Liu, F. Luo, L. Zeng, et al., J. Colloid Interface Sci. 584 (2021) 372–381.  doi: 10.1016/j.jcis.2020.09.083

    912. [912]

      Z.Q. Tong, T.X. Kang, Y. Wu, et al., Nano Res. 15 (2022) 7220–7226.  doi: 10.1007/s12274-022-4398-z

    913. [913]

      X. Liu, Z.F. Sun, Y.J. Sun, et al., Adv. Funct. Mater. 33 (2023) 2307205.  doi: 10.1002/adfm.202307205

    914. [914]

      X. Lin, F. Xue, Z. Zhang, Q. Li, Rare Met. 42 (2023) 449–458.  doi: 10.1007/s12598-022-02143-6

    915. [915]

      Z. Liu, X. Liu, B. Wang, et al., eScience 3 (2023) 100177.  doi: 10.1016/j.esci.2023.100177

    916. [916]

      P. Xiong, J. Wu, M. Zhou, Y. Xu, ACS Nano 14 (2020) 1018–1026.  doi: 10.1021/acsnano.9b08526

    917. [917]

      Y. Feng, Y. Lv, H. Fu, et al., Nat. Sci. Rev. 10 (2023)118.  doi: 10.1093/nsr/nwad118

    918. [918]

      K.D. Wu, Y.F. Feng, J.H. Peng, et al., Ceram. Int. 50 (2024) 26539–26547.  doi: 10.1016/j.ceramint.2024.04.382

    919. [919]

      D. Li, Y. Zhang, Q. Sun, et al., Energy Storage Mater. 23 (2019) 367–374.  doi: 10.1016/j.ensm.2019.04.037

    920. [920]

      S. Liu, L. Kang, J. Henzie, et al., ACS Nano 15 (2021) 18931–18973.  doi: 10.1021/acsnano.1c08428

    921. [921]

      X. Min, J. Xiao, M.H. Fang, et al., Energy Environ. Sci. 14 (2021) 2186–2243.  doi: 10.1039/d0ee02917c

    922. [922]

      P. Zhang, Q.Z. Zhu, Y. Wei, B. Xu, Chem. Eng. J. 451 (2023)138891.  doi: 10.1016/j.cej.2022.138891

    923. [923]

      D.P. Li, L.N. Dai, X.H. Ren, et al., Energy Environ. Sci. 14 (2021) 424–436.  doi: 10.1039/d0ee02919j

    924. [924]

      F.H. Yang, H. Goo, J.N. Hao, et al., Adv. Funct. Mater. 29 (2019) 1808291.  doi: 10.1002/adfm.201808291

    925. [925]

      Q. Cheng, X.Z. Liu, Q. Deng, et al., Chem. Eng. J. 446 (2022)136829.  doi: 10.1016/j.cej.2022.136829

    926. [926]

      C.H. Chang, K.T. Chen, Y.Y. Hsieh, C.B. Chang, H.Y. Tuan, ACS Nano 16 (2022) 1486–1501.  doi: 10.1021/acsnano.1c09863

    927. [927]

      L. Gao, Z.J. Wang, H. Hu, et al., J. Electroanal. Chem. 876 (2020) 114483.  doi: 10.1016/j.jelechem.2020.114483

    928. [928]

      Z.Q. Gu, G.J. Li, N. Hussain, B.B. Tian, Y.M. Shi, Appl. Surf. Sci. 592 (2022) 153323.  doi: 10.1016/j.apsusc.2022.153323

    929. [929]

      D. Adekoya, H. Chen, H.Y. Hoh, et al., ACS Nano 14 (2020) 5027–5035.  doi: 10.1021/acsnano.0c01395

    930. [930]

      Y. Huang, S.Q. Ding, S.J. Xu, et al., Chem. Eng. J. 446 (2022) 137265.  doi: 10.1016/j.cej.2022.137265

    931. [931]

      D.G. Sun, C. Tang, H. Cheng, et al., J. Energy Chem. 72 (2022) 1–8.  doi: 10.1016/j.jechem.2022.04.011

    932. [932]

      Q.W. Tan, W. Zhao, K. Han, et al., J. Mater. Chem. A 7 (2019) 15673–15682.  doi: 10.1039/c9ta04550c

    933. [933]

      Y. Feng, A.M. Rao, J. Zhou, B. Lu, Adv. Mater. 35 (2023) 2300886.  doi: 10.1002/adma.202300886

    934. [934]

      S. Li, H. Zhu, C. Gu, et al., ACS Appl. Mater. Interfaces 8 (2023) 3467–3475.  doi: 10.1021/acsenergylett.3c01067

    935. [935]

      Z. Cui, J. Song, M. Chen, et al., Energy Storage Mater. 71 (2024) 103649.  doi: 10.1016/j.ensm.2024.103649

    936. [936]

      J. Wu, X. Zhang, Z. Li, et al., Adv. Eng. Mater. 30 (2020) 2004348.

    937. [937]

      X. Zhou, Z. Wang, Y. Wang, et al., J. Colloid Interface Sci. 636 (2023) 73–82.  doi: 10.1016/j.jcis.2022.12.168

    938. [938]

      S. Su, Q. Liu, J. Wang, et al., ACS Appl. Mater. Interfaces 11 (2019) 22474–22480.  doi: 10.1021/acsami.9b06379

    939. [939]

      M. Zhou, P. Bai, X. Ji, et al., Adv. Mater. 33 (2021) 2003741.  doi: 10.1002/adma.202003741

    940. [940]

      Y. Xu, T. Ding, D. Sun, X. Ji, X. Zhou, Adv. Funct. Mater. 33 (2023) 2211290.  doi: 10.1002/adfm.202211290

    941. [941]

      S. Dhir, B. Jagger, A. Maguire, M. Pasta, Nat. Commun. 14 (2023) 3833.  doi: 10.1038/s41467-023-39523-0

    942. [942]

      Z. Wu, G. Liang, W.K. Pang, et al., Adv. Mater. 32 (2020) 1905632.  doi: 10.1002/adma.201905632

    943. [943]

      H. Wang, D. Yu, X. Wang, et al., Angew. Chem. Int. Ed. 58 (2019) 16451–16455.  doi: 10.1002/anie.201908607

    944. [944]

      X. Ma, H. Fu, J. Shen, et al., Angew. Chem. Int. Ed. 62 (2023) e202312973.  doi: 10.1002/anie.202312973

    945. [945]

      X. Li, X. Ou, Y. Tang, Adv. Energy Mater. 10 (2020) 2002567.  doi: 10.1002/aenm.202002567

    946. [946]

      D. Zhang, H. Fu, X. Ma, et al., Angew. Chem. Int. Ed. 63 (2024) e202405153.  doi: 10.1002/anie.202405153

    947. [947]

      S. Liu, J. Mao, L. Zhang, et al., Adv. Mater. 33 (2021) 2006313.  doi: 10.1002/adma.202006313

    948. [948]

      C.H. Jo, S.T. Myung, Adv. Energy Mater. 14 (2024) 2400217.  doi: 10.1002/aenm.202400217

    949. [949]

      Y. Lei, D. Han, J. Dong, et al., Energy Storage Mater. 24 (2020) 319–328.  doi: 10.1016/j.ensm.2019.07.043

    950. [950]

      L. Fan, H. Xie, Y. Hu, et al., Energy Environ. Sci. 16 (2023) 305–315.  doi: 10.1039/d2ee03294e

    951. [951]

      Y. Hu, H. Fu, Y. Geng, et al. Angew. Chem. Int. Ed. 63 (2024) e202403269.  doi: 10.1002/anie.202403269

    952. [952]

      Y. Hu, L. Fan, A.M. Rao, et al., Nat. Sci. Rev. 9 (2022) nwac134.  doi: 10.1093/nsr/nwac134

    953. [953]

      A.W. Ells, R. May, L.E. Marbella, ACS Appl. Mater. Interfaces 13 (2021) 53841–53849.  doi: 10.1021/acsami.1c15174

    954. [954]

      G. Liu, Z. Cao, L. Zhou, et al., Adv. Funct. Mater. 30 (2020) 2001934.  doi: 10.1002/adfm.202001934

    955. [955]

      X. Chen, Y. Meng, D. Xiao, Y. Wu, L. Qin, Energy Storage Mater. 61 (2023) 102923.  doi: 10.1016/j.ensm.2023.102923

    956. [956]

      S. Liu, J. Mao, Q. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 3638–3644.  doi: 10.1002/anie.201913174

    957. [957]

      T. Hosaka, K. Kubota, H. Kojima, S. Komaba, Chem. Commun. 54 (2018) 8387–8390.  doi: 10.1039/c8cc04433c

    958. [958]

      Y. Gao, W. Li, B. Ou, et al., Adv. Funct. Mater. 33 (2023) 2305829.  doi: 10.1002/adfm.202305829

    959. [959]

      W. Chen, D. Zhang, H. Fu, et al., ACS Nano 18 (2024) 12512–12523.  doi: 10.1021/acsnano.4c02108

    960. [960]

      J. Li, Y. Hu, H. Xie, et al., Angew. Chem. Int. Ed. 61 (2022) e202208291.  doi: 10.1002/anie.202208291

    961. [961]

      L. Cheng, H. Lan, Y. Gao, et al., Angew. Chem. Int. Ed. 63 (2024) e202315624.  doi: 10.1002/anie.202315624

    962. [962]

      M. Shen, Z. Dai, L. Fan, et al., Nat. Sci. Rev. 11 (2024) nwae359.  doi: 10.1093/nsr/nwae359

    963. [963]

      P. Nie, M. Liu, W. Qu, et al., Adv. Funct. Mater. 33 (2023) 2302235.  doi: 10.1002/adfm.202302235

    964. [964]

      L. Qin, N. Xiao, J. Zheng, et al., Adv. Energy Mater. 9 (2019) 1902618.  doi: 10.1002/aenm.201902618

    965. [965]

      H. Onuma, K. Kubota, S. Muratsubaki, et al., ACS Energy Lett. 5 (2020) 2849–2857.  doi: 10.1021/acsenergylett.0c01393

    966. [966]

      T. Masese, K. Yoshii, Y. Yamaguchi, et al., Nat. Commun. 9 (2018) 3823.  doi: 10.1038/s41467-018-06343-6

    967. [967]

      J. Li, H. Fu, M. Gu, et al., Nano Lett. 24 (2024) 11419–11428.  doi: 10.1021/acs.nanolett.4c02168

    968. [968]

      H. Gao, L. Xue, S. Xin, J.B. Goodenough, Angew. Chem. Int. Ed. 57 (2018) 5449–5453.  doi: 10.1002/anie.201802248

    969. [969]

      Y. Ding, B. Ling, X. Zhao, et al., Energy Mater. Devices 2 (2024) 9370040.  doi: 10.26599/emd.2024.9370040

    970. [970]

      H.L. Chen, W.Y. Zhang, S. Yi, et al., Energy Environ. Sci. 17 (2024) 3146–3156.  doi: 10.1039/d3ee04333a

    971. [971]

      Z. Cai, Y.T. Ou, J.D. Wang, et al., Energy Storage Mater. 27 (2020) 205–211.  doi: 10.1016/j.ensm.2020.01.032

    972. [972]

      T. Wang, Q. Xi, Y.F. Li, et al., Adv. Sci. 9 (2022) 2200155.  doi: 10.1002/advs.202200155

    973. [973]

      H.Z. Dou, X.R. Wu, M. Xu, et al., Angew. Chem. Int. Ed. (2024) e202401974.

    974. [974]

      P.X. Li, J.F. Ren, C.X. Li, et al., Chem. Eng. J. 451 (2023) 138769.  doi: 10.1016/j.cej.2022.138769

    975. [975]

      Z.B. Chen, Y.Z. Wang, Q. Wu, et al., Adv. Mater. 36 (2024) e2411004.  doi: 10.1002/adma.202411004

    976. [976]

      X.Z. Yang, Y. Lu, Z.T. Liu, et al., Energy Environ. Sci. 17 (2024) 5563–5575.  doi: 10.1039/d4ee00881b

    977. [977]

      L. Wang, H. Yu, D. Chen, et al., Carbon Neutral 3 (2024) 996–1008.  doi: 10.1002/cnl2.168

    978. [978]

      D. Qin, J. Ding, C. Liang, et al., Acta Phys. Chim. Sin. 40 (2024) 2310034.  doi: 10.3866/pku.whxb202310034

    979. [979]

      N. Zhang, J.C. Wang, Y.F. Guo, et al., Coord. Chem. Rev. 479 (2023) 215009.  doi: 10.1016/j.ccr.2022.215009

    980. [980]

      Y. Xu, G. Zhang, J. Liu, et al., Energy Environ. Mater. 6 (2023) e12575.  doi: 10.1002/eem2.12575

    981. [981]

      N. Zhang, F. Cheng, J. Liu, et al., Nat. Commun. 8 (2017) 405.  doi: 10.1007/978-3-319-70090-8_42

    982. [982]

      M. Wang, X. Zheng, X. Zhang, et al., Adv. Energy Mater. 11 (2020) 2002904.

    983. [983]

      X. Zheng, Y. Wang, Y. Xu, et al., Nano Lett. 21 (2021) 8863–8871.  doi: 10.1021/acs.nanolett.1c03319

    984. [984]

      L. Dai, Y. Wang, L. Sun, et al., Adv. Sci. 8 (2021) 2004995.  doi: 10.1002/advs.202004995

    985. [985]

      A. Guo, Z. Wang, L. Chen, et al., ACS Nano 18 (2024) 27261–27286.  doi: 10.1021/acsnano.4c09899

    986. [986]

      Z. Xing, G. Xu, J. Han, et al., Trends. Chem. 5 (2023) 380–392.  doi: 10.1016/j.trechm.2023.02.008

    987. [987]

      D. Bin, Y. Du, B. Yang, et al., Adv. Funct. Mater. 33 (2022) 2211765.

    988. [988]

      J. Yan, E.H. Ang, Y. Yang, et al., Adv. Funct. Mater. 31 (2021) 2010213.  doi: 10.1002/adfm.202010213

    989. [989]

      D.L. Anderson, J. Geophys. Res. Solid Earth. 88 (2012) B41–B52.

    990. [990]

      S. Hou, X. Ji, K. Gaskell, et al., Science 374 (2021) 172–178.  doi: 10.1126/science.abg3954

    991. [991]

      H.D. Yoo, I. Shterenberg, Y. Gofer, et al., Energy Environ. Sci. 6 (2013) 2265–2279.  doi: 10.1039/c3ee40871j

    992. [992]

      S.B. Son, T. Gao, S.P. Harvey, et al., Nat. Chem. 10 (2018) 532–539.  doi: 10.1038/s41557-018-0019-6

    993. [993]

      R. Xu, X. Gao, Y. Chen, X. Chen, L. Cui, Chin. Chem. Lett. 35 (2024) 109852.  doi: 10.1016/j.cclet.2024.109852

    994. [994]

      D. Aurbach, Z. Lu, A. Schechter, et al., Nature 407 (2000) 724–727.  doi: 10.1038/35037553

    995. [995]

      M. Mao, Z. Lin, Y. Tong, et al., ACS Nano 14 (2020) 1102–1110.  doi: 10.1021/acsnano.9b08848

    996. [996]

      Y. Cheng, L.R. Parent, Y. Shao, et al., Chem. Mater. 26 (2014) 4904–4907.  doi: 10.1021/cm502306c

    997. [997]

      G.S. Suresh, M.D. Levi, D. Aurbach, Electrochim. Acta 53 (2008) 3889–3896.  doi: 10.1016/j.electacta.2007.11.052

    998. [998]

      D. Aurbach, Z. Lu, A. Schechter, et al., Nature 407 (2000) 724–727.  doi: 10.1038/35037553

    999. [999]

      M. Mao, X. Fan, W. Xie, et al., Adv. Sci. 10 (2023) e2207563.  doi: 10.1002/advs.202207563

    1000. [1000]

      A. Emly, A. Van der Ven, Inorg. Chem. 54 (2015) 4394–4402.

    1001. [1001]

      M. Liu, A. Jain, Z. Rong, et al., Energy Environ. Sci. 9 (2016) 3201–3209.

    1002. [1002]

      K. Makino, J. Power Sources 112 (2002) 85–89.

    1003. [1003]

      K. Makino, Y. Katayama, T. Miura, T. Kishi, J. Power Sources 97-98 (2001) 512–514.

    1004. [1004]

      M. Mao, Y. Tong, Q. Zhang, et al., Nano Lett. 20 (2020) 6852–6858.

    1005. [1005]

      M. Mao, C. Yang, Z. Lin, et al., JACS Au 1 (2021) 1266–1274.

    1006. [1006]

      R. Zhang, X. Yu, K.W. Nam, et al., Electrochem. Commun. 23 (2012) 110–113.

    1007. [1007]

      A. Du, Y. Zhao, Z. Zhang, et al., Energy Storage Mater. 26 (2020) 23–31.

    1008. [1008]

      H. Dong, Y. Liang, O. Tutusaus, et al., Joule 3 (2019) 782–793.

    1009. [1009]

      M. Mao, C. Luo, T.P. Pollard, et al., Angew. Chem. Int. Ed. 58 (2019) 17820–17826.

    1010. [1010]

      K. Nakahara, S. Iwasa, M. Satoh, et al., Chem. Phys. Lett. 359 (2002) 351–354.

    1011. [1011]

      M. Shi, T. Li, H. Shang, et al., J. Energy Storage 68 (2023) 107765.

    1012. [1012]

      M. Mao, X. Ji, S. Hou, et al., Chem. Mater. 31 (2019) 3183–3191.

    1013. [1013]

      M. Mao, T. Gao, S. Hou, et al., Nano Lett. 19 (2019) 6665–6672.

    1014. [1014]

      R. Xu, X. Gao, Y. Chen, et al., Mater. Today Phys. 36 (2023) 101186.

    1015. [1015]

      Y. Man, P. Jaumaux, Y. Xu, et al., Sci. Bull. 68 (2023) 1819–1842.

    1016. [1016]

      L.W. Gaddum, H.E. French, J. Am. Chem. Soc. 49 (2002) 1295–1299.

    1017. [1017]

      T.D. Gregory, R.J. Hoffman, R.C. Winterton, J. Electrochem. Soc. 137 (2019) 775–780.

    1018. [1018]

      D. Aurbach, Y. Gofer, A. Schechter, et al., J. Power Sources 97-98 (2001) 269–273.

    1019. [1019]

      D. Aurbach, G.S. Suresh, E. Levi, et al., Adv. Mater. 19 (2007) 4260–4267.

    1020. [1020]

      O. Mizrahi, N. Amir, E. Pollak, et al., J. Electrochem. Soc. 155 (2008) A103–A109.

    1021. [1021]

      L. Wang, B. Jiang, P.E. Vullum, ACS Nano 12 (2018) 2998–3009.

    1022. [1022]

      H.D. Yoo, Y. Liang, H. Dong, et al., Nat. Commun. 8 (2017) 339.

    1023. [1023]

      Z. Lu, A. Schechter, M. Moshkovich, D. Aurbach, J. Electroanal. Chem. 466 (1999) 203–217.

    1024. [1024]

      I. Shterenberg, M. Salama, Y. Gofer, D. Aurbach, Langmuir 33 (2017) 9472–9478.

    1025. [1025]

      D. Aurbach, Y. Gofer, Z. Lu, et al., J. Power Sources 97-98 (2001) 28–32.

    1026. [1026]

      D. Wang, X. Du, B. Zhang, Small Struct. 3 (2022) 2200078.

    1027. [1027]

      V. Küpers, D. Weintz, C. Mück-Lichtenfeld, et al., J. Electrochem. Soc. 167 (2020) 160505.

    1028. [1028]

      T. Mandai, K. Dokko, M. Watanabe, Chem. Rec. 19 (2019) 708–722.

    1029. [1029]

      H. Senoh, H. Sakaebe, H. Sano, et al., J. Electrochem. Soc. 161 (2014) A1315–A1320.

    1030. [1030]

      T.J. Seguin, N.T. Hahn, K.R. Zavadil, K.A. Persson, Front. Chem. 7 (2019) 175.

    1031. [1031]

      J. Xiao, X. Zhang, H. Fan, et al., Adv. Energy Mater. 12 (2022) 2202602.

    1032. [1032]

      Z. Meng, Z. Li, L. Wang, et al., ACS Appl. Mater. Interfaces 13 (2021) 37044–37051.

    1033. [1033]

      A. Ab Aziz, Y. Tominaga, Ionics 24 (2018) 3475–3481.

    1034. [1034]

      R. Manjuladevi, M. Thamilselvan, S. Selvasekarapandian, et al., Solid State Ionics 308 (2017) 90–100.

    1035. [1035]

      R.A. DiLeo, Q. Zhang, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, ECS Electrochem. Lett. 4 (2014) A10–A14.

    1036. [1036]

      Z. Zhang, M. Song, C. Si, W. Cui, Y. Wang, eScience 3 (2023) 100070.

    1037. [1037]

      N. Singh, T.S. Arthur, C. Ling, M. Matsui, F. Mizuno, Chem. Commun. 49 (2013) 149–151.

    1038. [1038]

      N. Wu, Y.C. Lyu, R.J. Xiao, et al., npg Asia Mater. 6 (2014) e120.

    1039. [1039]

      F. Bella, S. De Luca, L. Fagiolari, et al., Nanomater 11 (2021) 810.

    1040. [1040]

      T.S. Arthur, N. Singh, M. Matsui, Electrochem. Commun. 16 (2012) 103–106.

    1041. [1041]

      F. Murgia, L. Stievano, L. Monconduit, R. Berthelot, J. Mater. Chem. A. 3 (2015) 16478–16485.

    1042. [1042]

      Y. Shao, M. Gu, X. Li, et al., Nano Lett. 14 (2013) 255–260.

    1043. [1043]

      R. Attias, M. Salama, B. Hirsch, Y. Goffer, D. Aurbach, Joule 3 (2019) 27–52.

    1044. [1044]

      Y. Cheng, Y. Shao, L.R. Parent, et al., Adv. Mater. 27 (2015) 6598–6605.

    1045. [1045]

      F. Murgia, E.T. Weldekidan, L. Stievano, L. Monconduit, R. Berthelot, Electrochem. Commun. 60 (2015) 56–59.

    1046. [1046]

      L. Blondeau, S. Surblé, E. Foy, H. Khodja, M. Gauthier, J. Energy Chem. 55 (2021) 124–128.

    1047. [1047]

      L. Luo, Y. Zhen, Y. Lu, et al., Nanoscale 12 (2020) 230–238.

    1048. [1048]

      D.C. Lin, Y.Y. Liu, Y. Cui, Nat. Nanotechnol. 12 (2017) 194–206.

    1049. [1049]

      Y.S. Tian, G.B. Zeng, A. Rutt, et al., Chem. Rev. 121 (2021) 1623–1669.

    1050. [1050]

      M.E. Arroyo-de Dompablo, A. Ponrouch, P. Johansson, M.R. Palacín, Chem. Rev. 120 (2020) 6331–6357.

    1051. [1051]

      B.F. Ji, H.Y. He, W.J. Yao, Y.B. Tang, Adv. Mater. 33 (2021) 2005501.

    1052. [1052]

      A. Ponrouch, C. Frontera, F. Bardé, M.R. Palacín, Nat. Mater. 15 (2016) 169–172.

    1053. [1053]

      J. Tu, W.L. Song, H.P. Lei, et al., Chem. Rev. 121 (2021) 4903–4961.

    1054. [1054]

      M. Jiang, C. Fu, P. Meng, et al., Adv. Mater. 34 (2021) 2102026.

    1055. [1055]

      D. Tommasi, Georges Carre. (1889) 131.

    1056. [1056]

      Y.F. Xu, Y. Zhao, J. Ren, Y. Zhang, H.S. Peng, Angew. Chem. Int. Ed. 55 (2016) 7979–7982.

    1057. [1057]

      S.G. Wu, S.Y. Hu, Q. Zhang, et al., Energy Storage Mater. 31 (2020) 310–317.

    1058. [1058]

      A. Sivashanmugam, S.R. Prasad, R. Thirunakaran, S. Gopukumar, J. Electrochem. Soc. 155 (2008) A725.

    1059. [1059]

      R.R. Bessette, J.M. Cichon, D.W. Dischert, E.G. Dow, J. Power Sources 80 (1999) 248–253.

    1060. [1060]

      J.J. Auborn, Y.L. Barberio, J. Electrochem. Soc. 132 (1985) 598–601.

    1061. [1061]

      M.C. Lin, M. Gong, B. Lu, et al., Nature 520 (2015) 325–328.

    1062. [1062]

      H. Sun, W. Wang, Z. Yu, et al., Chem. Commun. 51 (2015) 11892–11895.

    1063. [1063]

      D.Y. Wang, C.Y. Wei, M.C. Lin, et al., Nat. Commun. 8 (2017) 14283.

    1064. [1064]

      D. Kong, T. Cai, H. Fan, et al., Angew. Chem. Int. Ed. 61 (2021) e202114681.

    1065. [1065]

      S. Wang, Z.J. Yu, J.G. Tu, et al., Adv. Energy Mater. 6 (2016) 1600137.

    1066. [1066]

      J. Meng, X. Hong, Z. Xiao, et al., Nat. Commun. 15 (2024) 596.

    1067. [1067]

      H. Li, R. Meng, Y. Guo, et al., Nat. Commun. 12 (2021) 5714.

    1068. [1068]

      G. Cohn, L. Ma, L.A. Archer, J. Power Sources 283 (2015) 416–422.

    1069. [1069]

      L.W. Luo, C. Zhang, W.Y. Ma, et al., Adv. Mater. 36 (2024) 240610.

    1070. [1070]

      X. Zhang, Y. Tang, F. Zhang, C.S. Lee, Adv. Energy Mater. 6 (2016) 1502588.

    1071. [1071]

      Q.F. Li, N.J. Bjerrum, J. Power Sources 110 (2002) 1–10.

    1072. [1072]

      J. Ren, C. Fu, Q. Dong, et al., ACS Sustain. Chem. Eng. 9 (2021) 2300–2308.

    1073. [1073]

      Y.F. Han, J.M. Ren, C.P. Fu, et al., J. Electrochem. Soc. 167 (2020) 040514.

    1074. [1074]

      K. Wang, X.D. Li, Y. Xie, et al., ACS Appl. Mater. Interfaces 11 (2019) 23990–23999.

    1075. [1075]

      S. Kumar, P. Rama, W.Y. Lieu, et al., Energy Storage Mater. 65 (2024) 103087.

    1076. [1076]

      X. Wang, C. Zhao, P. Luo, et al., Nanoscale 16 (2024) 13171–13182.

    1077. [1077]

      Q. Ran, H. Shi, H. Meng, et al., Nat. Commun. 13 (2022) 576.

    1078. [1078]

      Y.C. Yu, M. Chen, S.T. Wang, et al., J. Electrochem. Soc. 165 (2018) A584–A592.

    1079. [1079]

      F. Wu, H. Yang, Y. Bai, C. Wu, Adv. Mater. 31 (2019) 1806510.

    1080. [1080]

      H. Lu, Y. Wan, T. Wang, et al., J. Mater. Chem. A 7 (2019) 7213–7220.

    1081. [1081]

      L. Zheng, Y. Bai, C. Wu, Chin. Chem. Lett. 35 (2024) 108589.

    1082. [1082]

      L. Geng, J.P. Scheifers, C. Fu, et al., ACS Appl. Mater. Interfaces 9 (2017) 21251–21257.

    1083. [1083]

      Z. Yuan, Q. Lin, Y. Li, W. Han, L. Wang, Adv. Mater. 35 (2023) 2211527.

    1084. [1084]

      Z. Lin, M. Mao, C. Yang, et al., Sci. Adv. 7 (2021) 6314.

    1085. [1085]

      A. VahidMohammadi, A. Hadjikhani, S. Shahbazmohamadi, M. Beidaghi, ACS Nano 11 (2017) 11135–11144.

    1086. [1086]

      A.X. Zhou, L.W. Jiang, J.M. Yue, et al., ACS Appl. Mater. Interfaces 11 (2019) 41356–41362.

    1087. [1087]

      T. Gao, X. Li, X. Wang, et al., Angew. Chem. Int. Ed. 55 (2016) 9898–9901.

    1088. [1088]

      W. Lv, G. Wu, X. Li, J. Li, Z. Li, Energy Storage Mater. 46 (2022) 138–146.

    1089. [1089]

      X. Yu, B. Wang, D. Gong, Z. Xu, B. Lu, Adv. Mater. 29 (2017) 1604118.

    1090. [1090]

      D.J. Kim, D.-J. Yoo, M.T. Otley, et al., Nat. Energy 4 (2018) 51–59.

    1091. [1091]

      X. Geng, X. Hou, X. He, H.J. Fan, Adv. Energy Mater. 14 (2024) 2304094.

    1092. [1092]

      C.S. Yan, C. Lv, L.G. Wang, et al., J. Am. Chem. Soc. 142 (2020) 15295–15304.

    1093. [1093]

      J.S. Meng, X.H. Yao, X.F. Hong, et al., Nat. Commun. 14 (2023) 3909.

    1094. [1094]

      M. Jafarian, M.G. Mahjani, F. Gobal, I. Danaee, J. Appl. Electrochem. 36 (2006) 1169–1173.

    1095. [1095]

      O.M. Leung, T. Schoetz, T. Prodromakis, C. Ponce de Leon, J. Electrochem. Soc. 168 (2021) 056509.

    1096. [1096]

      H. Xu, T. Bai, H. Chen, et al., Energy Storage Mater. 17 (2019) 38–45.

    1097. [1097]

      M. Angell, C.J. Pan, Y.M. Rong, et al., Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 834–839.

    1098. [1098]

      Z. Yu, S. Jiao, S. Li, et al., Adv. Funct. Mater. 29 (2019) 1806799.

    1099. [1099]

      M. Chiku, S. Matsumura, H. Takeda, E. Higuchi, H. Inoue, J. Electrochem. Soc. 164 (2017) A1841–A1844.

    1100. [1100]

      L.D. Reed, S.N. Ortiz, M. Xiong, E.J. Menke, Chem. Commun. 51 (2015) 14397–14400.

    1101. [1101]

      H. Jiang, X. Han, X. Du, et al., Adv. Mater. 34 (2022) 2108665.

    1102. [1102]

      X. Zhou, Q. Liu, C. Jiang, et al., Angew. Chem. Int. Ed. 59 (2020) 3802–3832.

    1103. [1103]

      L. Zhang, H. Wang, X. Zhang, Y. Tang, Adv. Funct. Mater. 31 (2021) 2010958.

    1104. [1104]

      J.A. Seel, J.R. Dahn, J. Electrochem. Soc. 147 (2000) 892–898.

    1105. [1105]

      H. Jiang, Z. Wei, L. Ma, et al., Angew. Chem. Int. Ed. 58 (2019) 5286–5291.

    1106. [1106]

      X. Zhang, Y. Tang, F. Zhang, C. Lee, Adv. Energy Mater. 6 (2016) 1502588.

    1107. [1107]

      B. Jiang, Y. Su, R. Liu, Z. Sun, D. Wu, Small 18 (2022) 2200049.

    1108. [1108]

      H. Kim, J. Hong, K.Y. Park, et al., Chem. Rev. 114 (2014) 11788–11827.

    1109. [1109]

      M. Li, C. Wang, Z. Chen, K. Xu, J. Lu, Chem. Rev. 120 (2020) 6783–6819.

    1110. [1110]

      W. Li, J.R. Dahn, D.S. Wainwright, Science 264 (1994) 1115–1118.

    1111. [1111]

      J. Yue, L. Suo, Energy Fuel 35 (2021) 9228–9239.

    1112. [1112]

      G. Wang, S. Zhong, D.H. Bradhurst, S.X. Dou, H.K. Liu, J. Power Sources 74 (1998) 198–201.

    1113. [1113]

      J. Kohler, H. Makihara, H. Uegaito, H. Inoue, M. Toki, Electrochim. Acta 46 (2000) 59–65.

    1114. [1114]

      J. Luo, W. Cui, P. He, Y. Xia, Nat. Chem. 2 (2010) 760–765.

    1115. [1115]

      M.B. Pinson, M.Z. Bazant, J. Electrochem. Soc. 160 (2013) A243–A250.

    1116. [1116]

      L.M. Suo, O. Borodin, T. Gao, et al., Science 350 (2015) 938–943.

    1117. [1117]

      Q. Dong, X.Z. Zhang, D. He, C.C. Lang, D.W. Wang, ACS Central Sci. 5 (2019) 1461–1467.

    1118. [1118]

      S.F. Lux, L. Terborg, O. Hachmoller, et al., J. Electrochem. Soc. 160 (2013) A1694–A1700.

    1119. [1119]

      M. Wang, S. Liu, H. Ji, et al., Nat. Commun. 12 (2021) 3198.

    1120. [1120]

      R. Lin, C. Ke, J. Chen, S. Liu, J. Wang, Joule 6 (2022) 399–417.

    1121. [1121]

      Y. Wang, T. Wang, D. Dong, et al., Matter 5 (2022) 162–179.

    1122. [1122]

      C. Zhang, B. Chen, Q. Chen, et al., Adv. Mater. 36 (2024) 2405913.

    1123. [1123]

      Y. Yokoyama, T. Fukutsuka, K. Miyazaki, T. Abe, J. Electrochem. Soc. 165 (2018) A3299–A3303.

    1124. [1124]

      R.S. Kühnel, D. Reber, C. Battaglia, J. Electrochem. Soc. 167 (2020) 070544.

    1125. [1125]

      M. Chen, G. Feng, R. Qiao, Curr. Opin. Colloid Interface Sci. 47 (2020) 99–110.

    1126. [1126]

      F. Wang, Y. Lin, L. Suo, et al., Energy Environ. Sci. 9 (2016) 3666–3673.

    1127. [1127]

      X. Zhu, M. Mao, Z. Lin, et al., ACS Mater. Lett. 4 (2022) 1574–1583.

    1128. [1128]

      L. Suo, O. Borodin, W. Sun, et al., Angew. Chem. Int. Ed. 55 (2016) 7136–7141.

    1129. [1129]

      Y. Yamada, K. Usui, K. Sodeyama, et al., Nat. Energy 1 (2016) 1629.

    1130. [1130]

      C.Y. Yang, X. Ji, X.L. Fan, et al., Adv. Mater. 29 (2017) 1701972.

    1131. [1131]

      C. Yang, J. Chen, X. Ji, et al., Nature 569 (2019) 245–250.

    1132. [1132]

      T. Jin, X. Ji, P.F. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 11943–11948.

    1133. [1133]

      Y. Zhang, J. Xu, Z. Li, et al., Sci. Bull. 67 (2022) 161–170.

    1134. [1134]

      T. Liu, H. Wu, X. Du, et al., ACS Appl. Mater. Interfaces 14 (2022) 33041–33051.

    1135. [1135]

      J.Z. Rong, T.X. Cai, Y.Z. Bai, et al., Cell Rep. Phys. Sci. 3 (2022) 100805.

    1136. [1136]

      L. Jiang, S. Han, Y.C. Hu, et al., Nat. Energy 9 (2024) 839–848.

    1137. [1137]

      Q. Nian, J. Wang, S. Liu, et al., Angew. Chem. Int. Ed. 58 (2019) 16994–16999.

    1138. [1138]

      L. Suo, O. Borodin, Y. Wang, et al., Adv. Energy Mater. 7 (2017) 1701189.

    1139. [1139]

      K. Nakamoto, R. Sakamoto, Y. Sawada, M. Ito, S. Okada, Small. Methods 3 (2019) 1800220.

    1140. [1140]

      L. Jiang, L. Liu, J. Yue, et al., Adv. Mater. 32 (2020) 1904427.

    1141. [1141]

      Q. Zhang, K. Xia, Y. Ma, et al., ACS Energy Lett. 6 (2021) 2704–2712.

    1142. [1142]

      K. Zhu, Z. Sun, T. Jin, et al., Batteries Supercaps. 5 (2022) e202200308.

    1143. [1143]

      H. Kim, J. Hong, K.Y. Park, et al., Chem. Rev. 114 (2014) 11788–11827.

    1144. [1144]

      W. Zhang, Y. Liu, Z. Guo, Sci. Adv. 5 (2019) eaav7412.

    1145. [1145]

      C.D. Wessells, R.A. Huggins, Y. Cui, Nat. Commun. 2 (2011) 550.

    1146. [1146]

      C. Dong, F. Xu, L. Chen, Z. Chen, Y. Cao, Small Struct. 2 (2021) 16601–16608.

    1147. [1147]

      Y. Wang, D. Liu, M. Sun, J. Liu, Mater. Chem. Front. 5 (2021) 7384–7402.

    1148. [1148]

      J. Hyoung, J.W. Heo, M.S. Chae, S.T. Hong, ChemSusChem 12 (2019) 1069–1075.

    1149. [1149]

      D.S. Charles, M. Feygenson, K. Page, et al., Nat. Commun. 8 (2017) 15520.

    1150. [1150]

      Y.Q. Li, H. Shi, S.B. Wang, et al., Nat. Commun. 10 (2019) 4292.

    1151. [1151]

      M. Wang, H. Wang, H. Zhang, X. Li, J. Energy Chem. 48 (2020) 14–20.

    1152. [1152]

      D. Su, A. McDonagh, S.Z. Qiao, G. Wang, Adv. Mater. 29 (2017) 1604007.

    1153. [1153]

      Y. Li, Z. Zhou, W. Deng, et al., ChemElectroChem 8 (2021) 1451–1454.

    1154. [1154]

      L. Jiang, Y. Lu, C. Zhao, et al., Nat. Energy 4 (2019) 495–503.

    1155. [1155]

      J. Han, A. Mariani, H. Zhang, et al., Energy Storage Mater. 30 (2020) 196–205.

    1156. [1156]

      M. Morant-Giner, R. Sanchis-Gual, J. Romero, et al., Adv. Funct. Mater. 28 (2018) 1706125.

    1157. [1157]

      C.D. Wessells, S.V. Peddada, R.A. Huggins, Y. Cui, Nano Lett. 11 (2011) 5421–5425.

    1158. [1158]

      D.P. Leonard, Z. Wei, G. Chen, F. Du, X. Ji, ACS Energy Lett. 3 (2018) 373–374.

    1159. [1159]

      M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, Nat. Commun. 3 (2012) 1149.

    1160. [1160]

      N.D. Schuppert, S. Mukherjee, A.M. Bates, et al., J. Power Sources 316 (2016) 160–169.

    1161. [1161]

      X. Yuan, Y. Li, Y. Zhu, et al., ACS Appl. Mater. Interfaces 13 (2021) 38248–38255.

    1162. [1162]

      T. Liu, K.T. Liu, J. Wang, et al., Energy Storage Mater. 41 (2021) 133–140.

    1163. [1163]

      X. Wu, J.J. Hong, W. Shin, et al., Nat. Energy 4 (2019) 123–130.

    1164. [1164]

      W. Xu, K. Zhao, X. Liao, et al., J. Am. Chem. Soc. 144 (2022) 17407–17415.

    1165. [1165]

      X. Dong, Z. Li, D. Luo, et al., Adv. Funct. Mater. 33 (2023) 2210473.

    1166. [1166]

      X. Wu, S. Qiu, Y. Xu, et al., ACS Appl. Mater. Interfaces 12 (2020) 9201–9208.

    1167. [1167]

      H. Jiang, W. Shin, L. Ma, et al., Adv. Energy Mater. 10 (2020) 2000968.

    1168. [1168]

      Y. Lei, W. Zhao, J. Yin, et al., Nat. Commun. 14 (2023) 5490.

    1169. [1169]

      K. Kawai, S.-H. Jang, Y. Igarashi, et al., Angew. Chem. Int. Ed. 63 (2024) e202410971.

    1170. [1170]

      Z. Su, W. Ren, H. Guo, et al., Adv. Funct. Mater. 30 (2020) 2005477.

    1171. [1171]

      X. Yang, Y. Ni, Y. Lu, et al., Angew. Chem. Int. Ed. 61 (2022) e202209642.

    1172. [1172]

      R. Emanuelsson, M. Sterby, M. Strømme, M. Sjödin, J. Am. Chem. Soc. 139 (2017) 4828–4834.

    1173. [1173]

      C. Strietzel, M. Sterby, H. Huang, et al., Angew. Chem. Int. Ed. 59 (2020) 9631–9638.

    1174. [1174]

      S. Liu, S. Jin, T. Jiang, et al., Nano Lett. 23 (2023) 9664–9671.

    1175. [1175]

      Z. Song, L. Miao, L. Ruhlmann, et al., Angew. Chem. Int. Ed. 62 (2023) e202219136.

    1176. [1176]

      X. Yan, F. Wang, X. Su, et al., Adv. Mater. 35 (2023) 2305037.

    1177. [1177]

      J. He, M. Shi, H. Wang, et al., Angew. Chem. Int. Ed. 63 (2024) e202410568.

    1178. [1178]

      R. Wang, J. He, C. Yan, et al., Adv. Mater. 36 (2024) 2402681.

    1179. [1179]

      S. Wu, M. Taylor, H. Guo, et al., Angew. Chem. Int. Ed. 63 (2024) e202412455.

    1180. [1180]

      M. Yang, Y. Hao, B. Wang, et al., Nat. Sci. Rev. 11 (2024) nwae045.

    1181. [1181]

      M.R. Lukatskaya, S. Kota, Z. Lin, M.Q. Zhao, et al., Nat. Energy 2 (2017) 17105.

    1182. [1182]

      M. Hu, C. Cui, C. Shi, et al., ACS Nano 13 (2019) 6899–6905.

    1183. [1183]

      Z. Zhu, W. Wang, Y. Yin, et al., J. Am. Chem. Soc. 143 (2021) 20302–20308.

    1184. [1184]

      T. Xu, D. Wang, M. Zhang, et al., Adv. Funct. Mater. 34 (2024) 2408465.

    1185. [1185]

      J.L. Yang, Z. Yu, J. Wu, et al., Adv. Mater. 35 (2023) 2306531.

    1186. [1186]

      J. Wu, J.L. Yang, B. Zhang, H.J. Fan, Adv. Energy Mater. 14 (2024) 2302738.

    1187. [1187]

      H. Wu, J. Hao, S. Zhang, et al., J. Am. Chem. Soc. 146 (2024) 16601–16608.

    1188. [1188]

      H. Chen, X. Li, K. Fang, et al., Adv. Energy Mater. 13 (2023) 2302187.

    1189. [1189]

      J.L. Yang, T. Xiao, T. Xiao, et al., Adv. Mater. 36 (2024) 2313610.

    1190. [1190]

      F. Li, C. Zhou, J. Zhang, et al., Adv. Mater. 36 (2024) 2408213.

    1191. [1191]

      F. Wang, W. Liang, X. Liu, et al., Adv. Energy Mater. 14 (2024) 2400110.

    1192. [1192]

      T. Xiao, J.L. Yang, B. Zhang, et al., Angew. Chem. Int. Ed. 63 (2024) e202318470.

    1193. [1193]

      X. Guo, H. Xu, Y. Tang, et al., Adv. Mater. 36 (2024) 2408317.

    1194. [1194]

      N. Li, Z. Yang, Y. Li, et al., Adv. Energy Mater. 14 (2024) 2402846.

    1195. [1195]

      Z. Li, X. Wu, X. Yu, et al., Nano Lett. 22 (2022) 2538–2546.

    1196. [1196]

      Y. Kang, G. Chen, H. Hua, et al., Angew. Chem. Int. Ed. 62 (2023) e202300418.

    1197. [1197]

      H. Xu, R. Zhang, D. Luo, et al., Energy Storage Mater. 63 (2023) 103019.

    1198. [1198]

      Z. Lv, Y. Kang, G. Chen, et al., Adv. Funct. Mater. 34 (2024) 2310476.

    1199. [1199]

      Y. Su, X. Wang, M. Zhang, et al., Angew. Chem. 135 (2023) e202308182.

    1200. [1200]

      Y. Wang, X. Jin, J. Xiong, et al., Adv. Mater. 36 (2024) 2404093.

    1201. [1201]

      J. He, H. Hong, S. Hu, et al., Nano Energy 119 (2024) 109096.

    1202. [1202]

      H. Yang, Y. Qiao, Z. Chang, et al., Adv. Mater. 32 (2020) 2004240.

    1203. [1203]

      J.L. Yang, H.H. Liu, X.X. Zhao, et al., J. Am. Chem. Soc. 146 (2024) 6628–6637.

    1204. [1204]

      K. Wang, H. Li, Z. Xu, et al., Adv. Energy Mater. 14 (2024) 2304110.

    1205. [1205]

      J. Zhang, C. Qiu, C. Zhou, et al., Nano Energy 133 (2024) 110519.

    1206. [1206]

      Z. Chen, J. Zhang, C. Zhou, et al., Adv. Energy Mater. 15 (2025) 2404814.

    1207. [1207]

      P. Jiang, T. Liu, C. Lei, et al., J. Am. Chem. Soc. 146 (2024) 25108–25117.

    1208. [1208]

      T. Liu, C. Lei, H. Wang, et al., Adv. Mater. 36 (2024) 2405473.

    1209. [1209]

      D. Chao, W. Zhou, F. Xie, et al., Sci. Adv. 6 (2020) eaba4098.

    1210. [1210]

      B. Yong, D.T. Ma, Y.Y. Wang, et al., Adv. Energy Mater. 10 (2020) 2002354.

    1211. [1211]

      A. Zhang, R. Zhao, Y. Wang, et al., Energy Environ. Sci. 16 (2023) 3240–3301.

    1212. [1212]

      Z. Liu, Y. Huang, Y. Huang, et al., Chem. Soc. Rev. 49 (2020) 180–232.

    1213. [1213]

      Y. Ren, H. Li, Y. Rao, H. Zhou, S. Guo, Energy Environ. Sci. 17 (2024) 425–441.

    1214. [1214]

      T. Xiong, Y.X. Zhang, W.S.V. Lee, J.M. Xue, Adv. Energy Mater. 10 (2020) 2001769.

    1215. [1215]

      V. Mathew, B. Sambandam, S. Kim, et al., ACS Energy Lett. 5 (2020) 2376–2400.

    1216. [1216]

      Q.H. Zhao, A.Y. Song, S.X. Ding, et al., Adv. Mater. 32 (2020) 2002450.

    1217. [1217]

      Y.H. Xu, G.N. Zhang, J.Q. Liu, et al., Energy Environ. Mater. 6 (2023) E12575.

    1218. [1218]

      J.H. Zhang, W.B. Li, J.J. Wang, et al., Angew. Chem. Int. Ed. 62 (2023) e202215654.

    1219. [1219]

      Y. Li, X. Liu, T. Ji, et al., Chin. Chem. Lett. 36 (2025) 109551.

    1220. [1220]

      J. Huang, Z. Wang, M. Hou, et al., Nat. Commun. 9 (2018) 2906.

    1221. [1221]

      Y. Zeng, D. Luan, X.W. Lou, Chem 9 (2023) 1118–1146.

    1222. [1222]

      G.D. Cui, Y.X. Zeng, J.F. Wu, et al., Adv. Sci. 9 (2022) 2106067.

    1223. [1223]

      Q. Liu, G.L. Fan, Y.X. Zeng, et al., Adv. Energy Mater. 14 (2024) 2402743.

    1224. [1224]

      Y. Xu, G.L. Fan, P.X. Sun, et al., Angew. Chem. Int. Ed. 62 (2023) e202303529.

    1225. [1225]

      T. Zhou, G. Gao, Nano Energy 127 (2024) 109691.

    1226. [1226]

      Z. Feng, J. Sun, Y. Liu, et al., ACS Appl. Mater. Interfaces 13 (2021) 61154–61165.

    1227. [1227]

      H. Liu, J.G. Wang, Z. You, et al., Mater. Today 42 (2021) 73–98.

    1228. [1228]

      I.R. Tay, J.M. Xue, W.S.V. Lee, Adv. Sci. 10 (2023) 2303211.

    1229. [1229]

      F. Wan, Z.Q. Niu, D Angew. Chem. Int. Ed. 58 (2019) 16358–16367.

    1230. [1230]

      S. Liu, Y. Liao, T. Liu, L. Chen, Q. Zhang, Energy Storage Mater. 73 (2024) 103799.

    1231. [1231]

      D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, Nat. Energy 1 (2016) 16119.

    1232. [1232]

      X. Chen, H. Zhang, J.H. Liu, et al., Energy Storage Mater. 50 (2022) 21–46.

    1233. [1233]

      M. Liao, J.W. Wang, L. Ye, et al., Angew. Chem. Int. Ed. 59 (2020) 2273–2278.

    1234. [1234]

      J. Guo, Z. Zhuang, W. Liu, G. Huang, Chin. Chem. Lett. 35 (2024) 109803.

    1235. [1235]

      Q. Zhao, W.W. Huang, Z.Q. Luo, et al., Sci. Adv. 4 (2018) eaao1761.

    1236. [1236]

      D.L. Chao, W.H. Zhou, F.X. Xie, et al., Sci. Adv. 6 (2020) eaba4098.

    1237. [1237]

      D. Kundu, P. Oberholzer, C. Glaros, et al., Chem. Mater. 30 (2018) 3874–3881.

    1238. [1238]

      B. Häupler, C. Rössel, A.M. Schwenke, et al., npg Asia Mater. 8 (2016) 283.

    1239. [1239]

      J. Zhou, Q. Li, X. Hu, et al., Chin. Chem. Lett. 35 (2024) 109143.

    1240. [1240]

      X. Wang, Y. Ying, X. Li, et al., Energy Environ. Sci. 16 (2023) 4572–4583.

    1241. [1241]

      X. Wang, Y. Ying, S. Chen, et al., Nano Energy 119 (2024) 109099.

    1242. [1242]

      X. Li, X. Wang, L. Ma, W. Huang, Adv. Energy Mater. 12 (2022) 2202068.

    1243. [1243]

      K. Yan, Y. Fan, F. Hu, et al., Adv. Funct. Mater. 34 (2024) 2307740.

    1244. [1244]

      S. Wang, Y. Ying, S. Chen, et al., Energy Storage Mater. 63 (2023) 102971.

    1245. [1245]

      X. Yang, X. Wang, Y. Xiang, L. Ma, W. Huang, Nano Micro Lett. 16 (2023) 51.

    1246. [1246]

      S. Chen, S. Li, L. Ma, et al., Angew. Chem. Int. Ed. 63 (2024) e202319125.

    1247. [1247]

      S. Wang, S. Chen, Y. Ying, et al., Angew. Chem. Int. Ed. 63 (2024) e202316841.

    1248. [1248]

      S. Chen, C. Peng, D. Xue, L. Ma, C. Zhi, Angew. Chem. Int. Ed. 61 (2022) e202212767.

    1249. [1249]

      S. Chen, T. Wang, L. Ma, et al., Chem 9 (2023) 497–510.

    1250. [1250]

      N. Kittner, F. Lill, D.M. Kammen, Nat. Energy 2 (2017) 6.

    1251. [1251]

      A. Subramanian, Z.H. Pan, G.L. Rong, et al., J. Power Sources 343 (2017) 39–46.

    1252. [1252]

      Y.L. Liang, H. Dong, D. Aurbach, Y. Yao, Nat. Energy 5 (2020) 646–656.

    1253. [1253]

      X.X. Jia, C.F. Liu, Z.G. Neale, J.H. Yang, G.Z. Cao, Chem. Rev. 120 (2020) 7795–7866.

    1254. [1254]

      D. Kundu, S.H. Vajargah, L.W. Wan, et al., Energy Environ. Sci. 11 (2018) 881–892.

    1255. [1255]

      D.L. Chao, W.H. Zhou, C. Ye, et al., Angew. Chem. Int. Ed. 58 (2019) 7823–7828.

    1256. [1256]

      W. Manalastas, S. Kumar, V. Verma, et al., ChemSusChem 12 (2019) 379–396.

    1257. [1257]

      X. Zou, Y. Zhang, Chem. Soc. Rev. 44 (2015) 5148–5180.

    1258. [1258]

      J. Shin, J. Lee, Y. Park, J.W. Choi, Chem. Sci. 11 (2020) 2028–2044.

    1259. [1259]

      A. Ponrouch, J. Bitenc, R. Dominko, N. Lindahl, P. Johansson, Energy Storage Mater. 20 (2019) 253–262.

    1260. [1260]

      B. He, Y. Ling, Z. Wang, et al., eScience 4 (2024) 100293.

    1261. [1261]

      K.L. Hawthorne, T.J. Petek, M.A. Miller, J.S. Wainright, R.F. Savinell, J. Electrochem. Soc. 162 (2015) A108.

    1262. [1262]

      Y. Song, H. Yan, H. Hao, et al., Small 18 (2022) 2204356.

    1263. [1263]

      Y. Song, K. Zhang, X. Li, et al., J. Mater. Chem. A. 9 (2021) 26354–26361.

    1264. [1264]

      Y. Song, H. Yan, Z. Cong, et al., Chem. Eng. J. 487 (2024) 150592.

    1265. [1265]

      Y. Shi, Z. Wang, Y. Yao, W. Wang, Y.C. Lu, Energy Environ. Sci. 14 (2021) 6329–6337.

    1266. [1266]

      A.K. Manohar, S. Malkhandi, B. Yang, et al., J. Electrochem. Soc. 159 (2012) A1209.

    1267. [1267]

      P. Schröder, N. Aguiló Aguayo, D. Obendorf, T. Bechtold, Electrochim. Acta 430 (2022) 141042.

    1268. [1268]

      G.S. Nambafu, A.M. Hollas, S. Zhang, et al., Nat. Commun. 15 (2024) 2566.

    1269. [1269]

      G.S. Nambafu, A.M. Hollas, P.S. Rice, et al., Adv. Energy Mater. 1 (2024) 2403149.

    1270. [1270]

      K. Gong, F. Xu, J.B. Grunewald, et al., ACS Energy Lett. 1 (2016) 89–93.

    1271. [1271]

      M. Shin, C. Noh, Y. Chung, Y. Kwon, Chem. Eng. J. 398 (2020) 125631.

    1272. [1272]

      M. Shin, C. Noh, Y. Kwon, Chem. Eng. J. 453 (2023) 139738.

    1273. [1273]

      X. Liu, T. Li, Z. Yuan, X. Li, J. Energy Chem. 73 (2022) 445–451.

    1274. [1274]

      S. Wang, L. Ma, S. Niu, et al., Angew. Chem. Int. Ed. 63 (2024) e202316593.

    1275. [1275]

      W. Yang, P. Liu, L. Wang, et al., Chem. Eng. J. 487 (2024) 150491.

    1276. [1276]

      H. Jiang, W. Yang, P. Liu, et al., Adv. Energy Mater. 46 (2024) 2402227.

    1277. [1277]

      W. Yang, H. Jiang, L. Wang, et al., ACS Energy Lett. 8 (2024) 3859–3868.

    1278. [1278]

      S. Xin, X. Zhang, L. Wang, et al., J. Electrochem. Soc. 67 (2024) 13–42.

    1279. [1279]

      Z. Yuan, Y. Yin, C. Xie, et al., Adv. Mater. 31 (2019) 1902025.

    1280. [1280]

      Z. Yuan, X.J.S.C.C. Li, J. Electrochem. Soc. 67 (2024) 260–275.

    1281. [1281]

      J. Hu, M. Yue, H. Zhang, Z. Yuan, X. Li, Angew. Chem. Int. Ed. 59 (2020) 6715–6719.

    1282. [1282]

      H. Chen, C. Kang, E. Shang, et al., Ind. Eng. Chem. Res. 62 (2022) 676–684.

    1283. [1283]

      J. Hu, X. Tang, Q. Dai, et al., Nat. Commun. 12 (2021) 3409.

    1284. [1284]

      L. Zhi, C. Liao, P. Xu, et al., Energy Environ. Sci. 17 (2024) 717–726.

    1285. [1285]

      L. Zhi, C. Liao, P. Xu, et al., Angew. Chem. Int. Ed. 63 (2024) e202403607.

    1286. [1286]

      L. Zhi, C. Liao, P. Xu, et al., Angew. Chem. Int. Ed. 63 (2024) e202412559.

    1287. [1287]

      Y. Huang, L. Zhi, R. Bi, Z. Yuan, X. Li, Fundam. Res. (2024), doi:10.1016/j.fmre.2024.06.002.

    1288. [1288]

      S. Zhang, W. Guo, F. Yang, et al., Batter. Supercaps. 2 (2019) 627–637.

    1289. [1289]

      J. Liu, W. Zhou, R. Zhao, et al., J. Am. Chem. Soc. 143 (2021) 15475–15489.

    1290. [1290]

      Z. Li, G. Weng, Q. Zou, G. Cong, Y.C. Lu, Nano Energy 30 (2016) 283–292.

    1291. [1291]

      X. Wei, G.G. Xia, B. Kirby, et al., J. Electrochem. Soc. 163 (2015) A5150.

    1292. [1292]

      Z. Li, Y.C. Lu, Nat. Energy 6 (2021) 517–528.

    1293. [1293]

      M. Gao, S. Huang, F. Zhang, et al., Today Energy 18 (2020) 100540.

    1294. [1294]

      D. Ma, B. Hu, W. Wu, et al., Nat. Commun. 10 (2019) 3367.

    1295. [1295]

      J. Lei, Y. Zhang, Y. Yao, et al., Nat. Energy 8 (2023) 1355–1364.

    1296. [1296]

      T. Zhang, Q. Chen, X. Li, et al., CCS Chem. 4 (2022) 2874–2887.

    1297. [1297]

      J. Lei, Y.C. Lu, Natl. Sci. Rev. 11 (2024) nwae320.

    1298. [1298]

      Y. Yao, J. Lei, Y. Shi, F. Ai, Y.C. Lu, Nat. Energy 6 (2021) 582–588.

    1299. [1299]

      F. Zhang, M. Gao, S. Huang, et al., Adv. Mater. 34 (2022) 2104562.

    1300. [1300]

      J. Lei, Y.C. Lu, Nat. Energy 9 (2024) 1325–1326.

    1301. [1301]

      J. Lei, Y. Yao, Y. Huang, Y.C. Lu, ACS Energy Lett. 8 (2023) 429–435.

    1302. [1302]

      Z. Yang, M.R. Gerhardt, M. Fortin, et al., J. Electrochem. Soc. 168 (2021) 070516.

    1303. [1303]

      M. Ding, H. Fu, X. Lou, et al., ACS Nano 17 (2023) 16252–16263.

    1304. [1304]

      Z. Li, M.S. Pan, L. Su, et al., Joule 1 (2017) 306–327.

    1305. [1305]

      Y. Xia, M. Ouyang, V. Yufit, et al., Nat. Commun. 13 (2022) 2388.

    1306. [1306]

      G. Yang, Y. Zhu, Z. Hao, et al., Adv. Energy Mater. 14 (2024) 2400022.

    1307. [1307]

      L. Zhang, R. Feng, W. Wang, G. Yu, Nat. Rev. Chem. 6 (2022) 524–543.

    1308. [1308]

      X. Zu, L. Zhang, Y. Qian, C. Zhang, G. Yu, Angew. Chem. Int. Ed. 59 (2020) 22163–22170.

    1309. [1309]

      R. Feng, X. Zhang, V. Murugesan, et al., Science 372 (2021) 836–840.

    1310. [1310]

      B. Hu, H. Li, H. Fan, J. Song, Energy Storage Mater. 59 (2023) 102789.

    1311. [1311]

      H. Fan, J. Zhang, M. Ravivarma, et al., ACS Appl. Mater. Interfaces 12 (2020) 43568–43575.

    1312. [1312]

      B. Hu, H. Fan, H. Li, M. Ravivarma, J. Song, Adv. Funct. Mater. 31 (2021) 2102734.

    1313. [1313]

      H. Fan, W. Wu, M. Ravivarma, et al., Adv. Funct. Mater. 32 (2022) 2203032.

    1314. [1314]

      H. Fan, B. Hu, H. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202115908.

    1315. [1315]

      H. Fan, K. Liu, X. Zhang, et al., eScience 4 (2024) 100202.

    1316. [1316]

      H. Li, H. Fan, B. Hu, et al., Angew. Chem. Int. Ed. 60 (2021) 26971–26977.

    1317. [1317]

      Q. Liu, Y.Z. Wang, X. Yang, et al., Chem 7 (2021) 1993–2021.

    1318. [1318]

      J.L. Yang, Y.H. Liu, Y. Zhang, et al., Nano Energy 110 (2023) 17.

    1319. [1319]

      X.Y. Zhao, S.H. Ren, M. Bruns, M. Fichtner, J. Power Sources 245 (2014) 706–711.

    1320. [1320]

      C. Zhang, S.J. Sun, M.F. Wu, X.Y. Zhao, Chin. Chem. Lett. 33 (2022) 2200–2204.

    1321. [1321]

      J.M. Liu, J.H. Zhang, X. Chen, Y. Sun, P. Gao, ChemElectroChem 9 (2022) 7.

    1322. [1322]

      P. Gao, M.A. Reddy, X.K. Mu, et al., Angew. Chem. Int. Ed. 55 (2016) 4285–4290.

    1323. [1323]

      G. Karkera, M. Soans, B. Dasari, et al., Energy Technol. 10 (2022) 6.

    1324. [1324]

      T.T. Yu, Q. Li, X.Y. Zhao, et al., ACS Energy Lett. 2 (2017) 2341–2348.

    1325. [1325]

      Q. Yin, D.M. Rao, G.J. Zhang, et al., Adv. Funct. Mater. 29 (2019) 9.

    1326. [1326]

      Q. Yin, J.N. Luo, J. Zhang, et al., J. Mater. Chem. A 8 (2020) 12548–12555.

    1327. [1327]

      Q. Yin, J.N. Luo, J. Zhang, et al., Adv. Funct. Mater. 30 (2020) 8.

    1328. [1328]

      T.T. Yu, R.J. Yang, X.Y. Zhao, X.D. Shen, ChemElectroChem 6 (2019) 1761–1767.

    1329. [1329]

      T.C. Xia, T.T. Zhu, Y.C. Miao, X.Y. Zhao, ACS Appl. Energy Mater. 5 (2022) 6980–6985.

    1330. [1330]

      X.Y. Zhao, Z.G. Zhao, M. Yang, et al., ACS Appl. Mater. Interfaces 9 (2017) 2535–2540.

    1331. [1331]

      J.L. Yang, Y. Zhang, Y.M. Song, et al., J. Am. Chem. Soc. 146 (2024) 25680–25688.

    1332. [1332]

      F. Gschwind, G.Rodriguez Garcia, D.J.S. Sandbeck, et al., J. Fluorine Chem. 182 (2016) 76–90.

    1333. [1333]

      C. Leroy, D.L. Bryce, Prog. Nucl. Magn. Reson. Spectrosc. 109 (2018) 160–199.

    1334. [1334]

      E.N. Bassey, P.J. Reeves, I.D. Seymour, C.P. Grey, J. Am. Chem. Soc. 144 (2022) 18714–18729.

    1335. [1335]

      O. Pecher, J. Carretero González, K.J. Griffith, C.P. Grey, Chem. Mater. 29 (2017) 213–242.

    1336. [1336]

      C. Li, M. Shen, B. Hu, Acta Phys. Chim. Sin. 36 (2020) 1902019.

    1337. [1337]

      H. Liu, C. Zhao, X. Wu, et al., Energy Environ. Sci. 17 (2024) 668–679.

    1338. [1338]

      Y. Wang, J. Jin, X. Zhao, et al., Angew. Chem. 136 (2024) e202409152.

    1339. [1339]

      D. Sarkar, A. Bhattacharya, J. Meyer, et al., J. Am. Chem. Soc. 145 (2023) 19727–19745.

    1340. [1340]

      B. Peng, M. Shen, J.P. Amoureux, B. Hu, Solid State Nucl. Magn. Reson. 78 (2016) 1–4.

    1341. [1341]

      Y.X. Xiang, G. Zheng, G. Zhong, et al., Solid State Ionics. 318 (2018) 19–26.

    1342. [1342]

      M. Liu, S. Zhang, E.R. Van Eck, et al., Nat. Nanotechnol. 17 (2022) 959–967.

    1343. [1343]

      D. Columbus, V. Arunachalam, F. Glang, et al., J. Am. Chem. Soc. 144 (2022) 9836–9844.

    1344. [1344]

      Q. Wang, C. Zhao, X. Hu, et al., J. Am. Chem. Soc. 146 (2024) 31778–31787.

    1345. [1345]

      K.J. Sanders, A.A. Ciezki, A. Berno, I.C. Halalay, G.R. Goward, J. Am. Chem. Soc. 145 (2023) 21502–21513.

    1346. [1346]

      X. Lin, Y. Shen, Y. Yu, Y. Huang, Adv. Energy Mater. 14 (2024) 2303918.

    1347. [1347]

      H. Huang, T.H. Lambert, Angew. Chem. Int. Ed. 59 (2020) 658.

    1348. [1348]

      R.I. Masel, Z. Liu, H. Yang, et al., Nat. Nanotechnol. 16 (2021) 118–128.

    1349. [1349]

      R. Praud, V. Sarou-Kanian, D. Sicsic, M. Deschamps, E. Salager, Electrochem. Soc. Meet. Abstr. 244 (2023) 97.

    1350. [1350]

      H. Li, J. Ding, X. Guan, et al., J. Am. Chem. Soc. 142 (2020) 13334–13338.

    1351. [1351]

      B. Zhang, Y. Zhang, X. Wang, et al., J. Am. Chem. Soc. 145 (2023) 8700–8713.

    1352. [1352]

      Y. Chen, Z. Ma, Y. Wang, et al., Energy Environ. Sci. 17 (2024) 5613–5626.

    1353. [1353]

      M. Wang, L. Yin, M. Zheng, et al., Nat. Commun. 15 (2024) 8866.

    1354. [1354]

      K.W. Nam, S.M. Bak, E.Y. Hu, et al., Adv. Funct. Mater. 23 (2013) 1047–1063.

    1355. [1355]

      Y. Wu, S.H. Hu, R. Xu, et al., Nano Lett. 19 (2019) 1351–1358.

    1356. [1356]

      T. Akita, N. Taguchi, Surf. Interface Anal. 48 (2016) 1226–1230.

    1357. [1357]

      H.Y. Tan, J. Verbeeck, A. Abakumov, G. Van Tendeloo, Ultramicroscopy. 116 (2012) 24–33.

    1358. [1358]

      A. Lto, K. Shoda, Y. Sato, et al., J. Power Sources 196 (2011) 4785–4790.

    1359. [1359]

      Q. Li, S. Xu, S.H. Guo, et al., Adv. Mater. 32 (2020) 1907936.

    1360. [1360]

      R. Huang, Y. Ikuhara, Curr. Opin. Solid State Mater. Sci. 16 (2012) 31–38.

    1361. [1361]

      E. Liberti, J.G. Lozano, M.A.P. Osorio, et al., Ultramicroscopy. 210 (2020) 112914.

    1362. [1362]

      H.L. Zhu, F. Shen, W. Luo, et al., Nano Energy 33 (2017) 37–44.

    1363. [1363]

      L. Wang, R. Xie, B. Chen, et al., Nat. Commun. 11 (2020) 5889.

    1364. [1364]

      B.W. Liu, N.F. Hu, C. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202209626.

    1365. [1365]

      K. Yamamoto, Y. Iriyama, T. Hirayama, Mater. Trans. 56 (2015) 617–624.

    1366. [1366]

      K. Yamamoto, Y. Iriyama, T. Hirayama, Microscopy 66 (2017) 154-154.

    1367. [1367]

      R. Gao, X. Liang, P.G. Yin, et al., Nano Energy 41 (2017) 535–542.

    1368. [1368]

      Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, Adv. Funct. Mater. 17 (2007) 2855–2861.

    1369. [1369]

      R. Lin, Y. He, C. Wang, et al., Nat. Nanotechnol. 17 (2022) 768–776.

    1370. [1370]

      Z. Zhang, J. Yang, W. Huang, et al., Matter 4 (2021) 302–312.

    1371. [1371]

      E. Stavitski, F.M.F. de Groot, Micron. 41 (2010) 687–694.

    1372. [1372]

      Z.Y. Wang, D. Santhanagopalan, W. Zhang, et al., Nano Lett. 16 (2016) 3760–3767.

    1373. [1373]

      C.M. Wang, W. Xu, J. Liu, et al., J. Mater. Res. 25 (2010) 1541–1547.

    1374. [1374]

      Y.F. Yuan, K. Amine, J. Lu, R. Shahbazian-Yassar, Nat. Commun. 8 (2017) 15806.

    1375. [1375]

      J.Y. Huang, L. Zhong, C.M. Wang, et al., Science 330 (2010) 1515–1520.

    1376. [1376]

      Y. Chen, Z. Wang, X. Li, et al., Nature 578 (2020) 251–255.

    1377. [1377]

      T. Zhou, L. Chang, W. Li, et al., Chem. Commun. 56 (2020) 3753–3756.

    1378. [1378]

      K. Yamamoto, Y. Iriyama, T. Asaka, et al., Angew. Chem. Int. Ed. 49 (2010) 4414–4417.

    1379. [1379]

      L.T. Yang, X. Li, K. Pei, et al., Adv. Funct. Mater. 31 (2021) 2103971.

    1380. [1380]

      J.A. Lewis, F.J.Q. Cortes, M.G. Boebinger, et al., ACS Energy Lett. 4 (2019) 591–599.

    1381. [1381]

      T. Zhou, H. Wang, Y. Wang, et al., Chem. 8 (2022) 2817–2830.

    1382. [1382]

      Q. Cheng, A. Li, N. Li, et al., Joule 3 (2019) 1510–1522.

    1383. [1383]

      T.T. Yang, P. Jia, Q.N. Liu, et al., Angew. Chem. Int. Ed. 57 (2018) 12750–12753.

    1384. [1384]

      H. Liu, M. Bugnet, M.Z. Tessaro, et al., Phys. Chem. Chem. Phys. 18 (2016) 29064–29075.

    1385. [1385]

      Y. Nomura, K. Yamamoto, T. Hirayama, E. Igaki, K. Saitoh, ACS Energy Lett. 5 (2020) 2098–2105.

    1386. [1386]

      Y.F. Deng, S.Y. Dong, Z.F. Li, et al., Small Methods 2 (2018) 27.

    1387. [1387]

      D.Q. Liu, Z. Shadike, R.Q. Lin, et al., Adv. Mater. 31 (2019) 57.

    1388. [1388]

      L.L. Wang, J. Wang, D.H.L. Ng, et al., Chem. Commun. 57 (2021) 9610–9613.

    1389. [1389]

      J.B. Lian, G. Subburam, S.A. El-Khodary, et al., J. Am. Chem. Soc. 146 (2024) 8110–8119.

    1390. [1390]

      S.A. El-Khodary, K. Zhang, B. Zou, et al., CCS Chem. 7 (2025) 2482–2495.

    1391. [1391]

      G. Zhang, Z.W. Zhang, H.J. Peng, J.Q. Huang, Q. Zhang, Small Methods 1 (2017) 1700134.

    1392. [1392]

      A.M. Tripathi, W.N. Su, B.J. Hwang, Chem. Soc. Rev. 47 (2018) 736–851.

    1393. [1393]

      M.T. Xia, T.T. Liu, N. Peng, et al., Small Methods 3 (2019) 1900119.

    1394. [1394]

      R.R. Chianelli, J.C. Scanlon, B.M.L. Rao, J. Electrochem. Soc. 125 (1978) 1563–1566.

    1395. [1395]

      J.R. Dahn, M.A. Py, R.R. Haering, Can. J. Phys. 60 (1982) 307–313.

    1396. [1396]

      W. Li, J.N. Reimers, J.R. Dahn, Solid State Ionics 67 (1993) 123–130.

    1397. [1397]

      G.G. Amatucci, J.M. Tarascon, L.C. Klein, J. Electrochem. Soc. 143 (1996) 1114–1123.

    1398. [1398]

      S. Mukerjee, T.R. Thurston, N.M. Jisrawi, et al., J. Electrochem. Soc. 145 (1998) 466–472.

    1399. [1399]

      C. Baehtz, T. Buhrmester, N.N. Bramnik, K. Nikolowski, H. Ehrenberg, Solid State Ionics 176 (2005) 1647–1652.

    1400. [1400]

      A.S. Christiansen, R.E. Johnsen, P. Norby, et al., J. Electrochem. Soc. 162 (2015) A531–A537.

    1401. [1401]

      M. Fleischmann, A. Oliver, J. Robinson, Electrochim. Acta 31 (1986) 899–906.

    1402. [1402]

      F. Lin, Y.J. Liu, X.Q. Yu, et al., Chem. Rev. 117 (2017) 13123–13186.

    1403. [1403]

      X. Xu, C. Ye, D.L. Chao, et al., Adv. Mater. 34 (2022) 2108688.

    1404. [1404]

      K.V. Graae, P. Norby, ACS Appl. Energy Mater. 5 (2022) 11392–11401.

    1405. [1405]

      J. Conder, R. Bouchet, S. Trabesinger, et al., Nat. Energy 2 (2017) 17069.

    1406. [1406]

      C.J. Pan, C.Z. Yuan, G.Z. Zhu, et al., Proc. Natl. Acad. Sci. USA 115 (2018) 5670–5675.

    1407. [1407]

      V. Shutthanandan, M. Nandasiri, J.M. Zheng, et al., J. Electron Spectrosc. Relat. Phenom. 231 (2019) 2–10.

    1408. [1408]

      D. Atkins, E. Ayerbe, A. Benayad, et al., Adv. Energy Mater. 12 (2022) 23.

    1409. [1409]

      L. Li, K. Yang, C. Xi, et al., Chin. Chem. Lett. 35 (2024) 108814.

    1410. [1410]

      K.N. Wood, G. Teeter, ACS Appl. Energy Mater. 1 (2018) 4493–4504.

    1411. [1411]

      W.L. Yu, Z.A. Yu, Y. Cui, Z.A. Bao, ACS Energy Lett. 7 (2022) 3270–3275.

    1412. [1412]

      L.L. Lu, Z.X. Zhu, T. Ma, et al., Adv. Mater. 34 (2022) 9.

    1413. [1413]

      J. Chen, X.L. Fan, Q. Li, et al., Nat. Energy. 5 (2020) 386–397.

    1414. [1414]

      S. Hashimoto, J. Surf. Anal. 10 (2003) 136–143.

    1415. [1415]

      S. Malmgren, K. Ciosek, M. Hahlin, et al., Electrochim. Acta 97 (2013) 23–32.

    1416. [1416]

      D. Liu, Z. Shadike, R. Lin, et al., Adv. Mater. 31 (2019) 1806620.

    1417. [1417]

      Y.N. Zhou, J.L. Yue, E. Hu, et al., Adv. Energy Mater. 6 (2016) 1600597.

    1418. [1418]

      X. Cai, Z. Shadike, N. Wang, et al., Next Mater. 2 (2024) 100086.

    1419. [1419]

      Y.J. Li, S.L. Chou, Y. Xiao, Chin. Chem. Lett. 36 (2025) 110389.

    1420. [1420]

      Z. Shadike, H. Lee, O. Borodin, et al., Nat. Nanotechnol. 16 (2021) 549–554.

    1421. [1421]

      S. Tan, J.M. Kim, A. Corrao, et al., Nat. Nanotechnol. 18 (2022) 243–249.

    1422. [1422]

      M.W. Terban, S.J.L. Billinge, Chem. Rev. 122 (2021) 1208–1272.

    1423. [1423]

      B. Dong, M.P. Stockham, P.A. Chater, P.R. Slater, Dalton. Trans. 49 (2020) 12466-12466.

    1424. [1424]

      J.M. Stratford, A.K. Kleppe, D.S. Keeble, et al., J. Am. Chem. Soc. 143 (2021) 14274–14286.

    1425. [1425]

      K.M. Wiaderek, O.J. Borkiewicz, E. Castillo-Martínez, et al., J. Am. Chem. Soc. 135 (2013) 4070–4078.

    1426. [1426]

      M. Liao, Y. Xu, M.M. Rahman, et al., Nat. Sustain. 7 (2024) 1709–1718.

    1427. [1427]

      S.M. Bak, Z. Shadike, R. Lin, X. Yu, X.Q. Yang, npg Asia Mater. 10 (2018) 563–580.

    1428. [1428]

      T. Yang, K. Zhang, Y. Zuo, et al., Nat. Sustain. 7 (2024) 1204–1214.

    1429. [1429]

      S.Y. Yang, Z. Shadike, W.W. Wang, et al., Energy Storage Mater. 45 (2022) 1165–1174.

    1430. [1430]

      S. Tan, Z. Shadike, J. Li, et al., Nat. Energy. 7 (2022) 484–494.

    1431. [1431]

      Y. Wang, Z. Feng, P. Cui, et al., Nat. Commun. 12 (2021) 13.

    1432. [1432]

      K. Fang, J. Yin, G. Zeng, et al., J. Am. Chem. Soc. 146 (2024) 31860–31872.

    1433. [1433]

      X. Cai, N. Wang, L. Liang, et al., Adv. Funct. Mater. 34 (2024) 2409732.

    1434. [1434]

      F. Rostami, P. Patrizio, L. Jimenez, C. Pozo, N.Mac Dowell, Energy Environ. Sci. 17 (2024) 5241–5259.

    1435. [1435]

      G. Harper, R. Sommerville, E. Kendrick, et al., Nature. 575 (2019) 75–86.

    1436. [1436]

      J. Lin, X. Zhang, E. Fan, et al., Energy Environ. Sci. 16 (2023) 745–791.

    1437. [1437]

      W. Lv, Z. Wang, H. Cao, et al., ACS Sustain. Chem. Eng. 6 (2018) 1504–1521.

    1438. [1438]

      S.Maryam Sadeghi, J. Jesus, H.M.V.M. Soares, Waste Manage. 113 (2020) 342–350.

    1439. [1439]

      W. Zhang, J. Yang, X. Wu, et al., Renew. Sustain. Energy Rev. 61 (2016) 108–122.

    1440. [1440]

      N. Zhang, Z. Xu, W. Deng, X. Wang, Electrochem. Energy Rev. 5 (2022) 33.

    1441. [1441]

      J. Lin, C. Liu, H. Cao, et al., Green. Chem. 21 (2019) 5904–5913.

    1442. [1442]

      X. Zhang, L. Li, E. Fan, et al., Chem. Soc. Rev. 47 (2018) 7239–7302.

    1443. [1443]

      B.K. Biswal, B. Zhang, P. Thi Minh Tran, J. Zhang, R. Balasubramanian, Chem. Soc. Rev. 53 (2024) 5552–5592.

    1444. [1444]

      K. Hantanasirisakul, M. Sawangphruk, Global Challenges 7 (2023) 2200212.

    1445. [1445]

      J. Xiao, J. Li, Z. Xu, Environ. Sci. Technol. 51 (2017) 11960–11966.

    1446. [1446]

      F. Liu, C. Peng, Q. Ma, et al., Sep. Purif. Technol. 259 (2021) 118181.

    1447. [1447]

      Y. Tang, B. Zhang, H. Xie, et al., J. Power Sources 474 (2020) 228596.

    1448. [1448]

      D. Wang, X. Zhang, H. Chen, J. Sun, Miner. Eng. 126 (2018) 28–35.

    1449. [1449]

      J. Lin, E. Fan, X. Zhang, et al., Adv. Energy Mater. 12 (2021) 2103288.

    1450. [1450]

      R.E. Ciez, J.F. Whitacre, Nat. Sustain. 2 (2019) 148–156.

    1451. [1451]

      E. Fan, L. Li, Z. Wang, F. Wu, et al., Chem. Rev. 120 (2020) 7020–7063.

    1452. [1452]

      H. Yao, Y. Zhang, G. Yang, et al., ACS Appl. Mater. Interfaces 16 (2024) 67087–67105.

    1453. [1453]

      W. Yu, Y. Guo, S. Xu, et al., Energy Storage Mater. 54 (2023) 172–220.

    1454. [1454]

      G.H. Zhu, H.X. Huan, D. Yu, X.Y. Guo, Q.H. Tian, Prog. Chem. 35 (2023) 287–301.

    1455. [1455]

      E.G. Pinna, M.C. Ruiz, M.W. Ojeda, M.H. Rodriguez, Hydrometallurgy 167 (2017) 66–71.

    1456. [1456]

      R. Sattar, S. Ilyas, H.N. Bhatti, A. Ghaffar, Sep. Purif. Technol. 209 (2019) 725–733.

    1457. [1457]

      D.Y. Zhao, X. Zhang, X. Fan, Y.W. Sui, Energy Storage Sci. Technol. 12 (2023) 3087–3098.

    1458. [1458]

      L. Yu, X. Liu, S. Feng, et al., Chem. Eng. J. 476 (2023) 146733.

    1459. [1459]

      Y. Sun, H. Yang, J. Li, et al., J. Power Sources 602 (2024) 234407.

    1460. [1460]

      D.F. Wang, M. Chen, J.J. Zhao, et al., Rare Metals 44 (2025) 2059–2070.

    1461. [1461]

      Y. Li, L. Dong, P. Shi, Z. Ren, Z. Zhou, J. Power Sources. 598 (2024) 234158.

    1462. [1462]

      C. Yang, J.L. Zhang, Q.K. Jing, et al., Int. J. Miner. Metall. Mater. 28 (2021) 1478–1487.

    1463. [1463]

      D. Fu, W. Zhou, J. Liu, et al., Sep. Purif. Technol. 342 (2024) 127069.

    1464. [1464]

      B. Musariri, G. Akdogan, C. Dorfling, S. Bradshaw, Miner. Eng. 137 (2019) 108–117.

    1465. [1465]

      K. Liu, M. Wang, Q. Zhang, et al., J. Hazard. Mater. 445 (2023) 130502.

    1466. [1466]

      G. Siyu, D. Enhua, L. Bingguo, et al., Sep. Purif. Technol. 348 (2024) 127771.

    1467. [1467]

      S. Kim, S. Park, D. Kim, et al., Chem. Eng. J. 494 (2024) 153199.

    1468. [1468]

      D.C. Zhang, T.Y. Li, H. Wang, et al., J. Cent. South Univ. 30 (2023) 2205–2216.

    1469. [1469]

      L. Yuan, J. Wen, P. Ning, et al., ACS Sustain. Chem. Eng. 10 (2022) 1160–1171.

    1470. [1470]

      B. Zhang, S. Chen, L. Yang, et al., ACS Nano 18 (2024) 23773–23784.

    1471. [1471]

      T. Wang, L. Wang, C. Yi, et al., Chem. Eng. J. 492 (2024) 152298.

    1472. [1472]

      M. Ahuis, S. Doose, D. Vogt, et al., Nat. Energy 9 (2024) 373–385.

    1473. [1473]

      A.I. Waidha, A. Salihovic, M. Jacob, et al., ChemSusChem 16 (2023) e202202361.

    1474. [1474]

      K. Schneider, V. Kiyek, M. Finsterbusch, B. Yagmurlu, D. Goldmann. Metals. (Basel) 13 (2023) 834.

    1475. [1475]

      D.H.S. Tan, H. Yang, P. Xu, Sustainable closed-loop recycling of spent solid electrolytes and electrodes in all solid-State batteries, in: ECS Meeting, 2020, p. 75. MA2020-01.

    1476. [1476]

      Y. Chen, Y. Shen, Z. Shi, et al., Sep. Purif. Technol. 359 (2025) 130473.

    1477. [1477]

      J. Wang, H. Ji, J. Li, et al., Nat. Sustain. 7 (2024) 1283–1293.

    1478. [1478]

      K. Jia, J. Ma, J. Wang, et al., Adv. Mater. 35 (2023) 2208034.

    1479. [1479]

      J. Zhou, C. Xing, J. Huang, et al., Adv. Energy Mater. 14 (2024) 2302761.

    1480. [1480]

      L. Zhang, Z. Xu, Z. He, ACS Sustain Chem. Eng. 8 (2020) 11596–11605.

    1481. [1481]

      H. Nie, L. Xu, D. Song, et al., Green. Chem. 17 (2015) 1276–1280.

    1482. [1482]

      W. Chen, R.V. Salvatierra, J.T. Li, et al., Adv. Mater. 35 (2023) 2207303.

    1483. [1483]

      H. Zhang, Y. Ji, Y. Yao, et al., Energy Environ. Sci. 16 (2023) 2561–2571.

    1484. [1484]

      R. Shi, N. Zheng, H. Ji, et al., Adv. Mater. 36 (2024) 2311553.

    1485. [1485]

      X. Lv, J. Lin, Q. Huang, et al., ACS Energy Lett. 8 (2023) 4287–4295.

  • 加载中
    1. [1]

      Jiayu LiBinli WangYu LuoHongyu WangLei Zhang . The double-sided roles of difluorooxalatoborate contained electrolyte salts in electrochemical energy storage devices: A review. Chinese Chemical Letters, 2025, 36(8): 110220-. doi: 10.1016/j.cclet.2024.110220

    2. [2]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

    3. [3]

      Runjing XuXin GaoYa ChenXiaodong ChenLifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852

    4. [4]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    5. [5]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    8. [8]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    9. [9]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    10. [10]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    11. [11]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    12. [12]

      Hongfei LiHao ChenQi KangLihe GuoXingyi HuangHaiping Xu . Gel polymer electrolyte for flexible and stretchable lithium metal battery: Advances and prospects. Chinese Chemical Letters, 2025, 36(9): 110325-. doi: 10.1016/j.cclet.2024.110325

    13. [13]

      Chuyuan Lin Hui Lin Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407

    14. [14]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    15. [15]

      Mengxiao YangHaicheng HuangShiyi ShenXinxin LiuMengyu LiuJiahua GuoFenghui YangBaoli ZhaJiansheng WuSheng LiFengwei Huo . Flexible aqueous zinc-ion battery with low-temperature resistant leather gel electrolyte. Chinese Chemical Letters, 2025, 36(6): 109988-. doi: 10.1016/j.cclet.2024.109988

    16. [16]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    17. [17]

      Bao LiPengyao YanMengmin JiaLiang WangYaru QiaoHaowen LiCanhui WuZhuangzhuang ZhangDongmei DaiDai-Huo Liu . Engineering lithiophilic LiCx layer to robust interfacial chemistry between LAGP and Li anode for Li-metal batteries. Chinese Chemical Letters, 2025, 36(7): 110145-. doi: 10.1016/j.cclet.2024.110145

    18. [18]

      Mufan CaoLong PanYaping WangXianwei SuiXiong Xiong LiuShengfa FengPengcheng YuanMin GaoJiacheng LiuSong-Zhu Kure-ChuTakehiko HiharaYang ZhouZheng-Ming Sun . Mechanical-durable and humidity-resistant dry-processed halide solid-state electrolyte films for all-solid-state battery. Chinese Chemical Letters, 2025, 36(6): 110391-. doi: 10.1016/j.cclet.2024.110391

    19. [19]

      Sheng ZhaoJunjie LuBifu ShengSiying ZhangHao LiJizhang ChenXiang Han . High-performance room temperature solid-state lithium battery enabled by PP-PVDF multilayer composite electrolyte. Chinese Chemical Letters, 2025, 36(6): 110008-. doi: 10.1016/j.cclet.2024.110008

    20. [20]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

Metrics
  • PDF Downloads(0)
  • Abstract views(83)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return