-
[1]
D. Larcher, J.M. Tarascon, Nat. Chem. 7 (2015) 19–29.
doi: 10.1038/nchem.2085
-
[2]
J.B. Goodenough, Acc. Chem. Res. 46 (2013) 1053–1061.
doi: 10.1021/ar2002705
-
[3]
J.L. Brédas, J.M. Buriak, F. Caruso, et al., Chem. Mater. 31 (2019) 8577–8581.
doi: 10.1021/acs.chemmater.9b04345
-
[4]
Y.P. Deng, Z.G. Wu, R. Liang, et al., Adv. Funct. Mater. 29 (2019) 1808522.
doi: 10.1002/adfm.201808522
-
[5]
H.R. Oliveira Filho, H. Zanin, R.S. Monteiro, M.H.P. Barbosa, R.F. Teófilo, J. Energy Storage 82 (2024) 110536.
doi: 10.1016/j.est.2024.110536
-
[6]
C. Wang, C. Yang, Z. Zheng, Adv. Sci. 9 (2022) 2105213.
doi: 10.1002/advs.202105213
-
[7]
Q. Wang, L. Liu, H. Li, et al., J. Mater. Sci. Technol. 207 (2025) 274–294.
doi: 10.1016/j.jmst.2024.02.094
-
[8]
Z. Xu, K. Song, X. Chang, et al., Carbon Neutr. 3 (2024) 832–856.
doi: 10.1002/cnl2.162
-
[9]
X.T. Zhao, J.Z. Guo, W.L. Li, J.P. Zhang, X.L. Wu, Chin. Chem. Lett. 35 (2024) 108715.
doi: 10.1016/j.cclet.2023.108715
-
[10]
J. Huang, F. Li, M. Wu, et al., Sci. China Chem. 65 (2022) 840–857.
doi: 10.1007/s11426-021-1235-2
-
[11]
J. Chen, G. Adit, L. Li, et al., Energy Environ. Mater. 6 (2023) e12633.
doi: 10.1002/eem2.12633
-
[12]
S. Lou, F. Zhang, C. Fu, et al., Adv. Mater. 33 (2021) 2000721.
doi: 10.1002/adma.202000721
-
[13]
Z. Ju, Q. Zhao, D. Chao, et al., Adv. Energy Mater. 12 (2022) 2201074.
doi: 10.1002/aenm.202201074
-
[14]
G. Yang, Y. Zhu, Z. Hao, et al., Adv. Mater. 35 (2023) 2301898.
doi: 10.1002/adma.202301898
-
[15]
S. Zhang, G. Yang, X. Li, et al., Int. J. Miner. Metall. Mater. 29 (2022) 953–964.
doi: 10.1007/s12613-022-2442-3
-
[16]
H. Wang, J. Liu, J. He, et al., eScience 2 (2022) 557–565.
doi: 10.6023/cjoc202107050
-
[17]
J. Liu, X. Li, D. Wu, et al., Acta Phys. Chim. Sin. 40 (2024) 2306039.
doi: 10.3866/PKU.WHXB202306039
-
[18]
Z.X. Chen, M. Zhao, L.P. Hou, et al., Adv. Mater. 34 (2022) 2201555.
doi: 10.1002/adma.202201555
-
[19]
E.R. Ezeigwe, L. Dong, R. Manjunatha, et al., Nano Energy 95 (2022) 106964.
doi: 10.1016/j.nanoen.2022.106964
-
[20]
J. Han, P. Wang, H. Zhang, et al., Chin. Chem. Lett. 35 (2024) 109543.
doi: 10.1016/j.cclet.2024.109543
-
[21]
W. Zhang, J. Yin, W. Wang, Z. Bayhan, H.N. Alshareef, Nano Energy 83 (2021) 105792.
doi: 10.1016/j.nanoen.2021.105792
-
[22]
Y. Zhao, Y. Wang, J. Li, et al., eScience (2024) 100331.
doi: 10.1016/j.esci.2024.100331
-
[23]
Q. Sun, S. Luo, R. Huang, S. Yan, X. Lin, Coord. Chem. Rev. 515 (2024) 215956.
doi: 10.1016/j.ccr.2024.215956
-
[24]
M. Sun, Z. Wang, J. Jiang, X. Wang, C. Yu, Chin. Chem. Lett. 35 (2024) 109393.
doi: 10.1016/j.cclet.2023.109393
-
[25]
L. Li, S. Jia, M. Cao, et al., Chin. Chem. Lett. 34 (2023) 108307.
doi: 10.1016/j.cclet.2023.108307
-
[26]
Y. Lu, Q. Zhang, J. Chen, CCS Chem. 5 (2023) 1491–1508.
doi: 10.31635/ccschem.023.202302740
-
[27]
G. Yang, Y. Zhu, Q. Zhao, et al., Sci. China Chem. 67 (2024) 137–164.
doi: 10.1007/s11426-023-1654-5
-
[28]
Z. Li, Y.C. Lu, Adv. Mater. 32 (2020) 2002132.
doi: 10.1002/adma.202002132
-
[29]
K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull. 15 (1980) 783–789.
doi: 10.1016/0025-5408(80)90012-4
-
[30]
L. Wang, B. Chen, J. Ma, G. Cui, L. Chen, Chem. Soc. Rev. 47 (2018) 6505–6602.
doi: 10.1039/c8cs00322j
-
[31]
C. Lin, J. Li, Z.W. Yin, et al., Adv. Mater. 36 (2023) 2307404.
doi: 10.1002/adma.202307404
-
[32]
Y. Lyu, X. Wu, K. Wang, et al., Adv. Energy Mater. 11 (2020) 2000982.
doi: 10.1002/aenm.202000982
-
[33]
Q. Yang, J. Huang, Y. Li, et al., J. Power Sources 388 (2018) 65–70.
doi: 10.1016/j.jpowsour.2018.03.076
-
[34]
J.B. Goodenough, K.S. Park, J. Am. Chem. Soc. 135 (2013) 1167–1176.
doi: 10.1021/ja3091438
-
[35]
Z. Zhuang, J. Wang, K. Jia, et al., Adv. Mater. 35 (2023) 2212059.
doi: 10.1002/adma.202212059
-
[36]
W. Ding, H. Ren, Z. Li, et al., Adv. Energy Mater. 14 (2024) 2303926.
doi: 10.1002/aenm.202303926
-
[37]
C. Sun, X. Liao, F. Xia, et al., ACS. Nano 14 (2020) 6181–6190.
doi: 10.1021/acsnano.0c02237
-
[38]
Z. Wu, G. Zeng, J. Yin, et al., ACS Energy Lett. 8 (2023) 4806–4817.
doi: 10.1021/acsenergylett.3c01954
-
[39]
Y. Huang, Y. Zhu, H. Fu, et al., Angew. Chem. Int. Ed. 60 (2020) 4682–4688.
-
[40]
W. Zhang, X. Zhang, F. Cheng, et al., J. Energy Chem. 76 (2023) 557–565.
doi: 10.1016/j.jechem.2022.09.034
-
[41]
W. Kong, J. Zhang, D. Wong, et al., Angew. Chem. Int. Ed. 60 (2021) 27102–27112.
doi: 10.1002/anie.202112508
-
[42]
H. Ren, J. Hu, H. Ji, et al., Adv. Mater. 2 (2024) 2408875.
doi: 10.1002/adma.202408875
-
[43]
W. Zhang, F. Cheng, M. Chang, et al., Nano Energy 119 (2024) 109031.
doi: 10.1016/j.nanoen.2023.109031
-
[44]
Z. Zhu, D. Yu, Z. Shi, et al., Energy Environ. Sci. 13 (2020) 1865–1878.
doi: 10.1039/d0ee00231c
-
[45]
Y. Yan, S. Zhou, Y. Zheng, et al., Adv. Funct. Mater. 34 (2023) 2310799.
doi: 10.1002/adfm.202310799
-
[46]
Y. Yan, Q. Fang, X. Kuai, et al., Adv. Mater. 36 (2023) 2308656.
doi: 10.1002/adma.202308656
-
[47]
W. Dong, B. Ye, M. Cai, et al., ACS Energy Lett. 8 (2023) 881–888.
doi: 10.1021/acsenergylett.2c02434
-
[48]
W. Zhang, M. Wang, M. Chang, et al., Energy Storage Mater. 70 (2024) 103446.
doi: 10.1016/j.ensm.2024.103446
-
[49]
W. Zhang, F. Cheng, M. Wang, et al., Adv. Funct. Mater. 33 (2023) 2304008.
doi: 10.1002/adfm.202304008
-
[50]
M. Cai, Y. Dong, M. Xie, et al., Nat. Energy 8 (2023) 159–168.
doi: 10.1038/s41560-022-01179-3
-
[51]
A. Manthiram, Nat. Commun. 11 (2020) 1550.
doi: 10.1038/s41467-020-15355-0
-
[52]
J. Yang, X. Liang, H.H. Ryu, C.S. Yoon, Y.K. Sun, Energy Storage Mater. 63 (2023) 102969.
doi: 10.1016/j.ensm.2023.102969
-
[53]
Y.H. Luo, Q.L. Pan, H.X. Wei, et al., Adv. Energy Mater. 13 (2023) 2300125.
doi: 10.1002/aenm.202300125
-
[54]
X. He, J. Shen, B. Zhang, et al., Adv. Funct. Mater. 34 (2024) 2401300.
doi: 10.1002/adfm.202401300
-
[55]
Y.H. Luo, Q. l. Pan, H.X. Wei, et al., Mater. Today (2023) 54–65.
-
[56]
Y.H. Luo, Q.L. Pan, H.X. Wei, et al., eScience 4 (2024) 100229.
doi: 10.1016/j.esci.2024.100229
-
[57]
H. Zhang, X. He, Z. Chen, et al., Adv. Energy Mater. 12 (2022) 2202022.
doi: 10.1002/aenm.202202022
-
[58]
L. Ni, S. Zhang, A. Di, et al., Adv. Energy Mater. 12 (2022) 2201510.
doi: 10.1002/aenm.202201510
-
[59]
Z. Xue, F. Wu, M. Ge, et al., eScience 4 (2024) 100251.
doi: 10.1016/j.esci.2024.100251
-
[60]
M. Yoon, Y. Dong, Y. Huang, et al., Nat. Energy 8 (2023) 482–491.
doi: 10.1038/s41560-023-01233-8
-
[61]
Y. Zou, Y. Tang, Q. Zheng, et al., Adv. Funct. Mater. (2024) 2406068.
doi: 10.1002/adfm.202406068
-
[62]
T. Shi, F. Liu, W. Liu, et al., Nano Energy 123 (2024) 109410.
doi: 10.1016/j.nanoen.2024.109410
-
[63]
L. Wang, T. Liu, T. Wu, J. Lu, Nature 611 (2022) 61–67.
doi: 10.1038/s41586-022-05238-3
-
[64]
N.Y. Park, S.B. Kim, M.C. Kim, et al., Adv. Energy Mater. 13 (2023) 2301530.
doi: 10.1002/aenm.202301530
-
[65]
U.H. Kim, G.T. Park, B.K. Son, et al., Nat. Energy 5 (2020) 860–869.
doi: 10.1038/s41560-020-00693-6
-
[66]
Y.D. Huang, H.X. Wei, P.Y. Li, et al., J. Energy Chem. 75 (2022) 301–309.
doi: 10.1016/j.jechem.2022.08.010
-
[67]
D.H. Kim, J.H. Song, C.H. Jung, et al., Adv. Energy Mater. 12 (2022) 2200136.
doi: 10.1002/aenm.202200136
-
[68]
X.M. Fan, Y.D. Huang, H.X. Wei, et al., Adv. Funct. Mater. 32 (2021) 2109421.
doi: 10.1002/adfm.202109421
-
[69]
Y.D. Huang, P.Y. Li, H.X. Wei, et al., Chem. Eng. J. 477 (2023) 146850.
doi: 10.1016/j.cej.2023.146850
-
[70]
T. Liu, L. Yu, J. Liu, et al., Nat. Energy 9 (2024) 1252–1263.
doi: 10.1038/s41560-024-01605-8
-
[71]
Z. Li, Y. Wang, J. Wang, et al., Nat. Commun. 15 (2024) 10216.
doi: 10.1038/s41467-024-54637-9
-
[72]
X. Xu, S. Deng, H. Wang, J. Liu, H. Yan, Nano-Micro Lett. 9 (2017) 22.
doi: 10.1007/s40820-016-0123-3
-
[73]
F. Degen, M. Winter, D. Bendig, J. Tübke, Nat. Energy 8 (2023) 1284–1295.
doi: 10.1038/s41560-023-01355-z
-
[74]
X. Zhu, A. Huang, I. Martens, et al., Adv. Energy Mater. 36 (2024) 2403482.
doi: 10.1002/aenm.202403482
-
[75]
P. Stüble, V. Mereacre, H. Geßwein, J.R. Binder, Adv. Energy Mater. 13 (2023) 2203778.
doi: 10.1002/aenm.202203778
-
[76]
G. Liang, V.K. Peterson, Z. Wu, et al., Adv. Energy Mater. 33 (2021) 2101413.
-
[77]
J. Liu, J. Wang, Y. Ni, K. Zhang, F. Cheng, J. Chen, Mater. Today 43 (2021) 132–165.
doi: 10.1016/j.mattod.2020.10.028
-
[78]
M. Kuenzel, G.T. Kim, M. Zarrabeitia, et al., Mater. Today 39 (2020) 127–136.
doi: 10.1016/j.mattod.2020.04.003
-
[79]
F. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 49 (2020) 1569–1614.
doi: 10.1039/c7cs00863e
-
[80]
X. Zhang, P. Xu, J. Duan, et al., Nat. Commun. 15 (2024) 536.
doi: 10.1038/s41467-024-44858-3
-
[81]
J. Lee, D.A. Kitchaev, D.H. Kwon, et al., Nature 556 (2018) 185–190.
doi: 10.1038/s41586-018-0015-4
-
[82]
W. Zuo, M. Luo, X. Liu, et al., Energy Environ. Sci. 13 (2020) 4450–4497.
doi: 10.1039/d0ee01694b
-
[83]
W. He, W. Guo, H. Wu, et al., Adv. Mater. 33 (2021) 2005937.
doi: 10.1002/adma.202005937
-
[84]
H. Zheng, X. Han, W. Guo, et al., Mater. Today Energy 18 (2020) 100518.
doi: 10.1016/j.mtener.2020.100518
-
[85]
X. He, J. Wu, Z. Zhu, et al., Energy Environ. Sci. 15 (2022) 4137–4147.
doi: 10.1039/d2ee01229d
-
[86]
R.A. House, J.-J. Marie, M.A. Pérez-Osorio, et al., Nat. Energy 6 (2021) 781–789.
doi: 10.1038/s41560-021-00780-2
-
[87]
S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Angew. Chem. Int. Ed. 60 (2021) 2208–2220.
doi: 10.1002/anie.202000262
-
[88]
Y. Zuo, H. Shang, J. Hao, et al., J. Am. Chem. Soc. 145 (2023) 5174–5182.
doi: 10.1021/jacs.2c11640
-
[89]
B. Kim, J.H. Song, D. Eum, et al., Nat. Sustain. 5 (2022) 708–716.
doi: 10.1038/s41893-022-00890-z
-
[90]
Q. Li, D. Ning, D. Wong, et al., Nat. Commun. 13 (2022) 1123.
doi: 10.1038/s41467-022-28793-9
-
[91]
R.A. House, G.J. Rees, K. McColl, et al., Nat. Energy 8 (2023) 351–360.
doi: 10.1038/s41560-023-01211-0
-
[92]
M.D. Radin, J. Vinckeviciute, R. Seshadri, A. Van Der Ven, Nat. Energy 4 (2019) 639–646.
doi: 10.1038/s41560-019-0439-6
-
[93]
H. Ren, Y. Li, Q. Ni, et al., Adv. Mater. 34 (2022) 2106171.
doi: 10.1002/adma.202106171
-
[94]
X. Li, Y. Qiao, S. Guo, et al., Adv. Mater. 30 (2018) 1705197.
doi: 10.1002/adma.201705197
-
[95]
X. Gou, Z. Hao, G. Yang, et al., Adv. Funct. Mater. 32 (2022) 2112088.
doi: 10.1002/adfm.202112088
-
[96]
P. Kou, Z. Zhang, Z. Wang, et al., Energy Fuels. 37 (2023) 18243–18265.
doi: 10.1021/acs.energyfuels.3c02447
-
[97]
Y. Jin, Z. Zhao, P.G. Ren, et al., Adv. Energy Mater. 14 (2024) 2402061.
doi: 10.1002/aenm.202402061
-
[98]
C. Shen, L. Hu, Q. Duan, et al., Adv. Energy Mater. 13 (2023) 2302957.
doi: 10.1002/aenm.202302957
-
[99]
M. Zhou, J. Zhao, X. Wang, et al., Chin. Chem. Lett. 34 (2023) 107793.
doi: 10.1016/j.cclet.2022.107793
-
[100]
X. Cao, J. Sun, Z. Chang, et al., Adv. Funct. Mater. 32 (2022) 2205199.
doi: 10.1002/adfm.202205199
-
[101]
J. Sun, C. Sheng, X. Cao, et al., Adv. Funct. Mater. 32 (2022) 2110295.
doi: 10.1002/adfm.202110295
-
[102]
Y. Yu, Z. Yang, J. Zhong, et al., ACS Appl. Mater. Interfaces 12 (2020) 13996–14004.
doi: 10.1021/acsami.0c00944
-
[103]
P. Liu, H. Zhang, W. He, et al., J. Am. Chem. Soc. 141 (2019) 10876–10882.
doi: 10.1021/jacs.9b04974
-
[104]
B. Jiang, J. Li, B. Luo, et al., J. Energy Chem. 60 (2021) 564–571.
doi: 10.1016/j.jechem.2021.01.024
-
[105]
Q. Li, D. Zhou, L. Zhang, et al., Adv. Funct. Mater. 29 (2019) 1806706.
doi: 10.1002/adfm.201806706
-
[106]
Y. Li, X. Zhu, C. Wei, et al., Chin. Chem. Lett. 35 (2024) 109536.
doi: 10.1016/j.cclet.2024.109536
-
[107]
B. Zhou, S.Y. An, D. Kitsche, et al., Small. Struct. 5 (2024) 2400005.
doi: 10.1002/sstr.202400005
-
[108]
Z.L. Yu, X.Y. Qu, et al., Ceram. Int. 47 (2021) 1758–1765.
doi: 10.1016/j.ceramint.2020.09.001
-
[109]
C. Baur, I. Källquist, J. Chable, et al., J. Mater. Chem. A 7 (2019) 21244–21253.
doi: 10.1039/c9ta06291b
-
[110]
P.C. Zhong, Z.J. Cai, Y.Q. Zhang, et al., Chem. Mater. 32 (2020) 10728–10736.
doi: 10.1021/acs.chemmater.0c04109
-
[111]
Y.X. Zhang, A.Y. Hu, J. Liu, et al., Adv. Funct. Mater. 32 (2022) 2110502.
doi: 10.1002/adfm.202110502
-
[112]
Z.Y. Lun, B. Ouyang, D.A. Kitchaev, et al., Adv. Energy Mater. 9 (2019) 1802959.
doi: 10.1002/aenm.201802959
-
[113]
V.C. Wu, P.C. Zhong, J. Ong, et al., ACS Energy Lett. 9 (2024) 3027–3035.
doi: 10.1021/acsenergylett.4c01075
-
[114]
Z.Y. Lun, B. Ouyang, D.H. Kwon, et al., Nat. Mater. 20 (2021) 214–221.
doi: 10.1038/s41563-020-00816-0
-
[115]
Z.J. Cai, B. Ouyang, H.M. Hau, et al., Nat. Energy 9 (2024) 27–36.
-
[116]
H.M. Hau, T. Mishra, C. Ophus, et al., Nat. Nanotechnol. 19 (2024) 1831–1839.
doi: 10.1038/s41565-024-01787-y
-
[117]
Y.M. Huang, Y.H. Dong, Y. Yang, et al., Nat. Energy 9 (2024) 1497–1505.
doi: 10.1038/s41560-024-01615-6
-
[118]
A. Manthiram, J.B. Goodenough, Nat. Energy 6 (2021) 844–845.
doi: 10.1038/s41560-021-00865-y
-
[119]
A.K. Padhi, V. Manivannan, J.B. Goodenough, J. Electrochem. Soc. 145 (1998) 1518–1520.
doi: 10.1149/1.1838513
-
[120]
S.K. Martha, J. Grinblat, O. Haik, et al., Angew. Chem. Int. Ed. 48 (2009) 8559–8563.
doi: 10.1002/anie.200903587
-
[121]
M. Kim, S. Lee, B. Kang, Adv. Sci. 3 (2016) 27774395.
-
[122]
W. Zhang, Z. Hu, C. Fan, et al., ACS Appl. Mater. Interfaces 13 (2021) 15190–15204.
doi: 10.1021/acsami.0c22958
-
[123]
L. Lander, J.M. Tarascon, A. Yamada, Chem. Rec. 18 (2018) 1394–1408.
doi: 10.1002/tcr.201800071
-
[124]
L. Zhang, J.M. Tarascon, M.T. Sougrati, G. Rousse, G. Chen, J. Mater. Chem. A 3 (2015) 16988–16997.
doi: 10.1039/C5TA05107J
-
[125]
M. Sun, G. Rousse, A.M. Abakumov, et al., J. Am. Chem. Soc. 136 (2014) 12658–12666.
doi: 10.1021/ja505268y
-
[126]
Y. Lan, W. Yao, X.H. Song, Y. Tang, Angew. Chem. Int. Ed. 59 (2020) 255–9262.
-
[127]
J. Wang, H. Liu, C. Du, et al., eScience 4 (2024) 100224.
doi: 10.1016/j.esci.2023.100224
-
[128]
D. Xu, M. Liang, S. Qi, et al., ACS Nano 15 (2021) 47–80.
doi: 10.1021/acsnano.0c05896
-
[129]
T.B. Schon, B.T. McAllister, P.F. Li, D.S. Seferos, Chem. Soc. Rev. 45 (2016) 6345–6404.
doi: 10.1039/C6CS00173D
-
[130]
Y. Lu, J. Chen, Nat. Rev. Chem. 4 (2020) 127–142.
doi: 10.1038/s41570-020-0160-9
-
[131]
J. Kim, Y. Kim, J. Yoo, et al., Nat. Rev. Mater. 8 (2023) 54–70.
doi: 10.4055/jkoa.2023.58.1.54
-
[132]
J. Wang, A.E. Lakraychi, X. Liu, et al., Nat. Mater. 20 (2021) 665–673.
doi: 10.1038/s41563-020-00869-1
-
[133]
C. Han, H. Li, R. Shi, et al., J. Mater. Chem. A 7 (2019) 23378–23415.
doi: 10.1039/c9ta05252f
-
[134]
P. Poizot, J. Gaubicher, S. Renault, et al., Chem. Rev. 120 (2020) 6490–6557.
doi: 10.1021/acs.chemrev.9b00482
-
[135]
J. Liang, X. Li, J.T. Kim, et al., Angew. Chem. Int. Ed. 62 (2023) e202217081.
doi: 10.1002/anie.202217081
-
[136]
K. Wang, Z. Gu, Z. Xi, L. Hu, C. Ma, Nat. Commun. 14 (2023) 1396.
doi: 10.1108/compel-09-2022-0326
-
[137]
Z. Song, Y. Dai, T. Wang, et al., Adv. Mater. 36 (2024) e2405277.
doi: 10.1002/adma.202405277
-
[138]
X. Yang, X. Gao, M. Jiang, et al., Angew. Chem. Int. Ed. 135 (2023) e202215680.
doi: 10.1002/ange.202215680
-
[139]
X. Li, J. Liang, X. Yang, et al., Energy Environ. Sci. 13 (2020) 1429–1461.
doi: 10.1039/c9ee03828k
-
[140]
Z. Liu, G. Zhang, J. Pepas, Y. Ma, H. Chen, ACS Energy Lett. 9 (2024) 5464–5470.
doi: 10.1021/acsenergylett.4c02376
-
[141]
Z. Liu, J. Liu, S. Zhao, et al., Nat. Sustain. 7 (2024) 1492–1500.
doi: 10.1038/s41893-024-01431-6
-
[142]
X. Zhou, M. Jiang, Y. Duan, et al., Angew. Chem. Int. Ed. 64 (2025) e202416635.
doi: 10.1002/anie.202416635
-
[143]
W. Li, J. Liang, M. Li, et al., Chem. Mater. 32 (2020) 7019–7027.
doi: 10.1021/acs.chemmater.0c02419
-
[144]
Y. Li, Y. Lu, P. Adelhelm, M.M. Titirici, Y.S. Hu, Chem. Soc. Rev. 48 (2019) 4655–4687.
doi: 10.1039/c9cs00162j
-
[145]
J.R. Dahn, Phys. Rev. B 44 (1991) 9170.
doi: 10.1103/PhysRevB.44.9170
-
[146]
G. Yang, S. Zhang, S. Weng, et al., Nano Lett. 21 (2021) 5316–5323.
doi: 10.1021/acs.nanolett.1c01436
-
[147]
J. Liu, H. Shi, K. Yu, et al., Chin. Chem. Lett. 34 (2023) 108274.
doi: 10.1016/j.cclet.2023.108274
-
[148]
A. Mabuchi, K. Tokumitsu, H. Fujimoto, T. Kasuh, J. Electrochem. Soc. 142 (1995) 1041.
doi: 10.1149/1.2044128
-
[149]
S. Qiu, L. Xiao, M.L. Sushko, et al., Adv. Energy Mater. 7 (2017) 1700403.
doi: 10.1002/aenm.201700403
-
[150]
N. Sun, Z. Guan, Y. Liu, et al., Adv. Energy Mater. 9 (2019) 1901351.
doi: 10.1002/aenm.201901351
-
[151]
Y.H. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Carbon 34 (1996) 193.
doi: 10.1016/0008-6223(96)00177-7
-
[152]
E. Buiel, J.R. Dahn, J. Electrochem. Soc. 145 (1998) 1977.
doi: 10.1149/1.1838585
-
[153]
M.F. El-Kady, Y. Shao, R.B. Kaner, Nat. Rev. Mater. 1 (2016) 16033.
doi: 10.1038/natrevmats.2016.33
-
[154]
A.J. Clancy, M.K. Bayazit, S.A. Hodge, et al., Chem. Rev. 118 (2018) 7363–7408.
doi: 10.1021/acs.chemrev.8b00128
-
[155]
G. Yang, Z. Liu, S. Weng, et al., Energy Storage Mater. 36 (2021) 459–465.
doi: 10.1016/j.ensm.2021.01.022
-
[156]
Y. Fang, Y. Liu, L. Qi, Y. Xue, Y. Li, Chem. Soc. Rev. 51 (2022) 2681–2709.
doi: 10.1039/d1cs00592h
-
[157]
Z. Zhao, F. Chen, J. Han, et al., Adv. Energy Mater. 13 (2023) 2300367.
doi: 10.1002/aenm.202300367
-
[158]
Y. Cui, Nat. Energy 6 (2021) 995–996.
doi: 10.1038/s41560-021-00918-2
-
[159]
J. Shen, S. Zhang, H. Wang, et al., eScience 4 (2024) 100207.
doi: 10.1016/j.esci.2023.100207
-
[160]
X. Pan, Y. Cui, Z. Wang, et al., Chin. Chem. Lett. 35 (2024) 109567.
doi: 10.1016/j.cclet.2024.109567
-
[161]
M. Gu, Y. He, J. Zheng, C. Wang, Nano Energy 17 (2015) 366–383.
doi: 10.1016/j.nanoen.2015.08.025
-
[162]
W. An, P. He, Z. Che, et al., ACS Appl. Mater. 14 (2022) 10308–10318.
doi: 10.1021/acsami.1c22656
-
[163]
C.L. Berhaut, M. Mirolo, D.Z. Dominguez, et al., Adv. Energy Mater. 13 (2023) 2301874.
doi: 10.1002/aenm.202301874
-
[164]
B.S. Lee, S.H. Oh, Y.J. Choi, et al., Nat. Commun. 14 (2023) 150.
doi: 10.1038/s41467-022-35769-2
-
[165]
S. Pan, J. Han, Y. Wang, et al., Adv. Mater. 34 (2022) 2203617.
doi: 10.1002/adma.202203617
-
[166]
Q. Meng, M. Fan, X. Chang, et al., Adv. Energy Mater. 13 (2023) 2300507.
doi: 10.1002/aenm.202300507
-
[167]
H. Wang, A. Shao, R. Pan, et al., ACS Nano 17 (2023) 21850–21864.
doi: 10.1021/acsnano.3c07869
-
[168]
K.L. Browning, R.L. Sacci, M. Doucet, J.F. Browning, J.R. Kim, G.M. Veith, ACS Appl. Mater. 12 (2020) 10018–10030.
doi: 10.1021/acsami.9b22382
-
[169]
T. Chen, J. Hu, L. Zhang, et al., J. Power Sources 362 (2017) 236–242.
doi: 10.1117/12.2295929
-
[170]
F. Wang, Y. Wang, Z. Liu, et al., Adv. Energy Mater. 13 (2023) 2301456.
doi: 10.1002/aenm.202301456
-
[171]
F. Lindgren, C. Xu, L. Niedzicki, et al., ACS Appl. Mater. 8 (2016) 15758–15766.
doi: 10.1021/acsami.6b02650
-
[172]
H. Adenusi, G.A. Chass, S. Passerini, K.V. Tian, G. Chen, Adv. Energy Mater. 13 (2023) 2203307.
doi: 10.1002/aenm.202203307
-
[173]
L.B. Huang, G. Li, Z.Y. Lu, et al., ACS Appl. Mater. 13 (2021) 24916–24924.
doi: 10.1021/acsami.1c05379
-
[174]
M.G. Oh, S. Kwak, K. An, et al., Adv. Funct. Mater. 33 (2023) 2212890.
doi: 10.1002/adfm.202212890
-
[175]
J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, Adv. Energy Mater. 11 (2021) 2100046.
doi: 10.1002/aenm.202100046
-
[176]
E.W.C. Spotte-Smith, T.B. Petrocelli, H.D. Patel, S.M. Blau, K.A. Persson, ACS Energy Lett. 8 (2023) 347–355.
doi: 10.1021/acsenergylett.2c02351
-
[177]
Y. Wu, S.H. Bo, Y. Xia, J. Power Sources 467 (2020) 228292.
doi: 10.1016/j.jpowsour.2020.228292
-
[178]
C. Cao, I.I. Abate, E. Sivonxay, et al., Joule 3 (2019) 762–781.
doi: 10.1016/j.joule.2018.12.013
-
[179]
H. Zeng, K. Yu, J. Li, et al., ACS Nano 18 (2024) 1969–1981.
doi: 10.1021/acsnano.3c07038
-
[180]
H.M. Bintang, S. Lee, J.T. Kim, H.G. Jung, H.D. Lim, ACS Appl. Mater. 14 (2022) 805–813.
doi: 10.1021/acsami.1c19260
-
[181]
D. Cao, X. Sun, Y. Li, et al., Adv. Mater. 34 (2022) 2200401.
doi: 10.1002/adma.202200401
-
[182]
Z. Zhang, Y. Cui, R. Vila, et al., Acc. Chem. Res. 54 (2021) 3505–3517.
doi: 10.1021/acs.accounts.1c00183
-
[183]
J. Wang, D. Yu, X. Sun, H. Wang, J. Li, eScience 4 (2024) 100252.
doi: 10.1016/j.esci.2024.100252
-
[184]
H. Jin, Y. Huang, C. Wang, H. Ji, Small. Sci. 2 (2022) 2200015.
doi: 10.1002/smsc.202200015
-
[185]
C.M. Park, H.J. Sohn, Adv. Mater. 19 (2007) 2465–2468.
doi: 10.1002/adma.200602592
-
[186]
J. Sun, G.Y. Zheng, H.W. Lee, et al., Nano Lett. 14 (2014) 4573–4580.
doi: 10.1021/nl501617j
-
[187]
H.C. Jin, H.Y. Wang, Z.K. Qi, et al., Angew. Chem. Int. Ed. 59 (2020) 2318–2322.
doi: 10.1002/anie.201913129
-
[188]
H.C. Jin, S. Xin, C.H. Chuang, et al., Science 370 (2020) 192–197.
doi: 10.1126/science.aav5842
-
[189]
P. Li, H.C. Jin, G.M. Zhong, et al., ACS Appl. Mater. Interfaces 14 (2022) 18506–18512.
doi: 10.1021/acsami.2c01494
-
[190]
Y.D. Ye, Q. Xiao, H.Y. Xie, H.C. Jin, H.X. Ji, Chem. Commun. 60 (2024) 14077–14080.
doi: 10.1039/d4cc03317e
-
[191]
T.Y. Zhu, H.Y. Xie, Y.S. Xie, et al., J. Phys. Chem C 128 (2024) 18200–18207.
doi: 10.1021/acs.jpcc.4c06158
-
[192]
E. Zhou, H.C. Jin, H.F. Lv, et al., J. Am. Chem. Soc. 146 (2024) 20700–20708.
doi: 10.1021/jacs.4c03680
-
[193]
S. Zhang, Y. Wan, Y. Cao, Y. Zhang, et al., eScience 5 (2025) 100328.
doi: 10.1016/j.esci.2024.100328
-
[194]
X.P. Han, H.C. Gong, H. Li, J. Sun, Chem. Rev. 124 (2024) 6903–6951.
doi: 10.1021/acs.chemrev.3c00646
-
[195]
X. Kong, Y. Su, C. Xing, et al., Chin. Chem. Lett. 35 (2024) 109428.
doi: 10.1016/j.cclet.2023.109428
-
[196]
S. Lou, X. Cheng, Y. Zhao, et al., Nano Energy 34 (2017) 15–25.
doi: 10.1016/j.nanoen.2017.01.058
-
[197]
S. Lou, X. Cheng, L. Wang, et al., J. Power Sources 361 (2017) 80–86.
doi: 10.1016/j.jpowsour.2017.06.0231
-
[198]
J. Gao, X. Cheng, S. Lou, et al., J. Alloys Compd. 728 (2017) 534–540.
doi: 10.1016/j.jallcom.2017.09.045
-
[199]
Y. Zhang, C. Kang, W. Zhao, et al., Energy Storage Mater. 47 (2022) 178–186.
doi: 10.1016/j.ensm.2022.01.061
-
[200]
A. Shi, Y. Zhang, S. Geng, et al., Nano Energy 123 (2024) 109349.
doi: 10.1016/j.nanoen.2024.109349
-
[201]
S. Geng, Y. Zhang, L. Shi, et al., Energy Storage Mater. 68 (2024) 103339.
doi: 10.1016/j.ensm.2024.103339
-
[202]
Y. Zhang, W. Zhao, C. Kang, et al., Matter. 6 (2023) 1928–1944.
doi: 10.1016/j.matt.2023.03.026
-
[203]
Y. Zhang, Y. Wang, W. Zhao, et al., Nat. Commun. 15 (2024) 6299.
doi: 10.1038/s41467-024-50455-1
-
[204]
K. Xu, Chem. Rev. 114 (2014) 11503–11618.
doi: 10.1021/cr500003w
-
[205]
R. Rauh, S.J.E.A. Brummer, J. Electrochem. Soc. 22 (1977) 75–83.
-
[206]
R. Selim, P.J.J.o.T.E.S. Bro, J. Electrochem. Soc. 121 (1974) 1457.
doi: 10.1149/1.2401708
-
[207]
K.J.C.r. Xu, Chem. Rev. 104 (2004) 4303–4418.
doi: 10.1021/cr030203g
-
[208]
M.S.J.S. Whittingham, Science 192 (1976) 1126–1127.
doi: 10.1126/science.192.4244.1126
-
[209]
J. Quinn, J.M. Kim, R. Yi, et al., Adv. Energy Mater. 36 (2024) 2402625.
-
[210]
X. Tang, C. Zhu, Y. Yang, et al., Chin. Chem. Lett. 35 (2024) 110014.
doi: 10.1016/j.cclet.2024.110014
-
[211]
D. Aurbach, E. Markevich, G. Salitra, J. Am. Chem. Soc. 143 (2021) 21161–21176.
doi: 10.1021/jacs.1c11315
-
[212]
Q. Yu, Y. Xiao, S. Zhao, et al., Adv. Energy Mater. 34 (2024) 2401868.
-
[213]
M. Qin, Z. Zeng, F. Ma, et al., Adv. Energy Mater. 9 (2024) 2536–2544.
doi: 10.1021/acsenergylett.4c00790
-
[214]
J. Wang, P. Kumar, Z. Ma, et al., Adv. Energy Mater. 9 (2024) 4386–4398.
doi: 10.1021/acsenergylett.4c01920
-
[215]
M. Yeddala, L. Rynearson, B.L.J.A.E.L. Lucht, J. Electrochem. Soc. 8 (2023) 4782–4793.
doi: 10.1021/acsenergylett.3c01709
-
[216]
X. Tang, S. Qi, J. He, et al., Chin. Chem. Lett. 35 (2024) 110622.
-
[217]
W. Zhang, T. Yang, X. Liao, Y. Song, Y.J.E.S.M. Zhao, J. Electrochem. Soc. 57 (2023) 249–259.
-
[218]
Z. Wen, W. Fang, F. Wang, et al., J. Electrochem. Soc. 63 (2024) e202314876.
-
[219]
A. Zhang, Z. Bi, G. Wang, et al., eScience 17 (2024) 3021–3031.
doi: 10.1039/d4ee00676c
-
[220]
K. Xu, Nat. Energy 6 (2021) 763-763.
-
[221]
S. Wang, J. Shi, Z. Liu, Y. Xia, Adv. Energy Mater. 14 (2024) 2401526.
-
[222]
Y. Yang, W. Yang, H. Yang, H. Zhou, eScience 3 (2023) 100170.
-
[223]
Y. Xia, P. Zhou, X. Kong, et al., Nat. Energy 8 (2023) 934–945.
doi: 10.1038/s41560-023-01282-z
-
[224]
M. Ma, R. Huang, M. Ling, Y.S. Hu, H. Pan, Interdiscip. Mater. 2 (2023) 833–854.
doi: 10.1002/idm2.12131
-
[225]
L.L. Jiang, C. Yan, Y.X. Yao, et al., Angew. Chem. Int. Ed. 60 (2020) 3402–3406.
doi: 10.1021/acsanm.0c00152
-
[226]
X. Peng, B. Liu, J. Chen, et al., ACS Energy Lett. 8 (2023) 3586–3594.
doi: 10.1021/acsenergylett.3c01091
-
[227]
X. Zhu, Y. Mo, J. Chen, et al., Chin. Chem. Lett. 35 (2024) 109146.
-
[228]
J. Huang, J. He, Q. Liu, J. Ma, Adv. Funct. Mater. 33 (2023) 2213811.
-
[229]
L. Liu, Z. Shadike, N. Wang, et al., eScience 4 (2024) 100268.
-
[230]
S. Duan, S. Zhang, Y. Li, et al., ACS Energy Lett. 9 (2024) 3578–3586.
doi: 10.1021/acsenergylett.4c00917
-
[231]
M.C. Liu, Q.S. Liu, Y.Z. Quan, et al., Chin. Chem. Lett. 35 (2024) 109123.
-
[232]
C. Zhu, D. Wu, C. Wang, J. Ma, Adv. Funct. Mater. 34 (2024) 2406764.
-
[233]
Z. Ni, C. Wei, Z. Wang, et al., Energy Storage Mater. 71 (2024) 103603.
-
[234]
Z. Wang, Y. Wang, B. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202206682.
-
[235]
Q. Guo, R. Luo, Z. Tang, et al., ACS Nano 17 (2023) 24227–24241.
doi: 10.1021/acsnano.3c09643
-
[236]
H. Chen, K. Chen, J. Yang, et al., J. Am. Chem. Soc. 146 (2024) 15751–15760.
doi: 10.1021/jacs.4c01395
-
[237]
X.Z. Zhang, P. Xu, J.N. Duan, et al., Nat. Commun. 15 (2024) 536.
-
[238]
L. Xia, L.P. Yu, D. Hu, C.Z. George, Acta Chim. Sin. 75 (2017) 1183–1195.
doi: 10.6023/A17060284
-
[239]
L. Lv, H. Zhang, D. Lu, et al., Energy Mater. 2 (2022) 200030.
doi: 10.20517/energymater.2022.38
-
[240]
J.H. Zhou, C. Zhang, H.M. Wang, et al., Adv. Sci. 11 (2024) 2410129.
-
[241]
W.B. Hou, D.L. Zhu, S.D. Ma, et al., J. Power Sources 517 (2022) 8.
-
[242]
S. Tan, Y.J. Ji, Z.R. Zhang, Y. Yang, Chemphyschem 15 (2014) 1956–1969.
doi: 10.1002/cphc.201402175
-
[243]
F. Hai, X.L. Tian, Y.K. Yi, et al., Energy Storage Mater. 54 (2023) 641–650.
-
[244]
L.W. Dong, Y.P. Liu, D.J. Chen, et al., Energy Storage Mater. 44 (2022) 527–536.
-
[245]
T.L. Chen, M.T. Liu, X.Y. Fan, et al., ACS Energy Lett. 9 (2024) 5452–5460.
doi: 10.1021/acsenergylett.4c02458
-
[246]
S.B. Lee, T. Yim, J. Power Sources 551 (2022) 232202.
-
[247]
W.H. Hou, Y. Ou, T.Y. Zeng, et al., Energy Environ. Sci. 17 (2024) 8325–8336.
doi: 10.1039/d4ee03280b
-
[248]
Y.L. Huang, B.W. Cao, X.L. Xu, et al., Adv. Energy Mater. 14 (2024) 2400943.
-
[249]
Z.Q. Chen, Y.F. Chao, W.H. Li, et al., Adv. Sci. 8 (2021) 2003694.
-
[250]
M.M. Rahman, E.Y. Hu, Angew. Chem. Int. Ed. 62 (2023) e202311051.
-
[251]
C. Wu, Y. Zhou, X.L. Zhu, et al., Acta Phys. Chim. Sin. 37 (2021) 2008044.
-
[252]
Z.Y. Tang, Z.Y.T. Xie, Q.Q. Cai, et al., Energy Storage Mater. 67 (2024) 103309.
-
[253]
C.C. Su, M.N. He, J.Y. Shi, et al., Energy Environ. Sci. 14 (2021) 3029–3034.
doi: 10.1039/d0ee03890c
-
[254]
X.D. Ren, S.R. Chen, H. Lee, et al., Chem 4 (2018) 1877–1892.
-
[255]
J.L. Fu, X. Ji, J. Chen, et al., Angew. Chem. Int. Ed. 59 (2020) 22194–22201.
doi: 10.1002/anie.202009575
-
[256]
W. Li, S. Han, C. Xiao, et al., Angew. Chem. Int. Ed. 63 (2024) e202410392.
-
[257]
C. Guo, Y. Guo, S. Yao, et al., Energy Storage Mater. 71 (2024) 103683.
-
[258]
Z. Li, Y. Zhao, W.E. Tenhaeff, ACS Appl. Energy Mater. 2 (2019) 3264–3273.
doi: 10.1021/acsaem.9b00103
-
[259]
M. Ue, K. lda, S. Mori, J. Electrochem. Soc. 141 (1994) 2989–2996.
doi: 10.1149/1.2059270
-
[260]
S.H. Lee, J.Y. Hwang, S.J. Park, G.T. Park, Y.K. Sun, Adv. Funct. Mater. 29 (2019) 1902496.
-
[261]
Y.S. Kim, T.H. Kim, H. Lee, H.K. Song, Energy Environ. Sci. 4 (2011) 4038–4045.
doi: 10.1039/c1ee01272j
-
[262]
A. Narayanan Kirshnamoorthy, K. Oldiges, M. Winter, et al., Phys. Chem. Chem. Phys. 20 (2018) 25701–25715.
doi: 10.1039/c8cp04102d
-
[263]
L. Luo, K. Chen, H. Chen, et al., Adv. Mater. 36 (2023) 2308881.
-
[264]
X. Huang, R. Li, C. Sun, et al., ACS Energy Lett. 7 (2022) 3947–3957.
doi: 10.1021/acsenergylett.2c02240
-
[265]
P. Prakash, B. Fall, J. Aguirre, et al., Nat. Mater. 22 (2023) 627–635.
doi: 10.1038/s41563-023-01508-1
-
[266]
D. Farhat, D. Lemordant, J. Jacquemin, F. Ghamouss, J. Electrochem. Soc. 166 (2019) A3487–A3495.
doi: 10.1149/2.1261914jes
-
[267]
Z. Peng, X. Cao, P. Gao, et al., Adv. Funct. Mater. 30 (2020) 2001285.
-
[268]
Z. Hu, F. Xian, Z. Guo, et al., Chem. Mater. 32 (2020) 3405–3413.
doi: 10.1021/acs.chemmater.9b05003
-
[269]
J. Zhang, H. Wu, X. Du, et al., Adv. Energy Mater. 13 (2022) 2202529.
-
[270]
L. Zhao, A. Xu, Y. Cheng, et al., Angew. Chem. Int. Ed. 63 (2024) e202411224.
-
[271]
P. Xiao, X. Yun, Y. Chen, et al., Chem. Soc. Rev. 52 (2023) 5255–5316.
doi: 10.1039/d3cs00151b
-
[272]
M. Li, Y. Liu, X. Yang, et al., Adv. Mater. 36 (2024) 2404271.
-
[273]
S.Y. Yuan, K. Ding, X.Y. Zeng, et al., Adv. Mater. 35 (2023) 2206228.
-
[274]
X. Wu, Y. Dai, N.W. Li, X.C. Chen, L. Yu, eScience 4 (2024) 100173.
-
[275]
K.X. Liu, Z.Y. Wang, L.Y. Shi, S. Jungsuttiwong, S. Yuan, J. Energy Chem. 59 (2021) 320–333.
-
[276]
S. Lee, K. Park, B. Koo, et al., Adv. Funct. Mater. 30 (2020) 2003132.
-
[277]
H. Sun, G.Z. Zhu, Y.M. Zhu, et al., Adv. Mater. 32 (2020) 2001741.
-
[278]
W.H. Zou, J. Zhang, M.Y. Liu, et al., Adv. Mater. 36 (2024) 2400537.
-
[279]
K. Ding, E.J. Begin, S.Y. Yuan, et al., Adv. Energy Mater. 13 (2023) 2302443.
-
[280]
F.W. Ding, Y.X. Li, G.X. Zhang, et al., Adv. Mater. 36 (2024) 2400177.
-
[281]
Q. Liu, W. Jiang, J.Y. Xu, et al., Nat. Commun. 14 (2023) 3678.
-
[282]
C.N. Hong, M.W. Yan, O. Borodin, et al., Energy Environ. Sci. 17 (2024) 4137–4146.
doi: 10.1039/d4ee00296b
-
[283]
Y. Guo, S. Wu, Y.-B. He, et al., eScience 2 (2022) 138–163.
-
[284]
W. Zhang, V. Koverga, S. Liu, et al., Nat. Energy 9 (2024) 386–400.
doi: 10.1038/s41560-023-01443-0
-
[285]
R. Chen, W. Zhang, C. Guan, et al., Angew. Chem. Int. Ed. 63 (2024) e202401987.
-
[286]
J. Peng, D. Lu, S. Wu, et al., J. Am. Chem. Soc. 146 (2024) 11897–11905.
doi: 10.1021/jacs.4c00882
-
[287]
L. Liu, Y. Shi, M. Liu, et al., Adv. Funct. Mater. 34 (2024) 2403154.
-
[288]
N. Yang, Y. Cui, H. Su, et al., Angew. Chem. Int. Ed. 62 (2023) e202304339.
-
[289]
Y. Li, Y. Xu, X. Han, et al., Chin. Chem. Lett. 35 (2024) 109189.
-
[290]
S. Zhao, J. Lu, B. Sheng, et al., Chin. Chem. Lett. 36 (2025) 110008.
-
[291]
A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2 (2017) 16103.
-
[292]
Q. Zhao, S. Stalin, C.Z. Zhao, L.A. Archer, Nat. Rev. Mater. 5 (2020) 229–252.
doi: 10.1038/s41578-019-0165-5
-
[293]
R. Wei, S. Chen, T. Gao, W. Liu, Nano Select 2 (2021) 2256–2274.
doi: 10.1002/nano.202100110
-
[294]
A. Schreiber, M. Rosen, K. Waetzig, et al., Green. Chem. 25 (2023) 399–414.
doi: 10.1039/d2gc03368b
-
[295]
X. Su, X.P. Xu, Z.Q. Ji, et al., Electrochem. Energy Rev. 7 (2024) 2.
-
[296]
X. Yu, A. Manthiram, Energy Storage Mater. 34 (2021) 282–300.
-
[297]
C. Wang, J. Liang, Y. Zhao, et al., Energy Environ. Sci. 14 (2021) 2577–2619.
doi: 10.1039/d1ee00551k
-
[298]
Y. Kato, S. Hori, T. Saito, et al., Nat. Energy 1 (2016) 16030.
-
[299]
A.R. Stamminger, B. Ziebarth, M. Mrovec, T. Hammerschmidt, R. Drautz, Chem. Mater. 31 (2019) 8673–8678.
doi: 10.1021/acs.chemmater.9b02047
-
[300]
W. Huang, N. Matsui, S. Hori, et al., J. Am. Chem. Soc. 144 (2022) 4989–4994.
doi: 10.1021/jacs.1c13178
-
[301]
T.T. Zuo, R. Rueß, R. Pan, et al., Nat. Commun. 12 (2021) 6669.
doi: 10.1038/s41467-021-26895-4
-
[302]
J. Jang, Y.T. Chen, G. Deysher, et al., ACS Energy Lett. 7 (2022) 2531–2539.
doi: 10.1021/acsenergylett.2c01397
-
[303]
J.S. Kim, G. Yoon, S. Kim, et al., Nat. Commun. 14 (2023) 782.
doi: 10.6109/jkiice.2023.27.6.782
-
[304]
R. Li, W. Li, A. Singh, et al., Energy Storage Mater. 52 (2022) 395–429.
doi: 10.1016/j.ensm.2022.07.034
-
[305]
H. Gamo, A. Nagai, A. Matsuda, Sci. Rep. 11 (2021) 21097.
doi: 10.1038/s41598-021-00662-3
-
[306]
Y. Nikodimos, C.J. Huang, B.W. Taklu, W.N. Su, B.J. Hwang, Energy Environ. Sci. 15 (2022) 991–1033.
doi: 10.1039/d1ee03032a
-
[307]
X. Nie, J. Hu, C. Li, Interdisciplinary Mater. 2 (2023) 365–389.
doi: 10.1002/idm2.12090
-
[308]
T. Asano, A. Sakai, S. Ouchi, et al., Adv. Mater. 30 (2018) e1803075.
doi: 10.1002/adma.201803075
-
[309]
Y. Tanaka, K. Ueno, K. Mizuno, et al., Angew. Chem. Int. Ed. 62 (2023) e202217581.
doi: 10.1002/anie.202217581
-
[310]
Y.C. Yin, J.T. Yang, J.D. Luo, et al., Nature 616 (2023) 77–83.
doi: 10.1038/s41586-023-05899-8
-
[311]
F.H. Richter, Nat. Energy 8 (2023) 1182–1183.
doi: 10.1038/s41560-023-01379-5
-
[312]
L. Hu, J. Wang, K. Wang, et al., Nat. Commun. 14 (2023) 3807.
doi: 10.1038/s41467-023-39522-1
-
[313]
D. Lee, Z. Cui, J.B. Goodenough, A. Manthiram, Small 20 (2024) 2306053.
doi: 10.1002/smll.202306053
-
[314]
X. Li, J. Liang, J. Luo, et al., Energ. Environ. Sci. 12 (2019) 2665–2671.
doi: 10.1039/c9ee02311a
-
[315]
J. Liang, X. Li, S. Wang, et al., J. Am. Chem. Soc. 142 (2020) 7012–7022.
doi: 10.1021/jacs.0c00134
-
[316]
Z. Li, H.B. Wu, X.W. Lou, Energy Environ. Sci. 9 (2016) 3061–3070.
doi: 10.1039/C6EE02364A
-
[317]
Z. Wang, H. Che, W. Lu, et al., Adv. Sci. 10 (2023) 2301355.
doi: 10.1002/advs.202301355
-
[318]
H. Dong, D. Xu, Y. Ji, et al., Chem. Commun. 60 (2024) 11080–11083.
doi: 10.1039/d4cc03855j
-
[319]
S. Luo, F. Wu, G. Yushin, Mater. Today 49 (2021) 253–270.
doi: 10.1016/j.mattod.2021.03.017
-
[320]
Y. Chen, T. Wang, H. Tian, et al., Adv. Mater. 33 (2021) 2003666.
doi: 10.1002/adma.202003666
-
[321]
Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Nat. Commun. 5 (2014) 4759.
doi: 10.1038/ncomms5759
-
[322]
J. Feng, C. Zhang, W. Liu, et al., Angew. Chem. Int. Ed. 63 (2024) e202407042.
doi: 10.1002/anie.202407042
-
[323]
Y. Miao, Y. Zheng, F. Tao, et al., Chin. Chem. Lett. 34 (2023) 107121.
doi: 10.1016/j.cclet.2022.01.014
-
[324]
J. Feng, C. Shi, H. Dong, et al., J. Energy Chem. 86 (2023) 135–145.
doi: 10.1016/j.jechem.2023.07.007
-
[325]
H. Duan, K. Li, M. Xie, et al., J. Am. Chem. Soc. 143 (2021) 19446–19453.
doi: 10.1021/jacs.1c08675
-
[326]
Y. Chen, K. Zou, X. Dai, et al., Adv. Funct. Mater. 31 (2021) 2102458.
doi: 10.1002/adfm.202102458
-
[327]
H. Kwon, J.H. Lee, Y. Roh, et al., Nat. Commun. 12 (2021) 5537.
doi: 10.1038/s41467-021-25848-1
-
[328]
C. Chen, J. Guan, N.W. Li, et al., Adv. Mater. 33 (2021) 2100608.
doi: 10.1002/adma.202100608
-
[329]
G. Yang, Y. Li, S. Liu, et al., Energy Storage Mater. 23 (2019) 350–357.
doi: 10.1016/j.ensm.2019.04.041
-
[330]
C. Lai, G. Li, S. Ye, X. Gao, Prog. Chem 23 (2011) 527–532.
-
[331]
Q. Zhang, X. Cheng, J. Huang, H. Peng, F. Wei, New Carbon Mater. 29 (2014) 241–264.
-
[332]
L. Chen, Y. Yuan, R. Orenstein, et al., Energy Storage Mater. 60 (2023) 102817.
doi: 10.1016/j.ensm.2023.102817
-
[333]
B. Li, S. Li, J. Liu, B. Wang, S. Yang, Nano Lett. 15 (2015) 3073–3079.
doi: 10.1021/acs.nanolett.5b00064
-
[334]
L. Sun, D. Wang, Y. Luo, et al., ACS Nano 10 (2015) 1300–1308.
doi: 10.1021/acsnano.5b06675
-
[335]
Y. Song, X. Long, Z. Luo, et al., ACS Appl. Mater. Interfaces 14 (2022) 32183–32195.
doi: 10.1021/acsami.2c09331
-
[336]
C. Yuan, S. Zhu, H. Cao, L. Hou, J. Lin, Nanotechnology 27 (2016) 045403
doi: 10.1088/0957-4484/27/4/045403
-
[337]
Y. Li, Q. Cai, L. Wang, et al., ACS Appl. Mater. Interfaces 8 (2016) 23784–23792.
doi: 10.1021/acsami.6b09479
-
[338]
K. Cai, T. Wang, Z. Wang, et al., Compos. Part B: Eng. 249 (2023) 110410.
doi: 10.1016/j.compositesb.2022.110410
-
[339]
L. Wang, H. Shi, Y. Xie, Z.S. Wu, Carbon Neutraliz. 2 (2023) 262–270.
doi: 10.1002/cnl2.61
-
[340]
Y. Li, X. Yan, Z. Zhou, et al., Appl. Surf. Sci. 574 (2022) 151586.
doi: 10.1016/j.apsusc.2021.151586
-
[341]
S. Liu, X. Liu, M. Chen, et al., Nano Res. 15 (2022) 7199–7208.
doi: 10.1007/s12274-022-4381-8
-
[342]
H. Wan, Z. Wang, S. Liu, et al., Nat. Energy 8 (2023) 473–481.
doi: 10.1038/s41560-023-01231-w
-
[343]
D. Wang, W. Zhang, W. Zheng, et al., Adv. Sci. 4 (2017) 1600168.
doi: 10.1002/advs.201600168
-
[344]
C. Qin, D. Wang, Y. Liu, et al., Nat. Commun. 12 (2021) 7184.
doi: 10.1038/s41467-021-27494-z
-
[345]
T. Liu, Z. Lin, D. Wang, et al., Mater. Today Energy 17 (2020) 100465.
doi: 10.1016/j.mtener.2020.100465
-
[346]
D. Wang, T. Xie, C. Qin, et al., Adv. Funct. Mater. 32 (2022) 2206405.
doi: 10.1002/adfm.202206405
-
[347]
Z. Zhang, X. Liu, D. Wang, et al., Energy Storage Mater. 69 (2024) 103419.
doi: 10.1016/j.ensm.2024.103419
-
[348]
X. He, K. Zhang, Z. Zhu, Z. Tong, X. Liang, Chem. Soc. Rev. 53 (2024) 9–24.
doi: 10.1039/d3cs00495c
-
[349]
Z. Zhang, J. Wang, H. Qin, et al., ACS Nano 18 (2024) 2250–2260.
doi: 10.1021/acsnano.3c09849
-
[350]
L. Chen, Y. Sun, X. Wei, et al., Adv. Mater. 35 (2023) 2300771.
doi: 10.1002/adma.202300771
-
[351]
D. Wang, C. Luan, W. Zhang, et al., Adv. Energy Mater. 8 (2018) 1800650.
doi: 10.1002/aenm.201800650
-
[352]
F. Ding, W. Xu, G.L. Graff, et al., J. Am. Chem. Soc. 135 (2013) 4450–4456.
doi: 10.1021/ja312241y
-
[353]
S. Bertolini, A. Delcorte, P. Venezuela, Chem. Mater. 36 (2024) 8477–8487.
doi: 10.1021/acs.chemmater.4c01601
-
[354]
C. Jin, T. Liu, O. Sheng, et al., Nat. Energy 6 (2021) 378–387.
doi: 10.1038/s41560-021-00789-7
-
[355]
D. Wang, C. Qin, X. Li, et al., iScience 23 (2020). 100781.
doi: 10.1016/j.isci.2019.100781
-
[356]
W. Jia, J. Zhang, L. Zheng, et al., eScience 4 (2024) 100266.
doi: 10.1016/j.esci.2024.100266
-
[357]
A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, 2022, p. 1104.
-
[358]
B.P. Boudreau, Diffusion, chemical, in: G.V. Middleton, M.J. Church, M. Coniglio, L.A. Hardie, F.J. Longstaffe (Eds.), Encyclopedia of Sediments and Sedimentary Rocks, Springer, Netherlands, Dordrecht, 2003, pp. 225–226.
-
[359]
S. Jin, Y. Ye, Y. Niu, et al., J. Am. Chem. Soc. 142 (2020) 8818–8826.
doi: 10.1021/jacs.0c01811
-
[360]
A. Dey, J. Electrochem. Soc. 118 (1971) 1547.
doi: 10.1149/1.2407783
-
[361]
Y. Ye, H. Xie, Y. Yang, et al., J. Am. Chem. Soc. 145 (2023) 24775–24784.
doi: 10.1021/jacs.3c08711
-
[362]
Y.W. Song, L. Shen, N. Yao, et al., Chem 8 (2022) 3031–3050.
doi: 10.1016/j.chempr.2022.07.004
-
[363]
Y.W. Song, L. Shen, X.Y. Li, et al., Nat. Chem. Eng. 1 (2024) 588–596.
doi: 10.1038/s44286-024-00115-4
-
[364]
X.Y. Li, S. Feng, M. Zhao, et al., Angew. Chem. Int. Ed. 61 (2022) e202114671.
-
[365]
C.X. Bi, Y.J. Zhu, Z. Li, et al., Adv. Energy Mater. 14 (2024) 2402609.
doi: 10.1002/aenm.202402609
-
[366]
C.X. Bi, N. Yao, X.Y. Li, et al., Adv. Mater. 36 (2024) 2411197.
doi: 10.1002/adma.202411197
-
[367]
Y.W. Song, L. Shen, N. Yao, et al., Angew. Chem. Int. Ed. 63 (2024) e202400343.
-
[368]
C.X. Bi, L.P. Hou, Z. Li, et al., Energy Mater. Adv. 4 (2023) 0010.
-
[369]
H. Yamin, A. Gorenshtein, J. Penciner, Y. Sternberg, E. Peled, J. Electrochem. Soc. 135 (1988) 1045.
doi: 10.1149/1.2095868
-
[370]
E. Peled, Y. Sternberg, A. Gorenshtein, Y. Lavi, J. Electrochem. Soc. 136 (1989) 1621–1625.
doi: 10.1149/1.2096981
-
[371]
P. Prabhu, T.P. Kumar, P.N.N. Namboodiri, R. Gangadharan, J. Appl. Electrochem. 23 (1993) 151.
-
[372]
Y.V. Mikhaylik, J.R. Akridge, J. Electrochem. Soc. 150 (2003) A306–A311.
-
[373]
Y.V. Mikhaylik, J.R. Akridge, J. Electrochem. Soc. 151 (2004) A1969–A1976.
-
[374]
Y.V. Mikhaylik, Electrolyte for lithium sulfur battery, US Patent, 7352680, 2008.
-
[375]
X. Song, X. Liang, H. Kim, Y.K. Sun, ACS Energy Lett. 9 (2024) 5576–5586.
doi: 10.1021/acsenergylett.4c02535
-
[376]
M. Zhao, B.Q. Li, X.Q. Zhang, J.Q. Huang, Q. Zhang, ACS Cent. Sci. 6 (2020) 1095–1104.
doi: 10.1021/acscentsci.0c00449
-
[377]
J. Liu, Y. Zhou, T. Yan, X.P. Gao, Adv. Funct. Mater. 34 (2024) 2309625.
doi: 10.1002/adfm.202309625
-
[378]
M. He, K.I. Ozoemena, D. Aurbach, Q. Pang, Curr. Opin. Electrochem. 39 (2023) 101285.
-
[379]
Z.J. Li, Y.C. Zhou, Y. Wang, Y.C. Lu, Adv. Energy Mater. 9 (2018) 1802207.
doi: 10.1002/aenm.201802207
-
[380]
G. Zhang, H.J. Peng, C.Z. Zhao, et al., Angew. Chem. Int. Ed. 57 (2018) 16732–16736.
doi: 10.1002/anie.201810132
-
[381]
A. Gupta, A. Bhargav, A. Manthiram, Adv. Energy Mater. 9 (2018) 1803096.
doi: 10.1002/aenm.201803096
-
[382]
T. Kang, N. Kang, J.W. Choi, Korean J. Chem. Eng. 41 (2024) 375–383.
doi: 10.1007/s11814-024-00103-7
-
[383]
L.P. Hou, X.Q. Zhang, B.Q. Li, Q. Zhang, Mater. Today 45 (2021) 62–76.
-
[384]
L. Cheng, L.A. Curtiss, K.R. Zavadil, et al., ACS Energy Lett. 1 (2016) 503–509.
doi: 10.1021/acsenergylett.6b00194
-
[385]
Q. Pang, A. Shyamsunder, B. Narayanan, et al., Nat. Energy 3 (2018) 783–791.
doi: 10.1038/s41560-018-0214-0
-
[386]
E.S. Shin, K. Kim, S.H. Oh, W.I. Cho, Chem. Commun. 49 (2013) 2004.
-
[387]
L.M. Suo, Y.S. Hu, H. Li, M. Armand, L.Q. Chen, Nat. Commun. 4 (2013) 1481.
-
[388]
J. Zheng, X.L. Fan, G.B. Ji, et al., Nano Energy 50 (2018) 431–440.
-
[389]
S. Chen, J. Zheng, D. Mei, et al., Adv. Mater. 30 (2018) 1706102.
doi: 10.1002/adma.201706102
-
[390]
H. Moon, T. Mandai, R. Tatara, et al., J. Phys. Chem. C 119 (2015) 3957–3970.
doi: 10.1021/jp5128578
-
[391]
J. Zheng, G.B. Ji, X.L. Fan, et al., Adv. Energy Mater. 9 (2019) 1803774.
doi: 10.1002/aenm.201803774
-
[392]
R. Amine, J. Liu, I. Acznik, et al., Adv. Energy Mater. 10 (2020) 2000901.
doi: 10.1002/aenm.202000901
-
[393]
F. Huang, G. Ma, Z. Wen, et al., J. Mater. Chem. A 6 (2018) 1612–1620.
doi: 10.1039/c7ta08274f
-
[394]
Z. Hou, P.F. Wang, X. Sun, W. Li, C. Sheng, P. He, J. Electron. Mater. 51 (2022) 4772–4779.
doi: 10.1007/s11664-022-09751-z
-
[395]
X.Q. Zhang, Q. Jin, Y.L. Nan, et al., Angew. Chem. Int. Ed. 60 (2021) 15503–15509.
doi: 10.1002/anie.202103470
-
[396]
L.P. Hou, X.Q. Zhang, N. Yao, et al., Chem 8 (2022) 1083–1098.
-
[397]
L.L. Su, N. Yao, Z. Li, et al., Angew. Chem. Int. Ed. 63 (2024) e202318785.
doi: 10.1002/anie.202318785
-
[398]
X.Y. Li, S. Feng, Y.W. Song, et al., J. Am. Chem. Soc. 146 (2024) 14754–14764.
doi: 10.1021/jacs.4c02603
-
[399]
Z. Li, L.P. Hou, N. Yao, et al., Angew. Chem. Int. Ed. 62 (2023) e202309968.
doi: 10.1002/anie.202309968
-
[400]
J.Y. Hwang, H.M. Kim, Y.K. Sun, J. Electrochem. Soc. 165 (2017) A5006.
-
[401]
Z. Guan, X. Chen, F. Chu, et al., Adv. Energy Mater. 13 (2023) 2302850.
doi: 10.1002/aenm.202302850
-
[402]
H. Ji, Z. Wang, Y. Sun, et al., Adv. Mater. 35 (2022) 2208590.
-
[403]
R. Glaser, O. Borodin, B. Johnson, S. Jhulki, G. Yushin, J. Electrochem. Soc. 168 (2021) 090543.
doi: 10.1149/1945-7111/ac2467
-
[404]
X.Q. Zhang, S. Tang, Y.Z. Fu, J. Electrochem. 29 (2023) 2217005.
-
[405]
L.Y. Yao, L.P. Hou, Y.W. Song, et al., J. Mater. Chem. A 11 (2023) 7441–7446.
doi: 10.1039/d3ta00096f
-
[406]
W. Jia, C. Fan, L. Wang, et al., ACS Appl. Mater. Interfaces 8 (2016) 15399–15405.
doi: 10.1021/acsami.6b03897
-
[407]
J.S. Kim, D.J. Yoo, J. Min, et al., ChemNanoMat 1 (2015) 240–245.
doi: 10.1002/cnma.201500055
-
[408]
G.G. Eshetu, X. Judez, C. Li, et al., Angew. Chem. Int. Ed. 56 (2017) 15368–15372.
doi: 10.1002/anie.201709305
-
[409]
J.Y. Wu, X.W. Li, Z.X. Rao, et al., Nano Energy 72 (2020) 104725.
doi: 10.1016/j.nanoen.2020.104725
-
[410]
J. Xie, S.Y. Sun, X. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202204776.
doi: 10.1002/anie.202204776
-
[411]
H.J. Peng, J.Q. Huang, X.Y. Liu, et al., J. Am. Chem. Soc. 139 (2017) 8458–8466.
doi: 10.1021/jacs.6b12358
-
[412]
W.Y. Li, H.B. Yao, K. Yan, et al., Nat. Commun. 6 (2015) 7436.
doi: 10.1038/ncomms8436
-
[413]
J. Song, H. Noh, H. Lee, et al., J. Mater. Chem. A 3 (2015) 323–330.
doi: 10.1039/C4TA03625E
-
[414]
G. Li, Y. Gao, X. He, et al., Nat. Commun. 8 (2017) 850.
doi: 10.1038/s41467-017-00974-x
-
[415]
Y.X. Ren, T.S. Zhao, M. Liu, Y.K. Zeng, H.R. Jiang, J. Power Sources 361 (2017) 203–210.
doi: 10.1016/j.jpowsour.2017.06.083
-
[416]
D. Zeng, J. Yao, L. Zhang, et al., Nat. Commun. 13 (2022) 1909.
doi: 10.1038/s41467-022-29596-8
-
[417]
M. Zhao, H.J. Peng, B.Q. Li, J.Q. Huang, Acc. Chem. Res. 57 (2024) 545–557.
doi: 10.3390/systems12120545
-
[418]
M. Zhao, H.J. Peng, J.Y. Wei, et al., Small. Methods 4 (2020) 1900344.
doi: 10.1002/smtd.201900344
-
[419]
J. Xie, H.J. Peng, Y.W. Song, et al., Angew. Chem. Int. Ed. 59 (2020) 17670–17675.
doi: 10.1002/anie.202007740
-
[420]
Y.Q. Peng, M. Zhao, Z.X. Chen, et al., Nano Res. 16 (2023) 8253–8259.
doi: 10.1007/s12274-022-4584-z
-
[421]
M. Zhao, B.Q. Li, X. Chen, et al., Chem 6 (2020) 3297–3311.
doi: 10.1016/j.chempr.2020.09.015
-
[422]
M. Zhao, X.Y. Li, X. Chen, et al., eScience 1 (2021) 44–52.
doi: 10.1016/j.esci.2021.08.001
-
[423]
Y.R. Liu, M. Zhao, L.P. Hou, et al., Angew. Chem. Int. Ed. 62 (2023) 202303363.
doi: 10.1002/anie.202303363
-
[424]
Y.Q. Peng, M. Zhao, Z.X. Chen, et al., Batteries Supercaps 5 (2022) e202100359.
doi: 10.1002/batt.202100359
-
[425]
Q. Cheng, Z.X. Chen, X.-Y. Li, et al., J. Energy Chem. 76 (2023) 181–186.
doi: 10.1016/j.jechem.2022.09.029
-
[426]
W.J. Kwak, D.Sharon Rosy, et al., Chem. Rev. 120 (2020) 6626–6683.
doi: 10.1021/acs.chemrev.9b00609
-
[427]
Y. Li, J. Lu, ACS Energy Lett. 2 (2017) 1370–1377.
doi: 10.1021/acsenergylett.7b00119
-
[428]
C. Zhao, C. Yu, S. Li, et al., Small 14 (2018) 1803310.
doi: 10.1002/smll.201803310
-
[429]
C. Zhao, Z. Wang, X. Tan, et al., Small. Methods 3 (2019) 1800546.
doi: 10.1002/smtd.201800546
-
[430]
C. Zhao, J. Liang, Q. Sun, et al., Small. Methods 3 (2019) 1800437.
doi: 10.1002/smtd.201800437
-
[431]
C. Zhao, J. Liang, X. Li, et al., Nano Energy 75 (2020) 105036.
doi: 10.1016/j.nanoen.2020.105036
-
[432]
C. Zhao, Q. Sun, J. Luo, et al., Chem. Mater. 32 (2020) 10113–10119.
doi: 10.1021/acs.chemmater.0c03529
-
[433]
Y.C. Lu, B.M. Gallant, D.G. Kwabi, et al., Energy Environ. Sci. 6 (2013) 750–768.
doi: 10.1039/c3ee23966g
-
[434]
Z. Chang, J. Xu, X. Zhang, Adv. Energy Mater. 7 (2017) 1700875.
doi: 10.1002/aenm.201700875
-
[435]
H.F. Wang, Q. Xu, Matter 1 (2019) 565–595.
doi: 10.1016/j.matt.2019.05.008
-
[436]
J.H. Kang, J. Lee, J.W. Jung, et al., ACS Nano 14 (2020) 14549–14578.
doi: 10.1021/acsnano.0c07907
-
[437]
D. Wang, X. Mu, P. He, H. Zhou, Mater. Today 26 (2019) 87–99.
doi: 10.1016/j.mattod.2019.01.016
-
[438]
C. Yu, C. Zhao, S. Liu, et al., Chem. Commun. 51 (2015) 13233–13236.
doi: 10.1039/C5CC03806E
-
[439]
Y. Li, J. Wang, X. Li, et al., Chem. Commun. 47 (2011) 9438–9440.
doi: 10.1039/c1cc13464g
-
[440]
J. Wang, Y. Li, X. Sun, Nano Energy 2 (2013) 443–467.
doi: 10.1016/j.nanoen.2012.11.014
-
[441]
C. Zhao, C. Yu, S. Liu, et al., Adv. Funct. Mater. 25 (2015) 6913–6920.
doi: 10.1002/adfm.201503077
-
[442]
C. Zhao, C. Yu, M.N. Banis, et al., Nano Energy 34 (2017) 399–407.
doi: 10.1016/j.nanoen.2017.02.030
-
[443]
S. Liu, Z. Wang, C. Yu, et al., J. Mater. Chem. A 1 (2013) 12033–12037.
doi: 10.1039/c3ta13069j
-
[444]
Z. Su, I. Temprano, N. Folastre, et al., Small Methods 8 (2024) 2300452.
doi: 10.1002/smtd.202300452
-
[445]
Y. Zhang, L. Wang, Z. Guo, et al., Angew. Chem. Int. Ed. 55 (2016) 4487–4491.
doi: 10.1002/anie.201511832
-
[446]
Q. Liu, Z. Chang, Z. Li, X. Zhang, Small Methods 2 (2018) 1700231.
doi: 10.1002/smtd.201700231
-
[447]
L. Zhong, R.R. Mitchell, Y. Liu, et al., Nano Lett. 13 (2013) 2209–2214.
doi: 10.1021/nl400731w
-
[448]
H. Zheng, D. Xiao, X. Li, et al., Nano Lett. 14 (2014) 4245–4249.
doi: 10.1021/nl500862u
-
[449]
C. Zhao, Y. Zhu, Q. Sun, et al., Angew. Chem. Int. Ed. 60 (2021) 5821–5826.
doi: 10.1002/anie.202014061
-
[450]
X. Lu, J. Deng, W. Si, et al., Adv. Sci. 2 (2015) 1500113.
doi: 10.1002/advs.201500113
-
[451]
J.B. Park, J. Lee, C.S. Yoon, Y.K. Sun, ACS Appl. Mater. Interfaces 5 (2013) 13426–13431.
doi: 10.1021/am404336f
-
[452]
G. Zhao, L. Zhang, J. Lv, C. Li, K. Sun, Chem. Commun. 52 (2016) 6403–6406.
doi: 10.1039/C6CC01418F
-
[453]
G. Liu, S. Qin, X. Zhang, et al., Nano Res. Energy 4 (2025) e9120142.
doi: 10.26599/nre.2024.9120142
-
[454]
W.J. Kwak, Rosy, D. Sharon, et al., Chem. Rev. 120 (2020) 6626–6683.
doi: 10.1021/acs.chemrev.9b00609
-
[455]
B.Y. Sun, W. Zheng, C. Kang, et al., Small 19 (2023) 2207461.
doi: 10.1002/smll.202207461
-
[456]
P. Jia, Y. Guo, D. Chen, et al., Chin. Chem. Lett. 35 (2024) 108624.
doi: 10.1016/j.cclet.2023.108624
-
[457]
Z.Y. Qian, B.Y. Sun, X.D. Li, et al., J. Alloy. Compd. 832 (2020) 155009.
doi: 10.1016/j.jallcom.2020.155009
-
[458]
J.J. Xu, Z.W. Chang, Y.B. Yin, X.B. Zhang, ACS Cent. Sci. 3 (2017) 598–604.
doi: 10.1021/acscentsci.7b00120020.155009
-
[459]
Z.Y. Qian, X.D. Li, L.G. Wang, et al., ACS Sustain. Chem. Eng. 8 (2020) 16115–16123.
doi: 10.1021/acssuschemeng.0c02154
-
[460]
J.Z. Zhu, F. Wang, B.Z. Wang, et al., J. Am. Chem. Soc. 137 (2015) 13572–13579.
doi: 10.1021/jacs.5b07792
-
[461]
S.Z. Zhao, L.N. Song, M.R. Xie, et al., ACS Catal. 14 (2024) 7332–7344.
doi: 10.1021/acscatal.4c01127
-
[462]
Y.H. Chen, S.A. Freunberger, Z.Q. Peng, O. Fontaine, P.G. Bruce, Nat. Chem. 5 (2013) 489–494.
doi: 10.1038/nchem.1646
-
[463]
B.J. Bergner, A. Schürmann, K. Peppler, A. Garsuch, J. Janek, J. Am. Chem. Soc. 136 (2014) 15054–15064.
doi: 10.1021/ja508400m
-
[464]
Y.G. Zhu, C.K. Jia, J. Yang, et al., Chem. Commun. 51 (2015) 9451–9454.
doi: 10.1039/C5CC01616A
-
[465]
W. Zhang, Y. Shen, D. Sun, et al., Nano Energy 30 (2016) 43–51.
doi: 10.1142/9789814759984_0005
-
[466]
N.N. Feng, P. He, H.S. Zhou, ChemSusChem 8 (2015) 600–602.
doi: 10.1002/cssc.201403338
-
[467]
D. Kundu, R. Black, B. Adams, L.F. Nazar, ACS Cent. Sci. 1 (2015) 510–515.
doi: 10.1021/acscentsci.5b00267
-
[468]
Y.G. Zhu, X.Z. Wang, C.K. Jia, J. Yang, Q. Wang, ACS Catal. 6 (2016) 6191–6197.
doi: 10.1021/acscatal.6b01478
-
[469]
W.J. Kwak, S.A. Freunberger, H. Kim, et al., ACS Catal. 9 (2019) 9914–9922.
doi: 10.1021/acscatal.9b01337
-
[470]
S.C. Wu, Y. Qiao, H. Deng, Y.B. He, H.S. Zhou, J. Phys. Chem. Lett. 9 (2018) 6761–6766.
doi: 10.1021/acs.jpclett.8b02899
-
[471]
S. Matsuda, S. Mori, K. Hashimoto, S. Nakanishi, J. Phys. Chem. C 118 (2014) 28435–28439.
doi: 10.1021/jp5088465
-
[472]
C.C. Zhu, Y.P. Wang, L. Shuai, et al., Chin. Chem. Lett. 31 (2020) 1997–2002.
doi: 10.1016/j.cclet.2019.11.046
-
[473]
M.J. Lacey, J.T. Frith, J.R. Owen, Electrochem. Commun. 26 (2013) 74–76.
doi: 10.1016/j.elecom.2012.10.009
-
[474]
L. Yang, J.T. Frith, N. Garcia-Araez, J.R. Owen, Chem. Commun. 51 (2015) 1705–1708.
doi: 10.1039/C4CC09208B
-
[475]
X. Gao, Y. Chen, L. Johnson, P.G. Bruce, Nat. Mater. 15 (2016) 882–888.
doi: 10.1038/nmat4629
-
[476]
Y.T. Zhang, L. Wang, X.Z. Zhang, et al., Adv. Mater. 30 (2018) 1705571.
doi: 10.1002/adma.201705571
-
[477]
S.S. Wu, N. Qin, H. Zhang, et al., Chem. Commun. 58 (2022) 1025–1028.
doi: 10.1039/d1cc05538k
-
[478]
Y.G. Zhu, F.W.T. Goh, R.T. Yan, et al., Phys. Chem. Chem. Phys. 20 (2018) 27930–27936.
doi: 10.1039/c8cp04744h
-
[479]
P. Zhang, L.L. Liu, X.F. He, et al., J. Am. Chem. Soc. 141 (2019) 6263–6270.
doi: 10.1021/jacs.8b13568
-
[480]
H. Wan, Y.J. Sun, Z.D. Li, et al., Energy Storage Mater. 40 (2021) 159–165.
doi: 10.1016/j.ensm.2021.05.00727
-
[481]
Q. Xiong, G. Huang, X.B. Zhang, Angew. Chem. Int. Ed. 59 (2020) 19311–19319.
doi: 10.1002/anie.202009064
-
[482]
Y. Ko, H. Park, J. Kim, et al., Adv. Funct. Mater. 29 (2019) 1805623.
doi: 10.1002/adfm.201805623
-
[483]
W. Weng, C.J. Barile, P. Du, et al., Electrochim. Acta 119 (2014) 138–143.
doi: 10.1016/j.electacta.2013.12.027
-
[484]
S. Matsuda, K. Hashimoto, S. Nakanishi, J. Phys. Chem. C 118 (2014) 18397–18400.
doi: 10.1021/jp504894e
-
[485]
Z.M. Huang, J. Ren, W. Zhang, et al., Adv. Mater. 30 (2018) 1803270.
doi: 10.1002/adma.201803270
-
[486]
X. Zhang, Q.M. Zhang, X.G. Wang, et al., Angew. Chem. Int. Ed. 57 (2018) 12814–12818.
doi: 10.1002/anie.201807985
-
[487]
G. Huang, J.H. Han, C.C. Yang, et al., npg Asia Mater. 10 (2018) 1037–1045.
doi: 10.1038/s41427-018-0095-5
-
[488]
B. Liu, W. Xu, P.F. Yan, et al., Adv. Energy Mater. 7 (2017) 1602605.
doi: 10.1002/aenm.201602605
-
[489]
H. Zhang, Z. Zeng, Q. Wu, et al., J. Energy Chem. 90 (2024) 380–387.
doi: 10.1016/j.jechem.2023.10.050
-
[490]
D.J. Lee, H. Lee, Y.J. Kim, J.K. Park, H.T. Kim, Adv. Mater. 28 (2016) 857–863.
doi: 10.1002/adma.201503169
-
[491]
B.G. Kim, J.S. Kim, J. Min, et al., Adv. Funct. Mater. 26 (2016) 1747–1756.
doi: 10.1002/adfm.201504437
-
[492]
L. Ye, M. Liao, H. Sun, et al., Angew. Chem. Int. Ed. 58 (2019) 2437–2442.
doi: 10.1002/anie.201814324
-
[493]
Z.Q. Li, X.L. Huang, L. Kong, et al., Energy Storage Mater. 45 (2022) 40–47.
doi: 10.1016/j.ensm.2021.11.037
-
[494]
H. Chen, D. Yang, G. Huang, X. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2305059.
doi: 10.3866/PKU.WHXB202305059
-
[495]
J.S. Lee, S. Tai Kim, R. Cao, et al., Adv. Energy Mater. 1 (2011) 34–50.
doi: 10.1002/aenm.201000010
-
[496]
L. Grande, E. Paillard, J. Hassoun, et al., Adv. Mater. 27 (2015) 784–800.
doi: 10.1002/adma.201403064
-
[497]
H. Guo, W. Luo, J. Chen, et al., Adv. Sustain. Syst. 2 (2018) 1700183.
doi: 10.1002/adsu.201700183
-
[498]
B.D. McCloskey, D.S. Bethune, R.M. Shelby, G. Girishkumar, A.C. Luntz, J. Phys. Chem. Lett. 2 (2011) 1161–1166.
doi: 10.1021/jz200352v
-
[499]
V.S. Bryantsev, M. Blanco, J. Phys. Chem. Lett. 2 (2011) 379–383.
doi: 10.1021/jz1016526
-
[500]
J. Read, J. Electrochem. Soc. 153 (2006) A96–A100.
doi: 10.1149/1.2131827
-
[501]
B.D. McCloskey, R. Scheffler, A. Speidel, et al., J. Am. Chem. Soc. 133 (2011) 18038–18041.
doi: 10.1021/ja207229n
-
[502]
H.G. Jung, J. Hassoun, J.B. Park, Y.K. Sun, B. Scrosati, Nat. Chem. 4 (2012) 579–585.
doi: 10.1038/nchem.1376
-
[503]
R. Black, S.H. Oh, J.H. Lee, et al., J. Am. Chem. Soc. 134 (2012) 2902–2905.
doi: 10.1021/ja2111543
-
[504]
D. Sharon, V. Etacheri, A. Garsuch, et al., J. Phys. Chem. Lett. 4 (2012) 127–131.
-
[505]
S.A. Freunberger, Y. Chen, N.E. Drewett, et al., Angew. Chem. Int. Ed. 50 (2011) 8609–8613.
doi: 10.1002/anie.201102357
-
[506]
Z. Peng, S.A. Freunberger, L.J. Hardwick, et al., Angew. Chem. Int. Ed. 50 (2011) 6351–6355.
doi: 10.1002/anie.201100879
-
[507]
H.K. Lim, H.D. Lim, K.Y. Park, J. Am. Chem. Soc. 135 (2013) 9733–9742.
doi: 10.1021/ja4016765
-
[508]
Z. Zhao, L. Pang, Y. Wu, Y. Chen, Z. Peng, Adv. Energy Mater. 13 (2023) 2301127.
doi: 10.1002/aenm.202301127
-
[509]
Y. Chen, S.A. Freunberger, Z. Peng, F. Barde, P.G. Bruce, J. Am. Chem. Soc. 134 (2012) 7952–7957.
doi: 10.1021/ja302178w
-
[510]
C.J. Allen, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, J. Phys. Chem. Lett. 2 (2011) 2420–2424.
doi: 10.1021/jz201070t
-
[511]
Y. Chen, S. Liu, Z. Bi, et al., Green Energy Environ. 9 (2024) 966–991.
doi: 10.3390/aerospace11120966
-
[512]
Y. Chen, J. Xu, P. He, et al., Sci. Bull. 67 (2022) 2449–2486.
doi: 10.1016/j.scib.2022.11.027
-
[513]
K. Pan, M. Li, W. Wang, et al., Green Energy Environ. 8 (2023) 939–944.
doi: 10.1016/j.gee.2023.02.010
-
[514]
J. Kumar, B. Kumar, J. Power Sources 194 (2009) 1113–1119.
doi: 10.1016/j.jpowsour.2009.06.020
-
[515]
X. Chi, M. Li, J. Di, et al., Nature 592 (2021) 551–557.
doi: 10.1038/s41586-021-03410-9
-
[516]
X.X. Wang, X.W. Chi, M.L. Li, et al., Adv. Funct. Mater. 32 (2022) 2113235.
doi: 10.1002/adfm.202113235
-
[517]
C. Li, Z.Y. Guo, B.C. Yang, et al., Angew. Chem. Int. Ed. 56 (2017) 9126–9130.
doi: 10.1002/anie.201705017
-
[518]
F.S. Cai, Z. Hu, S.L. Chou, Adv. Sustain. Syst. 2 (2018) 1800060.
doi: 10.1002/adsu.201800060
-
[519]
K. Takechi, T. Shiga, T. Asaoka, Chem. Commun. 47 (2011) 3463–3465.
doi: 10.1039/c0cc05176d
-
[520]
M. Goodarzi, F. Nazari, F. Illas, J. Phys. Chem. C. 122 (2018) 25776–25784.
doi: 10.1021/acs.jpcc.8b06395
-
[521]
B.W. Huang, G. Frapper, J. Am. Chem. Soc. 140 (2018) 413–422.
doi: 10.1021/jacs.7b11123
-
[522]
Y.L. Liu, R. Wang, Y.C. Lyu, H. Li, L.Q. Chen, Energy Environ. Sci. 7 (2014) 677–681.
doi: 10.1039/c3ee43318h
-
[523]
S.X. Yang, Y. Qiao, P. He, et al., Energy Environ. Sci. 10 (2017) 972–978.
doi: 10.1039/C6EE03770D
-
[524]
Z.W. Zhao, J. Huang, Z.Q. Peng, Angew. Chem. Int. Ed. 57 (2018) 3874–3886.
doi: 10.1002/anie.201710156
-
[525]
P. Wang, S. Sun, X. Rui, et al., Small. Methods 7 (2023) e2201728.
doi: 10.1002/smtd.202201728
-
[526]
L. Zhao, Y. Tao, Y. Zhang, et al., Adv. Mater. 36 (2024) e2402337.
doi: 10.1002/adma.202402337
-
[527]
T. Wu, M. Jing, L. Yang, et al., Adv. Energy Mater. 9 (2019) 1803478.
doi: 10.1002/aenm.201803478
-
[528]
Y. Qi, M. Xu, Energy Storage Mater. 72 (2024) 103704.
doi: 10.1016/j.ensm.2024.103704
-
[529]
X. Yu, A. Manthiram, J. Phys. Chem. C 118 (2014) 22952–22959.
doi: 10.1021/jp507655u
-
[530]
A. Kumar, A. Ghosh, A. Ghosh, et al., Energy Storage Mater. 42 (2021) 608–617.
doi: 10.1016/j.ensm.2021.08.014
-
[531]
J. Ruan, Y.J. Lei, Y. Fan, et al., Adv. Mater. 36 (2024) 2312207.
doi: 10.1002/adma.202312207
-
[532]
L. Ou, J. Mou, J. Peng, et al., ACS Appl. Mater. Interfaces. 16 (2024) 3302–3310.
doi: 10.1021/acsami.3c14578
-
[533]
F. Jin, Y. Ning, B. Wang, et al., J. Power Sources 565 (2023) 232917.
doi: 10.1016/j.jpowsour.2023.232917
-
[534]
K. Tang, X. Peng, Z. Zhang, et al., Small 20 (2024) 2311151.
doi: 10.1002/smll.202311151
-
[535]
T. Wu, Z. Ding, M. Jing, et al., Adv. Funct. Mater. 29 (2019) 1809014.
doi: 10.1002/adfm.201809014
-
[536]
Z. Li, L.X. Yuan, Z.Q. Yil, Y. Liu, Y.H. Huang, Nano Energy 9 (2014) 229–236.
doi: 10.1016/j.nanoen.2014.07.012
-
[537]
J.T. Xu, J.M. Ma, Q.H. Fan, S.J. Guo, S.X. Dou, Adv. Mater. 29 (2017) 1606454.
doi: 10.1002/adma.201606454
-
[538]
P. Hartmann, C.L. Bender, M. Vracar, et al., Nat. Mater. 12 (2013) 228–232.
doi: 10.1038/nmat3486
-
[539]
B. Sun, C. Pompe, S. Dongmo, et al., Adv. Mater. Technol. 3 (2018) 1800110.
doi: 10.1002/admt.201800110
-
[540]
J.Q. Wang, Y.X. Ni, J.X. Liu, et al., J. Chen, ACS Cent. Sci. 6 (2020) 1955–1963.
doi: 10.1021/acscentsci.0c00849
-
[541]
H. Yadegari, M.N. Banis, B.W. Xiao, et al., Chem. Mater. 27 (2015) 3040–3047.
doi: 10.1021/acs.chemmater.5b00435
-
[542]
C.L. Bender, P. Hartmann, M. Vracar, P. Adelhelm, J. Janek, Adv. Energy Mater. 4 (2014) 1301863.
doi: 10.1002/aenm.201301863
-
[543]
B. Lee, D.H. Seo, H.D. Lim, et al., Chem. Mater. 26 (2014) 1048–1055.
doi: 10.1021/cm403163c
-
[544]
S. Kang, Y.F. Mo, S.P. Ong, G. Ceder, Nano Lett. 14 (2014) 1016–1020.
doi: 10.1021/nl404557w
-
[545]
X. Yu, A. Manthiram, Adv. Funct. Mater. 30 (2020) 2004084.
doi: 10.1002/adfm.202004084
-
[546]
W. Zhang, Y. Liu, Z. Guo, Sci. Adv. 5 (2019) eaav7412.
doi: 10.1126/sciadv.aav7412
-
[547]
L. Medenbach, P. Adelhelm, Top. Curr. Chem. 375 (2017) 81.
doi: 10.1007/s41061-017-0168-x
-
[548]
K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Chem. Rec. 18 (2018) 459–479.
doi: 10.1002/tcr.201700057
-
[549]
J. Jin, X.C. Tian, N. Srikanth, L.B. Kong, K. Zhou, J. Mater. Chem. A 5 (2017) 10110–10126.
doi: 10.1039/C7TA01384A
-
[550]
Y.J. Liu, Z.X. Tai, Q. Zhang, et al., Nano Energy 35 (2017) 36–43.
doi: 10.1016/j.nanoen.2017.03.029
-
[551]
X.D. Ren, Y.Y. Wu, J. Am. Chem. Soc. 135 (2013) 2923–2926.
doi: 10.1021/ja312059q
-
[552]
X.L. Huang, Z.P. Guo, S.X. Dou, Z.M.M. Wang, Adv. Funct. Mater. 31 (2021) 2102326.
doi: 10.1002/adfm.202102326
-
[553]
H.L. Ye, Y.G. Li, InfoMat 4 (2022) e12291.
doi: 10.1002/inf2.12291
-
[554]
Q.L. Zou, Y.C. Lu, EcoMat 3 (2021) e12115.
doi: 10.1002/eom2.12115
-
[555]
Q.L. Zou, Z.J. Liang, G.Y. Du, et al., J. Am. Chem. Soc. 140 (2018) 10740–10748.
doi: 10.1021/jacs.8b04536
-
[556]
S.H. Chung, A. Manthiram, Adv. Mater. 31 (2019) 1901125.
doi: 10.1002/adma.201901125
-
[557]
C.X. Zhao, J.N. Liu, N. Yao, et al., Angew. Chem. Int. Ed. 60 (2021) 15281–15285.
doi: 10.1002/anie.202104171
-
[558]
X. Liu, X. Fan, B. Liu, et al., Adv. Mater. 33 (2021) 2006461.
doi: 10.1002/adma.202006461
-
[559]
M. Lin, C. Huang, P. Cheng, J. Cheng, C. Wang, J. Mater. Chem. A 8 (2020) 20637–20649.
doi: 10.1039/d0ta06929a
-
[560]
R. Khezri, S. Hosseini, A. Lahiri, et al., Int. J. Mol. Sci. 21 (2020) 21197303.
-
[561]
H. Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 28 (2018) 1803329.
doi: 10.1002/adfm.201803329
-
[562]
Y. Zeng, X. Zhang, R. Qin, et al., Adv. Mater. 31 (2019) 1903675.
doi: 10.1002/adma.201903675
-
[563]
S. Wang, Q. Ran, R. Yao, et al., Nat. Commun. 11 (2020) 1634.
doi: 10.1038/s41467-020-15478-4
-
[564]
P. Liu, Z. Zhang, R. Hao, et al., Chem. Eng. J. 403 (2021) 126425.
doi: 10.1016/j.cej.2020.126425
-
[565]
P. Wang, F. Zhao, H. Chang, Q. Sun, Z. Zhang, J. Mater. Sci. Mater. Electron. 31 (2020) 17953–17966.
doi: 10.1007/s10854-020-04347-x
-
[566]
J.C. Riede, T. Turek, U. Kunz, Electrochem. Acta 269 (2018) 217–224.
doi: 10.1016/j.electacta.2018.02.110
-
[567]
W. Sun, F. Wang, B. Zhang, et al., Science 371 (2021) 46–51.
doi: 10.1126/science.abb9554
-
[568]
S.Q. Huang, H. Zhang, J.H. Zhuang, et al., Adv. Energy Mater. 12 (2022) 03622.
-
[569]
Y. Dai, J. Yu, P. Tan, et al., J. Power Sources 525 (2022) 231108.
doi: 10.1016/j.jpowsour.2022.231108
-
[570]
W. Tian, J. Ren, X. Lv, Z. Yuan, Chem. Eng. J. 431 (2022) 133210.
doi: 10.1016/j.cej.2021.133210
-
[571]
W. Liu, J. Zhang, Z. Bai, et al., Adv. Funct. Mater. 28 (2018) 1706675.
doi: 10.1002/adfm.201706675
-
[572]
F. Wang, H. Zhao, Y. Ma, et al., J. Energy Chem. 50 (2020) 52–62.
doi: 10.1016/j.jechem.2020.03.006
-
[573]
T. Wu, H. Hu, Y. Wu, et al., Chem. Eng. J. 500 (2024) 157023.
doi: 10.1016/j.cej.2024.157023
-
[574]
G. Yang, J. Zhu, P. Yuan, et al., Nat. Commun. 12 (2021) 1734.
doi: 10.1038/s41467-021-21919-5
-
[575]
W. Deng, T. Wu, Y. Wu, et al., J. Mater. Chem. A 12 (2024) 10349–10358.
doi: 10.1039/d4ta00849a
-
[576]
X. Liu, C. Zhu, T. Xu, et al., Chem. Eng. J. 497 (2024) 154304.
doi: 10.1016/j.cej.2024.154304
-
[577]
Y. Li, Y. Mei, H. Liu, et al., Nano Energy 130 (2024) 110107.
doi: 10.1016/j.nanoen.2024.110107
-
[578]
H. Zhang, L. Wang, L. Ma, et al., Adv. Sci. 11 (2023) 2306168.
-
[579]
J. Li, Y. Chen, S. He, et al., Chem. Eng. J. 452 (2023) 139311.
doi: 10.1016/j.cej.2022.139311
-
[580]
H. Ma, B. Zhao, J. Bai, et al., Adv. Sci. 10 (2022) 2203552.
-
[581]
L. Liang, X. Li, F. Zhao, et al., Adv. Energy Mater. 11 (2021) 2100287.
doi: 10.1002/aenm.202100287
-
[582]
X. Zhao, X. Wang, Z. Gu, et al., Adv. Funct. Mater. 34 (2024) 2402447.
doi: 10.1002/adfm.202402447
-
[583]
Y. Wang, Z. Wang, X. Xu, et al., Nano-Micro Lett. 16 (2024) 254.
doi: 10.1007/s40820-024-01474-6
-
[584]
S. Jyothilakshmi, Y.S. Lee, V. Aravindan, Small 21 (2025) 2403935.
doi: 10.1002/smll.202403935
-
[585]
Y. Li, Y. Mei, Y. Huang, et al., ACS Nano 18 (2024) 25053–25068.
doi: 10.1021/acsnano.4c06571
-
[586]
Y. Fan, Z. Chang, Z. Wu, et al., Adv. Funct. Mater. 34 (2024) 2314288.
doi: 10.1002/adfm.202314288
-
[587]
C. Xu, J. Zhao, Y.A. Wang, et al., Adv. Energy Mater. 12 (2022) 2200966.
doi: 10.1002/aenm.202200966
-
[588]
T. Jin, X. Ji, P.F. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 11943–11948.
doi: 10.1002/anie.202017167
-
[589]
R. Huang, D. Yan, Q. Zhang, et al., Adv. Energy Mater. 14 (2024) 2400595.
doi: 10.1002/aenm.202400595
-
[590]
Y. Zhou, G. Xu, J. Lin, et al., Adv. Mater. 35 (2023) 2304428.
doi: 10.1002/adma.202304428
-
[591]
S. Park, Z. Wang, K. Choudhary, et al., Nat. Mater. 24 (2024) 234–242.
doi: 10.13050/foodengprog.2024.28.3.234
-
[592]
K. Liang, D. Wu, Y. Ren, X. Huang, J. Ma, Chin. Chem. Lett. 34 (2023) 107978.
doi: 10.1016/j.cclet.2022.107978
-
[593]
L. Gao, G. Li, Q. Chen, et al., ACS Nano 18 (2024) 12468–12476.
doi: 10.1021/acsnano.4c01831
-
[594]
C. Xu, Q. Fu, W. Hua, et al., ACS Nano 18 (2024) 18758–18768.
doi: 10.1021/acsnano.4c06510
-
[595]
Z.Y. Gu, J.M. Cao, K. Li, et al., Angew. Chem. Int. Ed. 63 (2024) e202402371.
doi: 10.1002/anie.202402371
-
[596]
Q. Huang, L. Shao, X. Shi, et al., Chem. Eng. J. 468 (2023) 143738.
doi: 10.1016/j.cej.2023.143738
-
[597]
J. Yang, N. Liu, G. Jiang, et al., Chem. Eng. J. 485 (2024) 149834.
doi: 10.1016/j.cej.2024.149834
-
[598]
H. Zhou, Z. Cao, Y. Zhou, et al., Nano Energy 114 (2023) 108604.
doi: 10.1016/j.nanoen.2023.108604
-
[599]
Y.M. Yin, C. Pei, W. Xia, X. Luo, D.S. Li, Small 19 (2023) 2303666.
doi: 10.1002/smll.202303666
-
[600]
G. Su, Y. Wang, J. Mu, et al., Adv. Energy Mater. 15 (2025) 2403282.
doi: 10.1002/aenm.202403282
-
[601]
X. Shen, Q. Zhou, M. Han, et al., Nat. Commun. 12 (2021) 2848.
doi: 10.1038/s41467-021-23132-w
-
[602]
S. Li, X. Lu, Y. Li, et al., Adv. Mater. 36 (2024) 2413013.
doi: 10.1002/adma.202413013
-
[603]
C. Delmas, C. Fouassier, P. Hagenmuller, Phys. B+C 99 (1980) 81–85.
doi: 10.1016/0378-4363(80)90214-4
-
[604]
H. Yoshida, N. Yabuuchi, K. Kubota, et al., Chem. Commun. 50 (2014) 3677–3680.
doi: 10.1039/C3CC49856E
-
[605]
S. Okada, Y. Takahashi, T. Kiyabu, et al., Layered transition metal oxides as cathodes for sodium secondary battery, in: 210th ECS Meeting, Cancun, Mexico, 2006, p. 201.
-
[606]
L.Q. Mu, S.Y. Xu, Y.M. Li, et al., Adv. Mater. 27 (2015) 6928.
doi: 10.1002/adma.201502449
-
[607]
X. Rong, D. Xiao, Q. Li, et al., eScience 3 (2023) 100159.
doi: 10.1016/j.esci.2023.100159
-
[608]
X. Cao, H.F. Li, Y. Qiao, et al., Adv. Energy Mater. 10 (2020) 1903785.
doi: 10.1002/aenm.201903785
-
[609]
N. Yabuuchi, R. Hara, M. Kajiyama, et al., Adv. Energy Mater. 4 (2014) 1301453.
doi: 10.1002/aenm.201301453
-
[610]
J. Billaud, G. Singh, A.R. Armstrong, et al., Energy Environ. Sci. 7 (2014) 1387–1391.
doi: 10.1039/C4EE00465E
-
[611]
C. Cheng, M.L. Ding, T.R. Yan, et al., Small Methods 6 (2022) 2101524.
doi: 10.1002/smtd.202101524
-
[612]
N. Yabuuchi, R. Hara, K. Kubota, et al., J. Mater. Chem. A 2 (2014) 16851–16855.
doi: 10.1039/C4TA04351K
-
[613]
B.M. de Boisse, S. Nishimura, E. Watanabe, et al., Adv. Energy Mater. 8 (2018) 1800409.
doi: 10.1002/aenm.201800409
-
[614]
Y. Yu, D. Ning, Q.Y. Li, et al., Energy Storage Mater. 38 (2021) 130–140.
doi: 10.1016/j.ensm.2021.03.004
-
[615]
Y. Wang, X.D. Zhao, J.T. Jin, et al., J. Am. Chem. Soc. 145 (2023) 22708–22719.
doi: 10.1021/jacs.3c08070
-
[616]
X.H. Rong, J. Liu, E.Y. Hu, et al., Joule 2 (2018) 125–140.
doi: 10.1016/j.joule.2017.10.008
-
[617]
X.H. Rong, E.Y. Hu, Y.X. Lu, et al., Joule 3 (2019) 503–517.
doi: 10.1016/j.joule.2018.10.022
-
[618]
C. Liu, K. Chen, H. Xiong, et al., eScience 4 (2024) 100186.
doi: 10.1016/j.esci.2023.100186
-
[619]
P. Barpanda, G. Oyama, S.I. Nishimura, S.C. Chung, A. Yamada, Nat. Commun. 5 (2014) 4358.
doi: 10.1038/ncomms5358
-
[620]
X. Xiao, Y. Lan, L. Tan, et al., Adv. Funct. Mater. 34 (2024) 2411280.
doi: 10.1002/adfm.202411280
-
[621]
J. Zhang, Y. Yan, X. Wang, et al., Nat. Commun. 14 (2023) 3701.
doi: 10.1038/s41467-023-39384-7
-
[622]
W. Pan, W. Guan, S. Liu, et al., J. Mater. Chem. A 7 (2019) 13197–13204.
doi: 10.1039/c9ta02188d
-
[623]
Z. Zheng, X. Li, Y. Wang, et al., Energy Storage Mater. 74 (2025) 103882.
doi: 10.1016/j.ensm.2024.103882
-
[624]
G. Yao, X. Zhang, Y. Yan, et al., J. Energy Chem. 50 (2020) 387–394.
doi: 10.1016/j.jechem.2020.03.047
-
[625]
Y.R. Wang, Y. Yang, Y.L. Nie, et al., J. Energy Storage 83 (2024) 110629.
doi: 10.1016/j.est.2024.110629
-
[626]
Y. Niu, Y. Zhao, M. Xu, Carbon Neutral. 2 (2023) 150–168.
doi: 10.1002/cnl2.48
-
[627]
H. Kim, I. Park, S. Lee, et al., Chem. Mater. 25 (2013) 3614–3622.
doi: 10.1021/cm4013816
-
[628]
X. Qi, Q. Dong, H. Dong, et al., Energy Storage Mater. 73 (2024) 103861.
doi: 10.1016/j.ensm.2024.103861
-
[629]
X. Qi, H. Dong, H. Yan, et al., Angew. Chem. Int. Ed. 63 (2024) e202410590.
doi: 10.1002/anie.202410590
-
[630]
X. Li, Y. Zhang, B. Zhang, et al., J. Power Sources 521 (2022) 230922.
doi: 10.1016/j.jpowsour.2021.230922
-
[631]
F. Xiong, J. Li, C. Zuo, et al., Adv. Funct. Mater. 33 (2022) 2211257.
-
[632]
W. Fei, X. Zhang, K. Sun, et al., Energy Storage Mater. 73 (2024) 103848.
doi: 10.1016/j.ensm.2024.103848
-
[633]
B.J. Xin, X.L. Wu, Battery Energy 3 (2024) 20230074.
doi: 10.1002/bte2.20230074
-
[634]
L. Xu, Y. Liu, M. Chen, et al., Chem. Eng. Sci. 302 (2025) 120848.
doi: 10.1016/j.ces.2024.120848
-
[635]
J. Peng, W. Zhang, Q. Liu, et al., Adv. Mater. 34 (2022) 2108384.
doi: 10.1002/adma.202108384
-
[636]
L. Xu, H. Li, T. Du, et al., Battery Energy 1 (2022) 20210003.
doi: 10.1002/bte2.20210003
-
[637]
T. Meng, Z. Chen, X. Lai, et al., Small 20 (2024) 2405822.
doi: 10.1002/smll.202405822
-
[638]
Y. Gao, X. Wu, L. Wang, et al., Adv. Funct. Mater. 34 (2024) 2314860.
doi: 10.1002/adfm.202314860
-
[639]
J. Peng, W. Zhang, Z. Hu, et al., Nano Lett. 22 (2022) 1302–1310.
doi: 10.1021/acs.nanolett.1c04492
-
[640]
J. Peng, Y. Gao, H. Zhang, et al., Angew. Chem. Int. Ed. 61 (2022) e202205867.
doi: 10.1002/anie.202205867
-
[641]
Z. Xu, F. Chen, Y. Li, et al., Adv. Sci. 11 (2024) 2406842.
doi: 10.1002/advs.202406842
-
[642]
J. Peng, W. Hua, Z. Yang, et al., ACS Nano 18 (2024) 19854–19864.
-
[643]
Y. Luo, J. Shen, Y. Yao, et al., Adv. Mater. 36 (2024) 2405458.
doi: 10.1002/adma.202405458
-
[644]
J. Dai, S. Tan, L. Wang, et al., ACS Nano 17 (2023) 20949–20961.
doi: 10.1021/acsnano.3c02323
-
[645]
Y. He, S.L. Dreyer, Y.Y. Ting, et al., Angew. Chem. Int. Ed. 63 (2024) e202315371.
doi: 10.1002/anie.202315371
-
[646]
H. Cheng, H. Xu, J. Shang, et al., Angew. Chem. Int. Ed. 64 (2025) e202414302.
doi: 10.1002/anie.202414302
-
[647]
C. Xu, Y. Ma, J. Zhao, et al., Angew. Chem. Int. Ed. 62 (2023) e202217761.
doi: 10.1002/anie.202217761
-
[648]
Y. Wei, M. Zheng, W. Zhu, H. Pang, Carbon Neutral. 2 (2023) 271–299.
doi: 10.1002/cnl2.64
-
[649]
M. Jiang, Z. Hou, H. Ma, et al., Nano Lett. 23 (2023) 10423–10431.
doi: 10.1021/acs.nanolett.3c03065
-
[650]
J. Zhang, J. Zhang, H. Wang, et al., ACS Energy Lett. 7 (2022) 4472–4482.
doi: 10.1021/acsenergylett.2c02369
-
[651]
X. Liu, J. Zhao, H. Dong, et al., Adv. Funct. Mater. 34 (2024) 2402310.
doi: 10.1002/adfm.202402310
-
[652]
R. Rajagopalan, Y.G. Tang, C.K. Jia, X.B. Ji, H.Y. Wang, Energy Environ. Sci. 13 (2020) 1568–1592.
doi: 10.1039/c9ee03637g
-
[653]
Q. Zhao, Y. Lu, J. Chen, Adv. Energy Mater. 7 (2017) 11220–11252.
-
[654]
X.Y. Wu, S.F. Jin, Z.Z. Zhang, et al., Sci. Adv. 1 (2015) e1500330.
doi: 10.1126/sciadv.1500330
-
[655]
J.K. Kim, Y. Kim, S. Park, H. Ko, Y. Kim, Energy Environ. Sci. 9 (2016) 1264–1269.
doi: 10.1039/C5EE02806J
-
[656]
Z. Wang, J. Tang, Y. Li, et al., Ionics 31 (2024) 1–21.
-
[657]
H. Wu, S. Luo, H. Wang, et al., Nano Micro Lett. 16 (2024) 252.
doi: 10.1007/s40820-024-01470-w
-
[658]
J. Liu, L. Huang, H. Wang, et al., Electrochem. Energy Rev. 7 (2024) 34.
doi: 10.1007/s41918-024-00234-9
-
[659]
S.A. Riza, R. g. Xu, Q. Liu, et al., New Carbon Mater. 39 (2024) 743–769.
doi: 10.1016/S1872-5805(24)60886-3
-
[660]
D.A. Stevens, J.R. Dahn, J. Electrochem. Soc. 147 (2000) 1271.
doi: 10.1149/1.1393348
-
[661]
S. Komaba, W. Murata, T. Ishikawa, et al., Adv. Funct. Mater. 21 (2011) 3859–3867.
doi: 10.1002/adfm.201100854
-
[662]
Y. Cao, L. Xiao, M.L. Sushko, et al., Nano Lett. 12 (2012) 3783–3787.
doi: 10.1021/nl3016957
-
[663]
Y. Li, Y.S. Hu, M.M. Titirici, L. Chen, X. Huang, Adv. Energy Mater. 6 (2016) 1600659.
doi: 10.1002/aenm.201600659
-
[664]
X. Chen, Y.S. Huang, M.B. Zhang, et al., Mater. Res. Express. 11 (2024) 035501.
doi: 10.1088/2053-1591/ad2c3d
-
[665]
A. Verdianto, H. Lim, J. Park, S.O. Kim, J. Alloys Compd. 942 (2023) 168950.
doi: 10.1016/j.jallcom.2023.168950
-
[666]
A. Sohan, A. Kumar, T.N. Narayanan, P. Kollu, J. Energy Storage 74 (2023) 109312.
doi: 10.1016/j.est.2023.109312
-
[667]
X.Y. Li, L.X. Zeng, W.B. Lai, et al., Energy Fuels 38 (2024) 16966–1697
doi: 10.1021/acs.energyfuels.4c02349
-
[668]
J. Liang, G. Fang, X. Niu, et al., Surfaces 6 (2023) 239–248.
doi: 10.3390/surfaces6030016
-
[669]
F. Zhang, H. Wang, X.J. Liu, G. Wang, B.B. Wang, Chem. Eng. J. 475 (2023) 146131.
doi: 10.1016/j.cej.2023.146131
-
[670]
X.Y. Han, X.M. Zheng, J.H. You, et al., Chem. Eng. J. 490 (2024) 151975.
doi: 10.1016/j.cej.2024.151975
-
[671]
J.J. Zhao, B.Y. Liu, W. Yao, X.L. Ding, J. Energy Storage 93 (2024) 112407.
doi: 10.1016/j.est.2024.112407
-
[672]
J.Y. Liao, B. De Luna, A. Manthiram, J. Mater. Chem. A 4 (2016) 801–806.
doi: 10.1039/C5TA07064C
-
[673]
S. Nie, L. Liu, J.F. Liu, et al., Nano-Micro Lett. 10 (2018) 71.
doi: 10.1007/s40820-018-0225-1
-
[674]
B.X. Peng, T.X. Cai, S.N. Zhang, et al., Sci. China Chem. 67 (2024) 336–342.
doi: 10.1007/s11426-023-1699-x
-
[675]
H.W. Tao, M. Zhou, R.X. Wang, et al., Adv. Sci. 5 (2018) 1801021.
doi: 10.1002/advs.201801021
-
[676]
Y. Zhang, V. Srot, I. Moudrakovski, et al., Adv. Energy Mater. 9 (2019) 1901470.
doi: 10.1002/aenm.201901470
-
[677]
Y. Wang, Z. Peng, Y. Li, et al., J. Colloid Interface Sci. 626 (2022) 1–12.
doi: 10.1016/j.jcis.2022.06.123
-
[678]
P. Wei, Y. Liu, Y. Su, et al., ACS Appl. Mater. Interfaces 11 (2019) 3116–3124.
doi: 10.1021/acsami.8b19637
-
[679]
M. Li, L. Liu, P. Wang, et al., Electrochim. Acta 252 (2017) 523–531.
doi: 10.1016/j.electacta.2017.09.020
-
[680]
Z. Huang, L. Liu, L. Yi, et al., J. Power Sources 325 (2016) 474–481.
doi: 10.1016/j.jpowsour.2016.06.066
-
[681]
L. Zhong, M. Yue, W. Xie, et al., J. Energy Chem. 98 (2024) 623–633.
doi: 10.1016/j.jechem.2024.07.029
-
[682]
D. Wang, Q. Ma, H. He, et al., Rare Met. 43 (2024) 2067–2079.
doi: 10.1007/s12598-023-02550-3
-
[683]
P.F. Huang, H.J. Ying, S.L. Zhang, Z. Zhang, W.Q. Han, Chem. Eng. J. 429 (2022) 132396.
doi: 10.1016/j.cej.2021.132396
-
[684]
G.H. Li, S.H. Lian, F. Song, et al., Small 17 (2021) 2103626.
doi: 10.1002/smll.202103626
-
[685]
X. Wang, X. Shen, Y. Gao, et al., J. Am. Chem. Soc. 137 (2015) 2715–2721.
doi: 10.1021/ja512820k
-
[686]
H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, J. Phys. Chem. Lett. 2 (2011) 2560–2565.
doi: 10.1021/jz2012066
-
[687]
J. Chen, G. Zou, H. Hou, et al., J. Mater. Chem. A 4 (2016) 12591–12601.
-
[688]
W. Li, M. Fukunishi, B.J. Morgan, et al., Chem. Mater. 29 (2017) 1836–1844.
doi: 10.1021/acs.chemmater.7b00098
-
[689]
Z. Bi, M.P. Paranthaman, P.A. Menchhofer, et al., J. Power Sources 222 (2013) 461–466.
doi: 10.1016/j.jpowsour.2012.09.019
-
[690]
C.J. Deng, C.R. Ma, M.L. Lau, et al., Electrochim. Acta 321 (2019) 134723.
doi: 10.1016/j.electacta.2019.134723
-
[691]
M.L. Kang, Y.R. Ruan, Y.Z. Lu, et al., J. Mater. Chem. A. 7 (2019) 16937–16946.
doi: 10.1039/c9ta05299b
-
[692]
L.M. Wu, D. Bresser, D. Buchholz, S. Passerini, J. Electrochem. Soc. 162 (2015) A3052–A3058.
doi: 10.1149/2.0091502jes
-
[693]
H. Usui, S. Yoshioka, K. Wasada, M. Shimizu, H. Sakaguchi, ACS Appl. Mater. Interfaces 7 (2015) 6567–6573.
doi: 10.1021/am508670z
-
[694]
G. Zou, J. Chen, Y. Zhang, et al., J. Power Sources 325 (2016) 25–34.
doi: 10.1016/j.jpowsour.2016.06.017
-
[695]
J.C. Pérez-Flores, C. Baehtz, A. Kuhn, F. García-Alvarado, J. Mater. Chem. A 2 (2014) 1825–1833.
doi: 10.1039/C3TA13394J
-
[696]
Y. Song, Y.C. Kang, W. Ma, H.B. Li, RSC Adv. 12 (2022) 12219–12225.
doi: 10.1039/d2ra01589g
-
[697]
G.L. Liu, L.F. Xu, Y.Q. Li, et al., Chem. Eng. J. 430 (2022) 132689.
doi: 10.1016/j.cej.2021.132689
-
[698]
P. Senguttuvan, G. Rousse, V. Seznec, et al., Chem. Mater. 23 (2011) 4109–4111.
doi: 10.1021/cm202076g
-
[699]
H. Tao, R. Wang, Y. Tang, et al., J. Mater. Chem. A. 9 (2021) 10458–10465.
doi: 10.1039/d0ta12552k
-
[700]
Q.C. Wang, S. He, H. Chen, Z.Q. Peng, et al., Green. Chem. 26 (2024) 2114–2123.
doi: 10.1039/d3gc04008a
-
[701]
H.K. Roh, M.S. Kim, K.Y. Chung, et al., J. Mater. Chem. A 5 (2017) 17506–17516.
doi: 10.1039/C7TA05252A
-
[702]
J. Pan, N.N. Wang, L.L. Li, et al., Nano Res. 14 (2021) 139–147.
doi: 10.1007/s12274-020-3057-5
-
[703]
W. Zhang, S. Liu, J. Chen, et al., ACS Appl. Mater. Interfaces 13 (2021) 22341–22350.
doi: 10.1021/acsami.1c02470
-
[704]
D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, ACS Appl. Mater. Interfaces 6 (2014) 11173–11179.
doi: 10.1021/am501144q
-
[705]
G.Q. Zou, H.S. Hou, Y. Zhang, et al., J. Electrochem. Soc. 163 (2016) A3117–A3125.
doi: 10.1149/2.1341614jes
-
[706]
T. Yao, L. Li, H. Wang, Chin. Chem. Lett. 34 (2023) 108186.
doi: 10.1016/j.cclet.2023.108186
-
[707]
J. Dai, J. Jing, J.P. Yang, et al., Rare Met. 42 (2023) 3387–3398.
doi: 10.1007/s12598-023-02332-x
-
[708]
W.L. Feng, C.C. Meng, X.L. Guo, et al., Adv. Energy Mater. 14 (2024) 2400558.
doi: 10.1002/aenm.202400558
-
[709]
Z. Hong, M. Kang, X. Chen, et al., ACS Appl. Mater. Interfaces 9 (2017) 32071–32079.
doi: 10.1021/acsami.7b06290
-
[710]
T.H. Yao, H.K. Wang, X. Ji, et al., Small 19 (2023) 2302831.
doi: 10.1002/smll.202302831
-
[711]
A. Eitner, A.K. Al-Kamal, M.Y. Ali, et al., Appl. Energy Combust. Sci. 17 (2024) 100252.
-
[712]
J. Irranious, P. Iyngaran, P. Abiman, N. Kuganathan, AIP Adv. 14 (2024) 105110.
doi: 10.1063/5.0232184
-
[713]
L. Que, F. Yu, L. Deng, D. Gu, Z. Wang, Energy Storage Mater. 25 (2020) 537–546.
doi: 10.1016/j.ensm.2019.09.029
-
[714]
S. Stanchovska, M. Kalapsazova, S. Harizanova, V. Koleva, R. Stoyanova, Batteries-Basel. 9 (2023) 271.
doi: 10.3390/batteries9050271
-
[715]
Q. Zhang, Y. He, P. Mei, et al., J. Mater. Chem. A. 7 (2019) 19241–19247.
doi: 10.1039/c9ta04406j
-
[716]
Q. Zhang, Y. Guo, K. Guo, T. Zhai, H. Li, Chem. Commun. 52 (2016) 6229–6232.
doi: 10.1039/C6CC01057A
-
[717]
C. Zhao, Y. Cai, K. Yin, et al., Chem. Eng. J. 350 (2018) 201–208.
doi: 10.1016/j.cej.2018.05.194
-
[718]
Q. Liao, H. Hou, J. Duan, et al., Int. J. Hydrogen Energy 42 (2017) 12414–12419.
doi: 10.1016/j.ijhydene.2017.03.116
-
[719]
J.P. Huang, D.D. Yuan, H.Z. Zhang, et al., RSC. Adv. 3 (2013) 12593–12597.
doi: 10.1039/c3ra42413h
-
[720]
Y. Zhang, X.L. Pu, Y.C. Yang, et al., Phys. Chem. Chem. Phys. 17 (2015) 15764–15770.
doi: 10.1039/C5CP01227A
-
[721]
Z. Yan, L. Liu, J. Tan, Q. Zhou, et al., J. Power Sources 269 (2014) 37–45.
doi: 10.1016/j.jpowsour.2014.06.150
-
[722]
Y.F. Qin, Z.J. Zhao, T. Wang, et al., Small 19 (2023) 2204980.
doi: 10.1002/smll.202204980
-
[723]
X. Ma, Z.H. Zhang, J.L.Y. Tian, et al., Funct. Mater. Lett. 11 (2018) 1850021.
doi: 10.1142/S1793604718500212
-
[724]
Y.C. Chang, Y.X. Wang, C.Y. Lee, H.T. Chiu, ChemNanoMat 2 (2016) 1092–1097.
doi: 10.1002/cnma.201600231
-
[725]
S. Nie, L. Liu, M. Li, et al., ChemElectroChem. 5 (2018) 3498–3505.
doi: 10.1002/celc.201800941
-
[726]
S. Nie, L. Liu, J. Liu, et al., J. Alloys Compd. 772 (2019) 314–323.
doi: 10.1016/j.jallcom.2018.09.044
-
[727]
W. Sheng, J. Yang, G. Jiang, et al., New J. Chem. 48 (2024) 1510–1517.
doi: 10.1039/d3nj05137d
-
[728]
D.D. Li, J.Z. Li, H.R. Liu, et al., Chem. Eng. J. 477 (2023) 147045.
doi: 10.1016/j.cej.2023.147045
-
[729]
H. Liu, P. He, J.X. Cao, et al., J. Power Sources 521 (2022) 230946.
doi: 10.1016/j.jpowsour.2021.230946
-
[730]
K. Ma, Y. Dong, H. Jiang, et al., Chem. Eng. J. 413 (2021) 127479.
doi: 10.1016/j.cej.2020.127479
-
[731]
Y. Wu, P. Nie, J. Jiang, et al., ChemElectroChem. 4 (2017) 1560–1565.
doi: 10.1002/celc.201700060
-
[732]
R. Meng, J. Huang, Y. Feng, et al., Adv. Energy Mater. 8 (2018) 1801514.
doi: 10.1002/aenm.201801514
-
[733]
S. Zhang, X. Li, W. Yang, et al., ACS Appl. Mater. Interfaces 11 (2019) 42086–42093.
doi: 10.1021/acsami.9b13308
-
[734]
H. Wang, X.L. Song, M. Lv, et al., Small 18 (2022) 2104293.
doi: 10.1002/smll.202104293
-
[735]
W. Deng, J. Chen, L. Yang, et al., Small 17 (2021) 2101058.
doi: 10.1002/smll.202101058
-
[736]
X. Zou, S. Ye, C. Ou, et al., Energy Storage Mater. 71 (2024) 103573.
doi: 10.1016/j.ensm.2024.103573
-
[737]
P. Wang, M. Xie, X. Liao, et al., ACS Appl. Mater. Interfaces 16 (2024) 52210–52219.
doi: 10.1021/acsami.4c09171
-
[738]
S. Luo, J. Shang, Y.N. Xu, et al., Adv. Funct. Mater. 34 (2024) 2403166.
doi: 10.1002/adfm.202403166
-
[739]
Y. Zhang, J. Li, X. Li, et al., Nano Lett. 24 (2024) 3331–3338.
doi: 10.1021/acs.nanolett.3c04208
-
[740]
E. Li, M. Wang, X. Hu, et al., Small 20 (2024) 2308630.
doi: 10.1002/smll.202308630
-
[741]
H. Zhang, S. Zhang, B. Guo, et al., Angew. Chem. Int. Ed. 63 (2024) e202400285.
doi: 10.1002/anie.202400285
-
[742]
Z. Zhao, G. Sun, Y. Zhang, et al., Adv. Funct. Mater. 34 (2024) 2314679.
doi: 10.1002/adfm.202314679
-
[743]
Y. Zhang, Y. Chen, Y. Jiang, et al., Adv. Funct. Mater. 33 (2023) 2212785.
doi: 10.1002/adfm.202212785
-
[744]
H. Zheng, D. Ma, M. Pei, et al., Adv. Funct. Mater. 35 (2025) 2411651.
doi: 10.1002/adfm.202411651
-
[745]
Z.H. Sun, D.Y. Qu, D.X. Han, et al., Adv. Mater. 36 (2024) 2308987.
doi: 10.1002/adma.202308987
-
[746]
Y. Zhang, J. Wang, L. Shan, et al., Adv. Energy Mater. 14 (2023) 2303464.
-
[747]
Y. Zhang, B. Han, Q. Gao, et al., Nano Energy 128 (2024) 109941.
doi: 10.1016/j.nanoen.2024.109941
-
[748]
X. Yin, S. Sarkar, S. Shi, et al., Adv. Funct. Mater. 30 (2020) 1908445.
doi: 10.1002/adfm.201908445
-
[749]
J. Hu, Y. Hong, M. Guo, et al., Energy Storage Mater. 56 (2023) 267–299.
doi: 10.1016/j.ensm.2023.01.021
-
[750]
A. Abouimrane, W. Weng, H. Eltayeb, et al., Energy Environ. Sci. 5 (2012) 9632–9638.
doi: 10.1039/c2ee22864e
-
[751]
C. Wang, Y. Xu, Y. Fang, et al., J. Am. Chem. Soc. 137 (2015) 3124–3130.
doi: 10.1021/jacs.5b00336
-
[752]
M. López-Herraiz, E. Castillo-Martínez, J. Carretero-González, et al., Energy Environ. Sci. 8 (2015) 3233–3241.
doi: 10.1039/C5EE01832C
-
[753]
J. Hong, M. Lee, B. Lee, et al., Nat. Commun. 5 (2014) 5335.
doi: 10.1038/ncomms6335
-
[754]
C. Luo, G.L. Xu, X. Ji, et al., Angew. Chem. Int. Ed. 57 (2018) 2879–2883.
doi: 10.1002/anie.201713417
-
[755]
F. Glöcklhofer, A.J. Morawietz, B. Stöger, M.M. Unterlass, J. Fröhlich, ACS Omega 2 (2017) 1594–1600.
doi: 10.1021/acsomega.7b00245
-
[756]
L. Zhao, J. Zhao, Y.S. Hu, et al., Adv. Energy Mater. 2 (2012) 962–965.
doi: 10.1002/aenm.201200166
-
[757]
Y. Park, D.S. Shin, S.H. Woo, et al., Adv. Mater. 24 (2012) 3562–3567.
doi: 10.1002/adma.201201205
-
[758]
A. Choi, Y.K. Kim, T.K. Kim, et al., J. Mater. Chem. A 2 (2014) 14986–14993.
doi: 10.1039/C4TA02424A
-
[759]
M. Veerababu, U.V. Varadaraju, R. Kothandaraman, Int. J. Hydrogen Energy. 40 (2015) 14925–14931.
doi: 10.1016/j.ijhydene.2015.09.001
-
[760]
W. Kaim, B. Schwederski, O. Heilmann, F.M. Hornung, Coord. Chem. Rev. 182 (1999) 323–342.
doi: 10.1016/S0010-8545(98)00193-3
-
[761]
C. Li, H. Xu, L. Ni, et al., Adv. Energy Mater. 13 (2023) 2301758.
doi: 10.1002/aenm.202301758
-
[762]
Z. Piao, R. Gao, Y. Liu, G. Zhou, H. Cheng, Adv. Mater. 35 (2023) e2206009.
-
[763]
S. Zhong, Y. Yu, Y. Yang, et al., Angew. Chem. Int. Ed. 62 (2023) e202301169.
doi: 10.1002/anie.202301169
-
[764]
C. Zhu, D. Wu, Z. Wang, et al., Adv. Funct. Mater. 34 (2024) 2214195.
doi: 10.1002/adfm.202214195
-
[765]
A. Ponrouch, E. Marchante, M. Courty, J.M. Tarascon, M.R. Palacín, Energy Environ. Sci. 5 (2012) 8572–8583.
doi: 10.1039/c2ee22258b
-
[766]
M. Shakourian-Fard, G. Kamath, K. Smith, H. Xiong, S.K.R.S. Sankaranarayanan, J. Phys. Chem. C 119 (2015) 22747–22759.
doi: 10.1021/acs.jpcc.5b04706
-
[767]
A. Ponrouch, R. Dedryvère, D. Monti, et al., Energy Environ. Sci. 6 (2013) 2361–2369.
doi: 10.1039/c3ee41379a
-
[768]
T.D. Hatchard, M.N. Obrovac, J. Electrochem. Soc. 161 (2014) A1748.
doi: 10.1149/2.1131410jes
-
[769]
C. Hu, S. Guo, F. Huang, et al., Angew. Chem. Int. Ed. 63 (2024) e202407075.
doi: 10.1002/anie.202407075
-
[770]
Y. Wang, Z. Cao, Z. Ma, et al., ACS Energy Lett. 8 (2023) 1477–1484.
doi: 10.1021/acsenergylett.3c00052
-
[771]
Y. Li, F. Wu, Y. Li, et al., Chem. Soc. Rev. 51 (2022) 4484–4536.
doi: 10.1039/d1cs00948f
-
[772]
K. Lei, F. Li, C. Mu, et al., Energy Environ. Sci. 10 (2017) 552–557.
doi: 10.1039/C6EE03185D
-
[773]
C. Wang, L. Wang, F. Li, F. Cheng, J. Chen, Adv. Mater. 29 (2017) 1702212.
doi: 10.1002/adma.201702212
-
[774]
K. Lei, C. Wang, L. Liu, et al., Angew. Chem. Int. Ed. 57 (2018) 4687–4691.
doi: 10.1002/anie.201801389
-
[775]
H. Liang, Z. Gu, X. Zhao, et al., Angew. Chem. Int. Ed. 60 (2021) 26837–26846.
doi: 10.1002/anie.202112550
-
[776]
Z. Tian, Y. Zou, G. Liu, et al., Adv. Sci. 9 (2022) 2201207.
doi: 10.1002/advs.202201207
-
[777]
J. Li, S. Sui, X. Zhou, et al., Angew. Chem. Int. Ed. 63 (2024) e202400406.
doi: 10.1002/anie.202400406
-
[778]
M. Gu, X. Zhou, Q. Yang, et al., Angew. Chem. Int. Ed. 63 (2024) e202402946.
doi: 10.1002/anie.202402946
-
[779]
Y. Sun, P. Shi, H. Xiang, X. Liang, Y. Yu, Small 15 (2019) 1805479.
doi: 10.1002/smll.201805479
-
[780]
X. Chang, Z. Yang, Y. Liu, et al., Energy Storage Mater. 69 (2024) 103407.
doi: 10.1016/j.ensm.2024.103407
-
[781]
X. Wang, E. Yasukawa, S. Kasuya, J. Electrochem. Soc. 148 (2001) A1058.
doi: 10.1149/1.1397773
-
[782]
Z. Zeng, X. Jiang, R. Li, et al., Adv. Sci. 3 (2016) 1600066.
doi: 10.1002/advs.201600066
-
[783]
K. Du, C. Wang, P. Balaya, S.R. Gajjela, M. Law, Chem. Commun. 58 (2022) 533–536.
doi: 10.1039/d1cc04958e
-
[784]
M. Zhu, L. Li, Y. Zhang, et al., Energy Storage Mater. 42 (2021) 145–153.
doi: 10.1016/j.ensm.2021.07.012
-
[785]
R. Mogensen, S. Colbin, A.S. Menon, E. Björklund, R. Younesi, ACS Appl. Energy Mater. 3 (2020) 4974–4982.
doi: 10.1021/acsaem.0c00522
-
[786]
J. Welch, R. Mogensen, W. van Ekeren, et al., J. Electrochem. Soc. 169 (2022) 120523.
doi: 10.1149/1945-7111/acaa5e
-
[787]
R. Mogensen, A. Buckel, S. Colbin, R. Younesi, Chem. Mater. 33 (2021) 1130–1139.
doi: 10.1021/acs.chemmater.0c03570
-
[788]
L.O.S. Colbin, R. Mogensen, A. Buckel, et al., Adv. Mater. Interfaces 8 (2021) 2101135.
doi: 10.1002/admi.202101135
-
[789]
C.A. Hall, L.O.S. Colbin, A. Buckel, R. Younesi, Batteries Supercaps 7 (2024) e202300338.
doi: 10.1002/batt.202300338
-
[790]
J. Wang, Y. Yamada, K. Sodeyama, et al., Nat. Energy 3 (2018) 22–29.
doi: 10.3390/inventions3020022
-
[791]
X.Y. Jiang, X.W. Liu, Z.Q. Zeng, et al., Adv. Energy Mater. 8 (2018) 1802176.
doi: 10.1002/aenm.201802176
-
[792]
Z. Yang, J. He, W.H. Lai, et al., Angew. Chem. Int. Ed. 60 (2021) 27086–27094.
doi: 10.1002/anie.202112382
-
[793]
X. Liu, X. Zheng, Y. Dai, et al., Adv. Funct. Mater. 31 (2021) 2103522.
doi: 10.1002/adfm.202103522
-
[794]
M. Ma, B. Chen, X. Yang, et al., ACS Energy Lett. 8 (2022) 477–485.
doi: 10.3390/membranes12050477
-
[795]
X. Jiang, X. Liu, Z. Zeng, et al., iScience 10 (2018) 114–122.
doi: 10.1016/j.isci.2018.11.020
-
[796]
Y.W. Zheng, Q.W. Pan, M. Clites, et al., Adv. Energy Mater. 8 (2018) 1801885.
doi: 10.1002/aenm.201801885
-
[797]
C.L. Zhao, L.L. Liu, X.G. Qi, et al., Adv. Energy Mater. 8 (2018) 1703012.
doi: 10.1002/aenm.201703012
-
[798]
F. Ahmad, A. Shahzad, S. Sarwar, et al., J. Power Sources 619 (2024) 235221.
doi: 10.1016/j.jpowsour.2024.235221
-
[799]
J.Y. Zheng, W.J. Li, X.X. Liu, et al., Energy Environ. Mater. 6 (2023) e12422.
doi: 10.1002/eem2.12422
-
[800]
F. Gebert, J. Knott, R. Gorkin, S.L. Chou, S.X. Dou, Energy Storage Mater. 36 (2021) 10–30.
doi: 10.1016/j.ensm.2020.11.030
-
[801]
H. Yin, C.J. Han, Q.R. Liu, F.Y. Wu, F. Zhang, Y.B. Tang, Small 17 (2021) 2006627.
doi: 10.1002/smll.202006627
-
[802]
D. Zhou, R.L. Liu, J. Zhang, et al., Nano Energy 33 (2017) 45–54.
doi: 10.1016/j.nanoen.2017.01.027
-
[803]
Y.B. Liao, X.J. Xu, X.W. Luo, et al., Batteries-Basel 9 (2023) 439.
doi: 10.3390/batteries9090439
-
[804]
D. Fenton, Polymer 14 (1973) 589.
-
[805]
S. Song, M. Kotobuki, F. Zheng, et al., J. Mater. Chem. A 5 (2017) 6424–6431.
doi: 10.1039/C6TA11165C
-
[806]
S. Janakiraman, A. Surendran, R. Biswal, et al., Mater. Res. Express 6 (2019) 086318.
doi: 10.1088/2053-1591/ab226a
-
[807]
X. Zhang, X. Wang, S. Liu, Z. Tao, J. Chen, Nano Res. 11 (2018) 6244–6251.
doi: 10.1007/s12274-018-2144-3
-
[808]
C. Maheshwaran, D. Kanchan, K. Mishra, P. Kumar, D. Kumar, Ionics 30 (2024) 2155–2166.
doi: 10.1007/s11581-024-05408-5
-
[809]
M. Sahu, N. Kumar, R. Agrawal, Y. Mahipal, Macromol. Symp. 413 (2024) 2200212.
doi: 10.1002/masy.202200212
-
[810]
Y.L. Ni’Mah, M.Y. Cheng, J.H. Cheng, J. Rick, B.J. Hwang, J. Power Sources 278 (2015) 375–381.
doi: 10.1016/j.jpowsour.2014.11.047
-
[811]
Q. Wang, X. He, D. Zhang, et al., Inorg. Chem. Front. 11 (2024) 2300–2311.
doi: 10.1039/d4qi00391h
-
[812]
P. Zou, C. Wang, Y. He, H. Xin, Angew. Chem. Int. Ed. 63 (2024) e202319427.
doi: 10.1002/anie.202319427
-
[813]
Y.B. Niu, Y.X. Yin, W.P. Wang, et al., CCS Chem. 2 (2020) 589–597.
doi: 10.31635/ccschem.019.201900055
-
[814]
S.H. Zou, Y. Yang, J.R. Wang, et al., Energy Environ. Sci. 17 (2024) 4426–4460.
doi: 10.1039/d4ee00822g
-
[815]
H. Zhang, X. Xu, W. Fan, J. Zhao, Y. Huo, Chem. Eur. J. 30 (2024) e202402798.
doi: 10.1002/chem.202402798
-
[816]
W. Zhang, J. Zhang, X. Liu, et al., Adv. Funct. Mater. 32 (2022) 2201205.
doi: 10.1002/adfm.202201205
-
[817]
T. Deng, X. Ji, L. Zou, et al., Nat. Nanotechnol. 17 (2021) 269–277.
-
[818]
Q. Zhang, Q. Zhou, Y. Lu, et al., Engineering 8 (2022) 170–180.
doi: 10.1016/j.eng.2021.04.028
-
[819]
J.F. Wu, Q. Wang, X. Guo, J. Power Sources 402 (2018) 513–518.
doi: 10.1016/j.jpowsour.2018.09.048
-
[820]
Y. Li, Z. Deng, J. Peng, et al., Chem. Eur. J. 24 (2018) 1057–1061.
doi: 10.1002/chem.201705466
-
[821]
B. Ouyang, J. Wang, T. He, et al., Nat. Commun. 12 (2021) 5752.
doi: 10.1038/s41467-021-26006-3
-
[822]
Y. Zeng, B. Ouyang, J. Liu, et al., Science 378 (2022) 1320–1324.
doi: 10.1126/science.abq1346
-
[823]
G. Sun, X. Yang, N. Chen, et al., Energy Storage Mater. 41 (2021) 196–202.
doi: 10.1016/j.ensm.2021.06.003
-
[824]
G. Sun, C. Lou, B. Yi, et al., Nat. Commun. 14 (2023) 6501.
doi: 10.1038/s41467-023-42308-0
-
[825]
R.D. Shannon, B.E. Taylor, T.E. Gier, H.Y. Chen, T. Berzins, Inorg. Chem. 17 (1978) 958–964.
doi: 10.1021/ic50182a033
-
[826]
B. Yi, Z. Wei, W. Jia, et al., Nano Lett. 24 (2024) 8911–8919.
doi: 10.1021/acs.nanolett.4c01743
-
[827]
X. Chi, Y. Zhang, F. Hao, et al., Nat. Commun. 13 (2022) 2854.
doi: 10.1038/s41467-022-30517-y
-
[828]
T. Dai, S. Wu, Y. Lu, et al., Nat. Energy 8 (2023) 1221–1228.
doi: 10.1038/s41560-023-01356-y
-
[829]
G. Wang, S. Zhang, H. Wu, et al., Adv. Mater. 37 (2025) e2410402.
doi: 10.1002/adma.202410402
-
[830]
S. Zhang, Y. Xu, H. Wu, et al., Angew. Chem. Int. Ed. 63 (2024) e202401373.
doi: 10.1002/anie.202401373
-
[831]
E. Ruoff, S. Kmiec, A. Manthiram, Adv. Energy Mater. 14 (2024) 2402091.
-
[832]
L. Duchêne, R.S. Kühnel, E. Stilp, et al., Energy Environ. Sci. 10 (2017) 2609–2615.
doi: 10.1039/C7EE02420G
-
[833]
Y. Sun, Y. Wang, X. Liang, et al., J. Am. Chem. Soc. 141 (2019) 5640–5644.
doi: 10.1021/jacs.9b01746
-
[834]
G. Deysher, J.A.S. Oh, Y.T. Chen, et al., Nat. Energy 9 (2024) 1161–1172.
-
[835]
S. Li, L.K. Zhao, Y.H. Bian, et al., Chem. Eng. J. 496 (2024) 154382.
doi: 10.1016/j.cej.2024.154382
-
[836]
H. Shi, X.W. Gao, X. Wang, et al., Chem. Eng. J. 484 (2024) 149574.
doi: 10.1016/j.cej.2024.149574
-
[837]
Z. Liu, Z. Gong, K. He, et al., Sci. China Mater. 68 (2025) 709–723.
doi: 10.1007/s40843-024-3056-0
-
[838]
Z. Liu, S. Li, J. Mu, et al., Mater. Today Chem. 40 (2024) 102251.
doi: 10.1016/j.mtchem.2024.102251
-
[839]
Z. Liu, D. Wang, S. Li, et al., Rare Met. 43 (2024) 5070–5081.
doi: 10.1007/s12598-024-02719-4
-
[840]
H. Tang, L. Duan, J. Liao, et al., Energy Storage Mater. 62 (2023) 102935.
doi: 10.1016/j.ensm.2023.102935
-
[841]
K. Sun, S.H. Luo, L. Qian, et al., Chem. Rec. 24 (2024) e202300327.
doi: 10.1002/tcr.202300327
-
[842]
Y. Zheng, H. Xie, J. Li, et al., Adv. Energy Mater. 14 (2024) 2400461.
doi: 10.1002/aenm.202400461
-
[843]
X. Wang, Z. Xiao, K. Han, et al., Adv. Energy Mater. 13 (2022) 2202861.
-
[844]
Z.X. Huang, Z.Y. Gu, Y.L. Heng, et al., Chem. Eng. J. 452 (2023) 139438.
doi: 10.1016/j.cej.2022.139438
-
[845]
H. Xia, H. Lou, L. Nie, et al., Chem. Eng. J. 506 (2025) 159970.
doi: 10.1016/j.cej.2025.159970
-
[846]
A. Nimkar, F. Malchick, B. Gavriel, et al., ACS Energy Lett. 6 (2021) 2638–2644.
doi: 10.1021/acsenergylett.1c01007
-
[847]
Z. Liu, H. Su, Y. Yang, et al., Energy Storage Mater. 34 (2021) 211–228.
doi: 10.1016/j.ensm.2020.09.010
-
[848]
J. Liao, Y. Han, Z. Zhang, et al., Energy Environ. Mater. 4 (2021) 178–200.
doi: 10.1002/eem2.12166
-
[849]
S. Liu, L. Kang, S.C. Jun, Adv. Mater. 33 (2021) 2004689.
doi: 10.1002/adma.202004689
-
[850]
Z. Wu, J. Zou, S. Chen, et al., J. Power Sources 484 (2021) 229307.
doi: 10.1016/j.jpowsour.2020.229307
-
[851]
J. Cong, S.H. Luo, K. Li, et al., J. Electroanal. Chem. 927 (2022) 116971.
doi: 10.1016/j.jelechem.2022.116971
-
[852]
L. Deng, T. Wang, Y. Hong, et al., ACS Energy Lett. 5 (2020) 1916–1922.
doi: 10.1021/acsenergylett.0c00912
-
[853]
A. Gao, M. Li, N. Guo, et al., Adv. Energy Mater. 9 (2019) 1802739.
doi: 10.1002/aenm.201802739
-
[854]
H. Kim, D.H. Seo, J.C. Kim, et al., Adv. Mater. 29 (2017) 1702480.
doi: 10.1002/adma.201702480
-
[855]
W. Han, X.W. Gao, Y. Song, et al., Small 20 (2024) 2400252.
doi: 10.1002/smll.202400252
-
[856]
X.C. Wang, L.K. Zhao, Z.M. Liu, et al., ACS Energy Lett. 10 (2025) 48–57.
doi: 10.1021/acsenergylett.4c03191
-
[857]
K. Sada, J. Darga, A. Manthiram, Adv. Energy Mater. 13 (2023) 2302321.
doi: 10.1002/aenm.202302321
-
[858]
T. Hosaka, T. Shimamura, K. Kubota, S. Komaba, Chem. Rec. 19 (2019) 735–745.
doi: 10.1002/tcr.201800143
-
[859]
X. Min, J. Xiao, M. Fang, et al., Energy Environ. Sci. 14 (2021) 2186–2243.
doi: 10.1039/d0ee02917c
-
[860]
Y. Liu, Z.Y. Gu, Y.L. Heng, et al., Green Energy Environ. 9 (2024) 1724–1733.
doi: 10.3390/nano14211724
-
[861]
J. Huang, X. Cai, H. Yin, et al., J. Phys. Chem. Lett. 12 (2021) 2721–2726.
doi: 10.1021/acs.jpclett.1c00286
-
[862]
Z. Liu, W. Peng, K. Shih, et al., J. Power Sources 315 (2016) 294–301.
doi: 10.1016/j.jpowsour.2016.02.083
-
[863]
Z. Liu, J. Wang, B. Lu, Sci. Bull. 65 (2020) 1242–1251.
doi: 10.1016/j.scib.2020.04.010
-
[864]
J. Wang, Z. Liu, G. Yan, et al., J. Power Sources 329 (2016) 553–557.
doi: 10.1016/j.jpowsour.2016.08.131
-
[865]
P.R. Kumar, T. Hosaka, T. Shimamura, D. Igarashi, S. Komaba, ACS Appl. Energy Mater. 5 (2022) 13470–13479.
doi: 10.1021/acsaem.2c02148
-
[866]
R.J. Luo, C.Y. Du, C. Ma, et al., Chem. Eng. J. 491 (2024) 151968.
doi: 10.1016/j.cej.2024.151968
-
[867]
M. Ragupathi, R.K. Selvan, Ceram. Int. 50 (2024) 14490–14496.
doi: 10.1016/j.ceramint.2024.01.361
-
[868]
F. Qiao, J. Wang, R. Yu, et al., Small Methods 8 (2024) 2300865.
doi: 10.1002/smtd.202300865
-
[869]
J. Liao, X. Zhang, Q. Zhang, et al., Nano Lett. 22 (2022) 4933–4940.
doi: 10.1021/acs.nanolett.2c01604
-
[870]
X. Yang, D. Yan, T. Chou, J.C. Kim, J. Mater. Chem. A 11 (2023) 14304.
doi: 10.1039/d3ta01310c
-
[871]
J. Liao, Q. Hu, B. Che, et al., J. Mater. Chem. A 7 (2019) 15244.
doi: 10.1039/c9ta03192h
-
[872]
J. Wang, B. Ouyang, H. Kim, et al., J. Mater. Chem. A 9 (2021) 18564.
doi: 10.1039/d1ta05300k
-
[873]
S. Li, M. Li, R. Shen, et al., J. Alloys Compd. 1008 (2024) 176692.
doi: 10.1016/j.jallcom.2024.176692
-
[874]
J. Zhao, Y. Qin, L. Li, et al., Sci. Bull. 68 (2023) 593–602.
doi: 10.1016/j.scib.2023.02.029
-
[875]
R. Wernert, L.H.B. Nguyen, A. Iadecola, et al., ACS Appl. Energy Mater. 5 (2022) 14913–14921.
doi: 10.1021/acsaem.2c02379
-
[876]
J. Xu, J. Liao, Y. Xu, et al., J. Energy Chem. 68 (2022) 284–292.
doi: 10.1016/j.jechem.2021.12.023
-
[877]
Y. Bai, K. ’e. YuChi, X. Liu, et al., Eur. J. Inorg. Chem. 26 (2023) e202300246.
doi: 10.1002/ejic.202300246
-
[878]
W. Shu, C. Han, X. Wang, Adv. Funct. Mater. 34 (2024) 2309636.
doi: 10.1002/adfm.202309636
-
[879]
A. Simonov, T. De Baerdemaeker, H.L.B. Boström, et al., Nature 578 (2020) 256–260.
doi: 10.1038/s41586-020-1980-y
-
[880]
A. Eftekhari, J. Power Sources 126 (2004) 221–228.
doi: 10.1016/j.jpowsour.2003.08.007
-
[881]
W. Shu, M. Huang, L. Geng, F. Qiao, X. Wang, Small 19 (2023) 2207080.
doi: 10.1002/smll.202207080
-
[882]
L. Deng, J. Qu, X. Niu, et al., Nat. Commun. 12 (2021) 2167.
doi: 10.1038/s41467-021-22499-0
-
[883]
J. Ge, L. Fan, A.M. Rao, J. Zhou, B. Lu, Nat. Sustain. 5 (2021) 225–234.
doi: 10.1038/s41893-021-00810-7
-
[884]
S. Chong, J. Yang, L. Sun, et al., ACS Nano 14 (2020) 9807–9818.
doi: 10.1021/acsnano.0c02047
-
[885]
Y.H. Zhu, Y.B. Yin, X. Yang, et al., Angew. Chem. Int. Ed. 56 (2017) 7881–7885.
doi: 10.1002/anie.201702711
-
[886]
X. Yi, H. Fu, A.M. Rao, et al., Nat. Sustain. 7 (2024) 326–337.
doi: 10.1038/s41893-024-01275-0
-
[887]
Y. Fu, Y. Dong, Y. Shen, et al., Small 20 (2024) 2406630.
doi: 10.1002/smll.202406630
-
[888]
M. Qin, C. Chen, B. Zhang, J. Yan, J. Qiu, Adv. Mater. 36 (2024) 2407570.
doi: 10.1002/adma.202407570
-
[889]
J. Ruan, S. Luo, Q. Li, et al., Electrochem. Energy Rev. 7 (2024) 24.
doi: 10.1007/s41918-024-00227-8
-
[890]
S. Dong, X. Gu, Y. Li, et al., Carbon 232 (2025) 119791.
doi: 10.1016/j.carbon.2024.119791
-
[891]
K. Share, A.P. Cohn, R. Carter, B. Rogers, C.L. Pint, ACS Nano 10 (2016) 9738–9744.
doi: 10.1021/acsnano.6b05998
-
[892]
Y. Luan, R. Hu, Y. Fang, et al., Nano-Micro Lett. 11 (2019) 13.
doi: 10.1007/s40820-019-0245-5
-
[893]
X. Chang, X. Zhou, X. Ou, et al., Adv. Energy Mater. 9 (2019) 1902672.
doi: 10.1002/aenm.201902672
-
[894]
Y. He, J. Xue, M. Yang, et al., Chem. Eng. J. 409 (2021) 127383.
doi: 10.1016/j.cej.2020.127383
-
[895]
G. Yang, X. Li, Z. Guan, et al., Nano Lett. 20 (2020) 3836–3843.
doi: 10.1021/acs.nanolett.0c00943
-
[896]
Y. Wang, J.J. Zeng, Y.J. Wang, et al., Adv. Mater. 36 (2024) 2410132.
doi: 10.1002/adma.202410132
-
[897]
H.H. Ou, B.Y. Pei, Y.F. Zhou, et al., Small. Methods 9 (2025) 2400839.
doi: 10.1002/smtd.202400839
-
[898]
K.X. Lei, J. Wang, C. Chen, et al., Rare Met. 39 (2020) 989–1004.
doi: 10.1007/s12598-020-01463-9
-
[899]
G. Luo, X. Feng, M. Qian, et al., Mater. Chem. Front. 7 (2023) 3011–3036.
doi: 10.1039/d3qm00031a
-
[900]
H. Yang, F.X. He, F.F. Liu, et al., Adv. Mater. 36 (2024) 2306512.
doi: 10.1002/adma.202306512
-
[901]
G.H. Qin, Y.H. Liu, F.S. Liu, et al., Adv. Energy Mater. 11 (2021) 2003429.
doi: 10.1002/aenm.202003429
-
[902]
W. Zhang, J. Mao, S. Li, Z. Chen, Z. Guo, J. Am. Chem. Soc. 139 (2017) 3316–3319.
doi: 10.1021/jacs.6b12185
-
[903]
C. Zhao, H. Chen, H. Liu, et al., J. Mater. Chem. A 9 (2021) 6274–6283.
doi: 10.1039/d0ta12141j
-
[904]
Q.X. Wang, F.S. Liu, Z.G. Qi, et al., Adv. Energy Mater. 15 (2025) 2403188.
doi: 10.1002/aenm.202403188
-
[905]
J. Wang, L. Fan, Z. Liu, et al., ACS Nano 13 (2019) 3703–3713.
doi: 10.1021/acsnano.9b00634
-
[906]
W. Guo, Z. Chen, Z. Sun, et al., J. Energy Storage 89 (2024) 111574.
doi: 10.1016/j.est.2024.111574
-
[907]
Z. Yang, Y.W. Song, C.F. Zhang, et al., Adv. Energy Mater. 11 (2021) 2101197.
doi: 10.1002/aenm.202101197
-
[908]
J. Graetz, C.C. Ahn, R. Yazami, B. Fultz, J. Electrochem. Soc. 151 (2004) A698–A702.
doi: 10.1149/1.169741201197
-
[909]
D. Li, C. Feng, H.K. Liu, Z. Guo, J. Mater. Chem. A 3 (2015) 978–981.
doi: 10.1039/C4TA05982D
-
[910]
Q. Yang, Z. Wang, W. Xi, G. He, Electrochem. Commun. 101 (2019) 68–72.
doi: 10.1016/j.elecom.2019.02.016
-
[911]
R. Liu, F. Luo, L. Zeng, et al., J. Colloid Interface Sci. 584 (2021) 372–381.
doi: 10.1016/j.jcis.2020.09.083
-
[912]
Z.Q. Tong, T.X. Kang, Y. Wu, et al., Nano Res. 15 (2022) 7220–7226.
doi: 10.1007/s12274-022-4398-z
-
[913]
X. Liu, Z.F. Sun, Y.J. Sun, et al., Adv. Funct. Mater. 33 (2023) 2307205.
doi: 10.1002/adfm.202307205
-
[914]
X. Lin, F. Xue, Z. Zhang, Q. Li, Rare Met. 42 (2023) 449–458.
doi: 10.1007/s12598-022-02143-6
-
[915]
Z. Liu, X. Liu, B. Wang, et al., eScience 3 (2023) 100177.
doi: 10.1016/j.esci.2023.100177
-
[916]
P. Xiong, J. Wu, M. Zhou, Y. Xu, ACS Nano 14 (2020) 1018–1026.
doi: 10.1021/acsnano.9b08526
-
[917]
Y. Feng, Y. Lv, H. Fu, et al., Nat. Sci. Rev. 10 (2023)118.
doi: 10.1093/nsr/nwad118
-
[918]
K.D. Wu, Y.F. Feng, J.H. Peng, et al., Ceram. Int. 50 (2024) 26539–26547.
doi: 10.1016/j.ceramint.2024.04.382
-
[919]
D. Li, Y. Zhang, Q. Sun, et al., Energy Storage Mater. 23 (2019) 367–374.
doi: 10.1016/j.ensm.2019.04.037
-
[920]
S. Liu, L. Kang, J. Henzie, et al., ACS Nano 15 (2021) 18931–18973.
doi: 10.1021/acsnano.1c08428
-
[921]
X. Min, J. Xiao, M.H. Fang, et al., Energy Environ. Sci. 14 (2021) 2186–2243.
doi: 10.1039/d0ee02917c
-
[922]
P. Zhang, Q.Z. Zhu, Y. Wei, B. Xu, Chem. Eng. J. 451 (2023)138891.
doi: 10.1016/j.cej.2022.138891
-
[923]
D.P. Li, L.N. Dai, X.H. Ren, et al., Energy Environ. Sci. 14 (2021) 424–436.
doi: 10.1039/d0ee02919j
-
[924]
F.H. Yang, H. Goo, J.N. Hao, et al., Adv. Funct. Mater. 29 (2019) 1808291.
doi: 10.1002/adfm.201808291
-
[925]
Q. Cheng, X.Z. Liu, Q. Deng, et al., Chem. Eng. J. 446 (2022)136829.
doi: 10.1016/j.cej.2022.136829
-
[926]
C.H. Chang, K.T. Chen, Y.Y. Hsieh, C.B. Chang, H.Y. Tuan, ACS Nano 16 (2022) 1486–1501.
doi: 10.1021/acsnano.1c09863
-
[927]
L. Gao, Z.J. Wang, H. Hu, et al., J. Electroanal. Chem. 876 (2020) 114483.
doi: 10.1016/j.jelechem.2020.114483
-
[928]
Z.Q. Gu, G.J. Li, N. Hussain, B.B. Tian, Y.M. Shi, Appl. Surf. Sci. 592 (2022) 153323.
doi: 10.1016/j.apsusc.2022.153323
-
[929]
D. Adekoya, H. Chen, H.Y. Hoh, et al., ACS Nano 14 (2020) 5027–5035.
doi: 10.1021/acsnano.0c01395
-
[930]
Y. Huang, S.Q. Ding, S.J. Xu, et al., Chem. Eng. J. 446 (2022) 137265.
doi: 10.1016/j.cej.2022.137265
-
[931]
D.G. Sun, C. Tang, H. Cheng, et al., J. Energy Chem. 72 (2022) 1–8.
doi: 10.1016/j.jechem.2022.04.011
-
[932]
Q.W. Tan, W. Zhao, K. Han, et al., J. Mater. Chem. A 7 (2019) 15673–15682.
doi: 10.1039/c9ta04550c
-
[933]
Y. Feng, A.M. Rao, J. Zhou, B. Lu, Adv. Mater. 35 (2023) 2300886.
doi: 10.1002/adma.202300886
-
[934]
S. Li, H. Zhu, C. Gu, et al., ACS Appl. Mater. Interfaces 8 (2023) 3467–3475.
doi: 10.1021/acsenergylett.3c01067
-
[935]
Z. Cui, J. Song, M. Chen, et al., Energy Storage Mater. 71 (2024) 103649.
doi: 10.1016/j.ensm.2024.103649
-
[936]
J. Wu, X. Zhang, Z. Li, et al., Adv. Eng. Mater. 30 (2020) 2004348.
-
[937]
X. Zhou, Z. Wang, Y. Wang, et al., J. Colloid Interface Sci. 636 (2023) 73–82.
doi: 10.1016/j.jcis.2022.12.168
-
[938]
S. Su, Q. Liu, J. Wang, et al., ACS Appl. Mater. Interfaces 11 (2019) 22474–22480.
doi: 10.1021/acsami.9b06379
-
[939]
M. Zhou, P. Bai, X. Ji, et al., Adv. Mater. 33 (2021) 2003741.
doi: 10.1002/adma.202003741
-
[940]
Y. Xu, T. Ding, D. Sun, X. Ji, X. Zhou, Adv. Funct. Mater. 33 (2023) 2211290.
doi: 10.1002/adfm.202211290
-
[941]
S. Dhir, B. Jagger, A. Maguire, M. Pasta, Nat. Commun. 14 (2023) 3833.
doi: 10.1038/s41467-023-39523-0
-
[942]
Z. Wu, G. Liang, W.K. Pang, et al., Adv. Mater. 32 (2020) 1905632.
doi: 10.1002/adma.201905632
-
[943]
H. Wang, D. Yu, X. Wang, et al., Angew. Chem. Int. Ed. 58 (2019) 16451–16455.
doi: 10.1002/anie.201908607
-
[944]
X. Ma, H. Fu, J. Shen, et al., Angew. Chem. Int. Ed. 62 (2023) e202312973.
doi: 10.1002/anie.202312973
-
[945]
X. Li, X. Ou, Y. Tang, Adv. Energy Mater. 10 (2020) 2002567.
doi: 10.1002/aenm.202002567
-
[946]
D. Zhang, H. Fu, X. Ma, et al., Angew. Chem. Int. Ed. 63 (2024) e202405153.
doi: 10.1002/anie.202405153
-
[947]
S. Liu, J. Mao, L. Zhang, et al., Adv. Mater. 33 (2021) 2006313.
doi: 10.1002/adma.202006313
-
[948]
C.H. Jo, S.T. Myung, Adv. Energy Mater. 14 (2024) 2400217.
doi: 10.1002/aenm.202400217
-
[949]
Y. Lei, D. Han, J. Dong, et al., Energy Storage Mater. 24 (2020) 319–328.
doi: 10.1016/j.ensm.2019.07.043
-
[950]
L. Fan, H. Xie, Y. Hu, et al., Energy Environ. Sci. 16 (2023) 305–315.
doi: 10.1039/d2ee03294e
-
[951]
Y. Hu, H. Fu, Y. Geng, et al. Angew. Chem. Int. Ed. 63 (2024) e202403269.
doi: 10.1002/anie.202403269
-
[952]
Y. Hu, L. Fan, A.M. Rao, et al., Nat. Sci. Rev. 9 (2022) nwac134.
doi: 10.1093/nsr/nwac134
-
[953]
A.W. Ells, R. May, L.E. Marbella, ACS Appl. Mater. Interfaces 13 (2021) 53841–53849.
doi: 10.1021/acsami.1c15174
-
[954]
G. Liu, Z. Cao, L. Zhou, et al., Adv. Funct. Mater. 30 (2020) 2001934.
doi: 10.1002/adfm.202001934
-
[955]
X. Chen, Y. Meng, D. Xiao, Y. Wu, L. Qin, Energy Storage Mater. 61 (2023) 102923.
doi: 10.1016/j.ensm.2023.102923
-
[956]
S. Liu, J. Mao, Q. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 3638–3644.
doi: 10.1002/anie.201913174
-
[957]
T. Hosaka, K. Kubota, H. Kojima, S. Komaba, Chem. Commun. 54 (2018) 8387–8390.
doi: 10.1039/c8cc04433c
-
[958]
Y. Gao, W. Li, B. Ou, et al., Adv. Funct. Mater. 33 (2023) 2305829.
doi: 10.1002/adfm.202305829
-
[959]
W. Chen, D. Zhang, H. Fu, et al., ACS Nano 18 (2024) 12512–12523.
doi: 10.1021/acsnano.4c02108
-
[960]
J. Li, Y. Hu, H. Xie, et al., Angew. Chem. Int. Ed. 61 (2022) e202208291.
doi: 10.1002/anie.202208291
-
[961]
L. Cheng, H. Lan, Y. Gao, et al., Angew. Chem. Int. Ed. 63 (2024) e202315624.
doi: 10.1002/anie.202315624
-
[962]
M. Shen, Z. Dai, L. Fan, et al., Nat. Sci. Rev. 11 (2024) nwae359.
doi: 10.1093/nsr/nwae359
-
[963]
P. Nie, M. Liu, W. Qu, et al., Adv. Funct. Mater. 33 (2023) 2302235.
doi: 10.1002/adfm.202302235
-
[964]
L. Qin, N. Xiao, J. Zheng, et al., Adv. Energy Mater. 9 (2019) 1902618.
doi: 10.1002/aenm.201902618
-
[965]
H. Onuma, K. Kubota, S. Muratsubaki, et al., ACS Energy Lett. 5 (2020) 2849–2857.
doi: 10.1021/acsenergylett.0c01393
-
[966]
T. Masese, K. Yoshii, Y. Yamaguchi, et al., Nat. Commun. 9 (2018) 3823.
doi: 10.1038/s41467-018-06343-6
-
[967]
J. Li, H. Fu, M. Gu, et al., Nano Lett. 24 (2024) 11419–11428.
doi: 10.1021/acs.nanolett.4c02168
-
[968]
H. Gao, L. Xue, S. Xin, J.B. Goodenough, Angew. Chem. Int. Ed. 57 (2018) 5449–5453.
doi: 10.1002/anie.201802248
-
[969]
Y. Ding, B. Ling, X. Zhao, et al., Energy Mater. Devices 2 (2024) 9370040.
doi: 10.26599/emd.2024.9370040
-
[970]
H.L. Chen, W.Y. Zhang, S. Yi, et al., Energy Environ. Sci. 17 (2024) 3146–3156.
doi: 10.1039/d3ee04333a
-
[971]
Z. Cai, Y.T. Ou, J.D. Wang, et al., Energy Storage Mater. 27 (2020) 205–211.
doi: 10.1016/j.ensm.2020.01.032
-
[972]
T. Wang, Q. Xi, Y.F. Li, et al., Adv. Sci. 9 (2022) 2200155.
doi: 10.1002/advs.202200155
-
[973]
H.Z. Dou, X.R. Wu, M. Xu, et al., Angew. Chem. Int. Ed. (2024) e202401974.
-
[974]
P.X. Li, J.F. Ren, C.X. Li, et al., Chem. Eng. J. 451 (2023) 138769.
doi: 10.1016/j.cej.2022.138769
-
[975]
Z.B. Chen, Y.Z. Wang, Q. Wu, et al., Adv. Mater. 36 (2024) e2411004.
doi: 10.1002/adma.202411004
-
[976]
X.Z. Yang, Y. Lu, Z.T. Liu, et al., Energy Environ. Sci. 17 (2024) 5563–5575.
doi: 10.1039/d4ee00881b
-
[977]
L. Wang, H. Yu, D. Chen, et al., Carbon Neutral 3 (2024) 996–1008.
doi: 10.1002/cnl2.168
-
[978]
D. Qin, J. Ding, C. Liang, et al., Acta Phys. Chim. Sin. 40 (2024) 2310034.
doi: 10.3866/pku.whxb202310034
-
[979]
N. Zhang, J.C. Wang, Y.F. Guo, et al., Coord. Chem. Rev. 479 (2023) 215009.
doi: 10.1016/j.ccr.2022.215009
-
[980]
Y. Xu, G. Zhang, J. Liu, et al., Energy Environ. Mater. 6 (2023) e12575.
doi: 10.1002/eem2.12575
-
[981]
N. Zhang, F. Cheng, J. Liu, et al., Nat. Commun. 8 (2017) 405.
doi: 10.1007/978-3-319-70090-8_42
-
[982]
M. Wang, X. Zheng, X. Zhang, et al., Adv. Energy Mater. 11 (2020) 2002904.
-
[983]
X. Zheng, Y. Wang, Y. Xu, et al., Nano Lett. 21 (2021) 8863–8871.
doi: 10.1021/acs.nanolett.1c03319
-
[984]
L. Dai, Y. Wang, L. Sun, et al., Adv. Sci. 8 (2021) 2004995.
doi: 10.1002/advs.202004995
-
[985]
A. Guo, Z. Wang, L. Chen, et al., ACS Nano 18 (2024) 27261–27286.
doi: 10.1021/acsnano.4c09899
-
[986]
Z. Xing, G. Xu, J. Han, et al., Trends. Chem. 5 (2023) 380–392.
doi: 10.1016/j.trechm.2023.02.008
-
[987]
D. Bin, Y. Du, B. Yang, et al., Adv. Funct. Mater. 33 (2022) 2211765.
-
[988]
J. Yan, E.H. Ang, Y. Yang, et al., Adv. Funct. Mater. 31 (2021) 2010213.
doi: 10.1002/adfm.202010213
-
[989]
D.L. Anderson, J. Geophys. Res. Solid Earth. 88 (2012) B41–B52.
-
[990]
S. Hou, X. Ji, K. Gaskell, et al., Science 374 (2021) 172–178.
doi: 10.1126/science.abg3954
-
[991]
H.D. Yoo, I. Shterenberg, Y. Gofer, et al., Energy Environ. Sci. 6 (2013) 2265–2279.
doi: 10.1039/c3ee40871j
-
[992]
S.B. Son, T. Gao, S.P. Harvey, et al., Nat. Chem. 10 (2018) 532–539.
doi: 10.1038/s41557-018-0019-6
-
[993]
R. Xu, X. Gao, Y. Chen, X. Chen, L. Cui, Chin. Chem. Lett. 35 (2024) 109852.
doi: 10.1016/j.cclet.2024.109852
-
[994]
D. Aurbach, Z. Lu, A. Schechter, et al., Nature 407 (2000) 724–727.
doi: 10.1038/35037553
-
[995]
M. Mao, Z. Lin, Y. Tong, et al., ACS Nano 14 (2020) 1102–1110.
doi: 10.1021/acsnano.9b08848
-
[996]
Y. Cheng, L.R. Parent, Y. Shao, et al., Chem. Mater. 26 (2014) 4904–4907.
doi: 10.1021/cm502306c
-
[997]
G.S. Suresh, M.D. Levi, D. Aurbach, Electrochim. Acta 53 (2008) 3889–3896.
doi: 10.1016/j.electacta.2007.11.052
-
[998]
D. Aurbach, Z. Lu, A. Schechter, et al., Nature 407 (2000) 724–727.
doi: 10.1038/35037553
-
[999]
M. Mao, X. Fan, W. Xie, et al., Adv. Sci. 10 (2023) e2207563.
doi: 10.1002/advs.202207563
-
[1000]
A. Emly, A. Van der Ven, Inorg. Chem. 54 (2015) 4394–4402.
-
[1001]
M. Liu, A. Jain, Z. Rong, et al., Energy Environ. Sci. 9 (2016) 3201–3209.
-
[1002]
K. Makino, J. Power Sources 112 (2002) 85–89.
-
[1003]
K. Makino, Y. Katayama, T. Miura, T. Kishi, J. Power Sources 97-98 (2001) 512–514.
-
[1004]
M. Mao, Y. Tong, Q. Zhang, et al., Nano Lett. 20 (2020) 6852–6858.
-
[1005]
M. Mao, C. Yang, Z. Lin, et al., JACS Au 1 (2021) 1266–1274.
-
[1006]
R. Zhang, X. Yu, K.W. Nam, et al., Electrochem. Commun. 23 (2012) 110–113.
-
[1007]
A. Du, Y. Zhao, Z. Zhang, et al., Energy Storage Mater. 26 (2020) 23–31.
-
[1008]
H. Dong, Y. Liang, O. Tutusaus, et al., Joule 3 (2019) 782–793.
-
[1009]
M. Mao, C. Luo, T.P. Pollard, et al., Angew. Chem. Int. Ed. 58 (2019) 17820–17826.
-
[1010]
K. Nakahara, S. Iwasa, M. Satoh, et al., Chem. Phys. Lett. 359 (2002) 351–354.
-
[1011]
M. Shi, T. Li, H. Shang, et al., J. Energy Storage 68 (2023) 107765.
-
[1012]
M. Mao, X. Ji, S. Hou, et al., Chem. Mater. 31 (2019) 3183–3191.
-
[1013]
M. Mao, T. Gao, S. Hou, et al., Nano Lett. 19 (2019) 6665–6672.
-
[1014]
R. Xu, X. Gao, Y. Chen, et al., Mater. Today Phys. 36 (2023) 101186.
-
[1015]
Y. Man, P. Jaumaux, Y. Xu, et al., Sci. Bull. 68 (2023) 1819–1842.
-
[1016]
L.W. Gaddum, H.E. French, J. Am. Chem. Soc. 49 (2002) 1295–1299.
-
[1017]
T.D. Gregory, R.J. Hoffman, R.C. Winterton, J. Electrochem. Soc. 137 (2019) 775–780.
-
[1018]
D. Aurbach, Y. Gofer, A. Schechter, et al., J. Power Sources 97-98 (2001) 269–273.
-
[1019]
D. Aurbach, G.S. Suresh, E. Levi, et al., Adv. Mater. 19 (2007) 4260–4267.
-
[1020]
O. Mizrahi, N. Amir, E. Pollak, et al., J. Electrochem. Soc. 155 (2008) A103–A109.
-
[1021]
L. Wang, B. Jiang, P.E. Vullum, ACS Nano 12 (2018) 2998–3009.
-
[1022]
H.D. Yoo, Y. Liang, H. Dong, et al., Nat. Commun. 8 (2017) 339.
-
[1023]
Z. Lu, A. Schechter, M. Moshkovich, D. Aurbach, J. Electroanal. Chem. 466 (1999) 203–217.
-
[1024]
I. Shterenberg, M. Salama, Y. Gofer, D. Aurbach, Langmuir 33 (2017) 9472–9478.
-
[1025]
D. Aurbach, Y. Gofer, Z. Lu, et al., J. Power Sources 97-98 (2001) 28–32.
-
[1026]
D. Wang, X. Du, B. Zhang, Small Struct. 3 (2022) 2200078.
-
[1027]
V. Küpers, D. Weintz, C. Mück-Lichtenfeld, et al., J. Electrochem. Soc. 167 (2020) 160505.
-
[1028]
T. Mandai, K. Dokko, M. Watanabe, Chem. Rec. 19 (2019) 708–722.
-
[1029]
H. Senoh, H. Sakaebe, H. Sano, et al., J. Electrochem. Soc. 161 (2014) A1315–A1320.
-
[1030]
T.J. Seguin, N.T. Hahn, K.R. Zavadil, K.A. Persson, Front. Chem. 7 (2019) 175.
-
[1031]
J. Xiao, X. Zhang, H. Fan, et al., Adv. Energy Mater. 12 (2022) 2202602.
-
[1032]
Z. Meng, Z. Li, L. Wang, et al., ACS Appl. Mater. Interfaces 13 (2021) 37044–37051.
-
[1033]
A. Ab Aziz, Y. Tominaga, Ionics 24 (2018) 3475–3481.
-
[1034]
R. Manjuladevi, M. Thamilselvan, S. Selvasekarapandian, et al., Solid State Ionics 308 (2017) 90–100.
-
[1035]
R.A. DiLeo, Q. Zhang, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, ECS Electrochem. Lett. 4 (2014) A10–A14.
-
[1036]
Z. Zhang, M. Song, C. Si, W. Cui, Y. Wang, eScience 3 (2023) 100070.
-
[1037]
N. Singh, T.S. Arthur, C. Ling, M. Matsui, F. Mizuno, Chem. Commun. 49 (2013) 149–151.
-
[1038]
N. Wu, Y.C. Lyu, R.J. Xiao, et al., npg Asia Mater. 6 (2014) e120.
-
[1039]
F. Bella, S. De Luca, L. Fagiolari, et al., Nanomater 11 (2021) 810.
-
[1040]
T.S. Arthur, N. Singh, M. Matsui, Electrochem. Commun. 16 (2012) 103–106.
-
[1041]
F. Murgia, L. Stievano, L. Monconduit, R. Berthelot, J. Mater. Chem. A. 3 (2015) 16478–16485.
-
[1042]
Y. Shao, M. Gu, X. Li, et al., Nano Lett. 14 (2013) 255–260.
-
[1043]
R. Attias, M. Salama, B. Hirsch, Y. Goffer, D. Aurbach, Joule 3 (2019) 27–52.
-
[1044]
Y. Cheng, Y. Shao, L.R. Parent, et al., Adv. Mater. 27 (2015) 6598–6605.
-
[1045]
F. Murgia, E.T. Weldekidan, L. Stievano, L. Monconduit, R. Berthelot, Electrochem. Commun. 60 (2015) 56–59.
-
[1046]
L. Blondeau, S. Surblé, E. Foy, H. Khodja, M. Gauthier, J. Energy Chem. 55 (2021) 124–128.
-
[1047]
L. Luo, Y. Zhen, Y. Lu, et al., Nanoscale 12 (2020) 230–238.
-
[1048]
D.C. Lin, Y.Y. Liu, Y. Cui, Nat. Nanotechnol. 12 (2017) 194–206.
-
[1049]
Y.S. Tian, G.B. Zeng, A. Rutt, et al., Chem. Rev. 121 (2021) 1623–1669.
-
[1050]
M.E. Arroyo-de Dompablo, A. Ponrouch, P. Johansson, M.R. Palacín, Chem. Rev. 120 (2020) 6331–6357.
-
[1051]
B.F. Ji, H.Y. He, W.J. Yao, Y.B. Tang, Adv. Mater. 33 (2021) 2005501.
-
[1052]
A. Ponrouch, C. Frontera, F. Bardé, M.R. Palacín, Nat. Mater. 15 (2016) 169–172.
-
[1053]
J. Tu, W.L. Song, H.P. Lei, et al., Chem. Rev. 121 (2021) 4903–4961.
-
[1054]
M. Jiang, C. Fu, P. Meng, et al., Adv. Mater. 34 (2021) 2102026.
-
[1055]
D. Tommasi, Georges Carre. (1889) 131.
-
[1056]
Y.F. Xu, Y. Zhao, J. Ren, Y. Zhang, H.S. Peng, Angew. Chem. Int. Ed. 55 (2016) 7979–7982.
-
[1057]
S.G. Wu, S.Y. Hu, Q. Zhang, et al., Energy Storage Mater. 31 (2020) 310–317.
-
[1058]
A. Sivashanmugam, S.R. Prasad, R. Thirunakaran, S. Gopukumar, J. Electrochem. Soc. 155 (2008) A725.
-
[1059]
R.R. Bessette, J.M. Cichon, D.W. Dischert, E.G. Dow, J. Power Sources 80 (1999) 248–253.
-
[1060]
J.J. Auborn, Y.L. Barberio, J. Electrochem. Soc. 132 (1985) 598–601.
-
[1061]
M.C. Lin, M. Gong, B. Lu, et al., Nature 520 (2015) 325–328.
-
[1062]
H. Sun, W. Wang, Z. Yu, et al., Chem. Commun. 51 (2015) 11892–11895.
-
[1063]
D.Y. Wang, C.Y. Wei, M.C. Lin, et al., Nat. Commun. 8 (2017) 14283.
-
[1064]
D. Kong, T. Cai, H. Fan, et al., Angew. Chem. Int. Ed. 61 (2021) e202114681.
-
[1065]
S. Wang, Z.J. Yu, J.G. Tu, et al., Adv. Energy Mater. 6 (2016) 1600137.
-
[1066]
J. Meng, X. Hong, Z. Xiao, et al., Nat. Commun. 15 (2024) 596.
-
[1067]
H. Li, R. Meng, Y. Guo, et al., Nat. Commun. 12 (2021) 5714.
-
[1068]
G. Cohn, L. Ma, L.A. Archer, J. Power Sources 283 (2015) 416–422.
-
[1069]
L.W. Luo, C. Zhang, W.Y. Ma, et al., Adv. Mater. 36 (2024) 240610.
-
[1070]
X. Zhang, Y. Tang, F. Zhang, C.S. Lee, Adv. Energy Mater. 6 (2016) 1502588.
-
[1071]
Q.F. Li, N.J. Bjerrum, J. Power Sources 110 (2002) 1–10.
-
[1072]
J. Ren, C. Fu, Q. Dong, et al., ACS Sustain. Chem. Eng. 9 (2021) 2300–2308.
-
[1073]
Y.F. Han, J.M. Ren, C.P. Fu, et al., J. Electrochem. Soc. 167 (2020) 040514.
-
[1074]
K. Wang, X.D. Li, Y. Xie, et al., ACS Appl. Mater. Interfaces 11 (2019) 23990–23999.
-
[1075]
S. Kumar, P. Rama, W.Y. Lieu, et al., Energy Storage Mater. 65 (2024) 103087.
-
[1076]
X. Wang, C. Zhao, P. Luo, et al., Nanoscale 16 (2024) 13171–13182.
-
[1077]
Q. Ran, H. Shi, H. Meng, et al., Nat. Commun. 13 (2022) 576.
-
[1078]
Y.C. Yu, M. Chen, S.T. Wang, et al., J. Electrochem. Soc. 165 (2018) A584–A592.
-
[1079]
F. Wu, H. Yang, Y. Bai, C. Wu, Adv. Mater. 31 (2019) 1806510.
-
[1080]
H. Lu, Y. Wan, T. Wang, et al., J. Mater. Chem. A 7 (2019) 7213–7220.
-
[1081]
L. Zheng, Y. Bai, C. Wu, Chin. Chem. Lett. 35 (2024) 108589.
-
[1082]
L. Geng, J.P. Scheifers, C. Fu, et al., ACS Appl. Mater. Interfaces 9 (2017) 21251–21257.
-
[1083]
Z. Yuan, Q. Lin, Y. Li, W. Han, L. Wang, Adv. Mater. 35 (2023) 2211527.
-
[1084]
Z. Lin, M. Mao, C. Yang, et al., Sci. Adv. 7 (2021) 6314.
-
[1085]
A. VahidMohammadi, A. Hadjikhani, S. Shahbazmohamadi, M. Beidaghi, ACS Nano 11 (2017) 11135–11144.
-
[1086]
A.X. Zhou, L.W. Jiang, J.M. Yue, et al., ACS Appl. Mater. Interfaces 11 (2019) 41356–41362.
-
[1087]
T. Gao, X. Li, X. Wang, et al., Angew. Chem. Int. Ed. 55 (2016) 9898–9901.
-
[1088]
W. Lv, G. Wu, X. Li, J. Li, Z. Li, Energy Storage Mater. 46 (2022) 138–146.
-
[1089]
X. Yu, B. Wang, D. Gong, Z. Xu, B. Lu, Adv. Mater. 29 (2017) 1604118.
-
[1090]
D.J. Kim, D.-J. Yoo, M.T. Otley, et al., Nat. Energy 4 (2018) 51–59.
-
[1091]
X. Geng, X. Hou, X. He, H.J. Fan, Adv. Energy Mater. 14 (2024) 2304094.
-
[1092]
C.S. Yan, C. Lv, L.G. Wang, et al., J. Am. Chem. Soc. 142 (2020) 15295–15304.
-
[1093]
J.S. Meng, X.H. Yao, X.F. Hong, et al., Nat. Commun. 14 (2023) 3909.
-
[1094]
M. Jafarian, M.G. Mahjani, F. Gobal, I. Danaee, J. Appl. Electrochem. 36 (2006) 1169–1173.
-
[1095]
O.M. Leung, T. Schoetz, T. Prodromakis, C. Ponce de Leon, J. Electrochem. Soc. 168 (2021) 056509.
-
[1096]
H. Xu, T. Bai, H. Chen, et al., Energy Storage Mater. 17 (2019) 38–45.
-
[1097]
M. Angell, C.J. Pan, Y.M. Rong, et al., Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 834–839.
-
[1098]
Z. Yu, S. Jiao, S. Li, et al., Adv. Funct. Mater. 29 (2019) 1806799.
-
[1099]
M. Chiku, S. Matsumura, H. Takeda, E. Higuchi, H. Inoue, J. Electrochem. Soc. 164 (2017) A1841–A1844.
-
[1100]
L.D. Reed, S.N. Ortiz, M. Xiong, E.J. Menke, Chem. Commun. 51 (2015) 14397–14400.
-
[1101]
H. Jiang, X. Han, X. Du, et al., Adv. Mater. 34 (2022) 2108665.
-
[1102]
X. Zhou, Q. Liu, C. Jiang, et al., Angew. Chem. Int. Ed. 59 (2020) 3802–3832.
-
[1103]
L. Zhang, H. Wang, X. Zhang, Y. Tang, Adv. Funct. Mater. 31 (2021) 2010958.
-
[1104]
J.A. Seel, J.R. Dahn, J. Electrochem. Soc. 147 (2000) 892–898.
-
[1105]
H. Jiang, Z. Wei, L. Ma, et al., Angew. Chem. Int. Ed. 58 (2019) 5286–5291.
-
[1106]
X. Zhang, Y. Tang, F. Zhang, C. Lee, Adv. Energy Mater. 6 (2016) 1502588.
-
[1107]
B. Jiang, Y. Su, R. Liu, Z. Sun, D. Wu, Small 18 (2022) 2200049.
-
[1108]
H. Kim, J. Hong, K.Y. Park, et al., Chem. Rev. 114 (2014) 11788–11827.
-
[1109]
M. Li, C. Wang, Z. Chen, K. Xu, J. Lu, Chem. Rev. 120 (2020) 6783–6819.
-
[1110]
W. Li, J.R. Dahn, D.S. Wainwright, Science 264 (1994) 1115–1118.
-
[1111]
J. Yue, L. Suo, Energy Fuel 35 (2021) 9228–9239.
-
[1112]
G. Wang, S. Zhong, D.H. Bradhurst, S.X. Dou, H.K. Liu, J. Power Sources 74 (1998) 198–201.
-
[1113]
J. Kohler, H. Makihara, H. Uegaito, H. Inoue, M. Toki, Electrochim. Acta 46 (2000) 59–65.
-
[1114]
J. Luo, W. Cui, P. He, Y. Xia, Nat. Chem. 2 (2010) 760–765.
-
[1115]
M.B. Pinson, M.Z. Bazant, J. Electrochem. Soc. 160 (2013) A243–A250.
-
[1116]
L.M. Suo, O. Borodin, T. Gao, et al., Science 350 (2015) 938–943.
-
[1117]
Q. Dong, X.Z. Zhang, D. He, C.C. Lang, D.W. Wang, ACS Central Sci. 5 (2019) 1461–1467.
-
[1118]
S.F. Lux, L. Terborg, O. Hachmoller, et al., J. Electrochem. Soc. 160 (2013) A1694–A1700.
-
[1119]
M. Wang, S. Liu, H. Ji, et al., Nat. Commun. 12 (2021) 3198.
-
[1120]
R. Lin, C. Ke, J. Chen, S. Liu, J. Wang, Joule 6 (2022) 399–417.
-
[1121]
Y. Wang, T. Wang, D. Dong, et al., Matter 5 (2022) 162–179.
-
[1122]
C. Zhang, B. Chen, Q. Chen, et al., Adv. Mater. 36 (2024) 2405913.
-
[1123]
Y. Yokoyama, T. Fukutsuka, K. Miyazaki, T. Abe, J. Electrochem. Soc. 165 (2018) A3299–A3303.
-
[1124]
R.S. Kühnel, D. Reber, C. Battaglia, J. Electrochem. Soc. 167 (2020) 070544.
-
[1125]
M. Chen, G. Feng, R. Qiao, Curr. Opin. Colloid Interface Sci. 47 (2020) 99–110.
-
[1126]
F. Wang, Y. Lin, L. Suo, et al., Energy Environ. Sci. 9 (2016) 3666–3673.
-
[1127]
X. Zhu, M. Mao, Z. Lin, et al., ACS Mater. Lett. 4 (2022) 1574–1583.
-
[1128]
L. Suo, O. Borodin, W. Sun, et al., Angew. Chem. Int. Ed. 55 (2016) 7136–7141.
-
[1129]
Y. Yamada, K. Usui, K. Sodeyama, et al., Nat. Energy 1 (2016) 1629.
-
[1130]
C.Y. Yang, X. Ji, X.L. Fan, et al., Adv. Mater. 29 (2017) 1701972.
-
[1131]
C. Yang, J. Chen, X. Ji, et al., Nature 569 (2019) 245–250.
-
[1132]
T. Jin, X. Ji, P.F. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 11943–11948.
-
[1133]
Y. Zhang, J. Xu, Z. Li, et al., Sci. Bull. 67 (2022) 161–170.
-
[1134]
T. Liu, H. Wu, X. Du, et al., ACS Appl. Mater. Interfaces 14 (2022) 33041–33051.
-
[1135]
J.Z. Rong, T.X. Cai, Y.Z. Bai, et al., Cell Rep. Phys. Sci. 3 (2022) 100805.
-
[1136]
L. Jiang, S. Han, Y.C. Hu, et al., Nat. Energy 9 (2024) 839–848.
-
[1137]
Q. Nian, J. Wang, S. Liu, et al., Angew. Chem. Int. Ed. 58 (2019) 16994–16999.
-
[1138]
L. Suo, O. Borodin, Y. Wang, et al., Adv. Energy Mater. 7 (2017) 1701189.
-
[1139]
K. Nakamoto, R. Sakamoto, Y. Sawada, M. Ito, S. Okada, Small. Methods 3 (2019) 1800220.
-
[1140]
L. Jiang, L. Liu, J. Yue, et al., Adv. Mater. 32 (2020) 1904427.
-
[1141]
Q. Zhang, K. Xia, Y. Ma, et al., ACS Energy Lett. 6 (2021) 2704–2712.
-
[1142]
K. Zhu, Z. Sun, T. Jin, et al., Batteries Supercaps. 5 (2022) e202200308.
-
[1143]
H. Kim, J. Hong, K.Y. Park, et al., Chem. Rev. 114 (2014) 11788–11827.
-
[1144]
W. Zhang, Y. Liu, Z. Guo, Sci. Adv. 5 (2019) eaav7412.
-
[1145]
C.D. Wessells, R.A. Huggins, Y. Cui, Nat. Commun. 2 (2011) 550.
-
[1146]
C. Dong, F. Xu, L. Chen, Z. Chen, Y. Cao, Small Struct. 2 (2021) 16601–16608.
-
[1147]
Y. Wang, D. Liu, M. Sun, J. Liu, Mater. Chem. Front. 5 (2021) 7384–7402.
-
[1148]
J. Hyoung, J.W. Heo, M.S. Chae, S.T. Hong, ChemSusChem 12 (2019) 1069–1075.
-
[1149]
D.S. Charles, M. Feygenson, K. Page, et al., Nat. Commun. 8 (2017) 15520.
-
[1150]
Y.Q. Li, H. Shi, S.B. Wang, et al., Nat. Commun. 10 (2019) 4292.
-
[1151]
M. Wang, H. Wang, H. Zhang, X. Li, J. Energy Chem. 48 (2020) 14–20.
-
[1152]
D. Su, A. McDonagh, S.Z. Qiao, G. Wang, Adv. Mater. 29 (2017) 1604007.
-
[1153]
Y. Li, Z. Zhou, W. Deng, et al., ChemElectroChem 8 (2021) 1451–1454.
-
[1154]
L. Jiang, Y. Lu, C. Zhao, et al., Nat. Energy 4 (2019) 495–503.
-
[1155]
J. Han, A. Mariani, H. Zhang, et al., Energy Storage Mater. 30 (2020) 196–205.
-
[1156]
M. Morant-Giner, R. Sanchis-Gual, J. Romero, et al., Adv. Funct. Mater. 28 (2018) 1706125.
-
[1157]
C.D. Wessells, S.V. Peddada, R.A. Huggins, Y. Cui, Nano Lett. 11 (2011) 5421–5425.
-
[1158]
D.P. Leonard, Z. Wei, G. Chen, F. Du, X. Ji, ACS Energy Lett. 3 (2018) 373–374.
-
[1159]
M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, Nat. Commun. 3 (2012) 1149.
-
[1160]
N.D. Schuppert, S. Mukherjee, A.M. Bates, et al., J. Power Sources 316 (2016) 160–169.
-
[1161]
X. Yuan, Y. Li, Y. Zhu, et al., ACS Appl. Mater. Interfaces 13 (2021) 38248–38255.
-
[1162]
T. Liu, K.T. Liu, J. Wang, et al., Energy Storage Mater. 41 (2021) 133–140.
-
[1163]
X. Wu, J.J. Hong, W. Shin, et al., Nat. Energy 4 (2019) 123–130.
-
[1164]
W. Xu, K. Zhao, X. Liao, et al., J. Am. Chem. Soc. 144 (2022) 17407–17415.
-
[1165]
X. Dong, Z. Li, D. Luo, et al., Adv. Funct. Mater. 33 (2023) 2210473.
-
[1166]
X. Wu, S. Qiu, Y. Xu, et al., ACS Appl. Mater. Interfaces 12 (2020) 9201–9208.
-
[1167]
H. Jiang, W. Shin, L. Ma, et al., Adv. Energy Mater. 10 (2020) 2000968.
-
[1168]
Y. Lei, W. Zhao, J. Yin, et al., Nat. Commun. 14 (2023) 5490.
-
[1169]
K. Kawai, S.-H. Jang, Y. Igarashi, et al., Angew. Chem. Int. Ed. 63 (2024) e202410971.
-
[1170]
Z. Su, W. Ren, H. Guo, et al., Adv. Funct. Mater. 30 (2020) 2005477.
-
[1171]
X. Yang, Y. Ni, Y. Lu, et al., Angew. Chem. Int. Ed. 61 (2022) e202209642.
-
[1172]
R. Emanuelsson, M. Sterby, M. Strømme, M. Sjödin, J. Am. Chem. Soc. 139 (2017) 4828–4834.
-
[1173]
C. Strietzel, M. Sterby, H. Huang, et al., Angew. Chem. Int. Ed. 59 (2020) 9631–9638.
-
[1174]
S. Liu, S. Jin, T. Jiang, et al., Nano Lett. 23 (2023) 9664–9671.
-
[1175]
Z. Song, L. Miao, L. Ruhlmann, et al., Angew. Chem. Int. Ed. 62 (2023) e202219136.
-
[1176]
X. Yan, F. Wang, X. Su, et al., Adv. Mater. 35 (2023) 2305037.
-
[1177]
J. He, M. Shi, H. Wang, et al., Angew. Chem. Int. Ed. 63 (2024) e202410568.
-
[1178]
R. Wang, J. He, C. Yan, et al., Adv. Mater. 36 (2024) 2402681.
-
[1179]
S. Wu, M. Taylor, H. Guo, et al., Angew. Chem. Int. Ed. 63 (2024) e202412455.
-
[1180]
M. Yang, Y. Hao, B. Wang, et al., Nat. Sci. Rev. 11 (2024) nwae045.
-
[1181]
M.R. Lukatskaya, S. Kota, Z. Lin, M.Q. Zhao, et al., Nat. Energy 2 (2017) 17105.
-
[1182]
M. Hu, C. Cui, C. Shi, et al., ACS Nano 13 (2019) 6899–6905.
-
[1183]
Z. Zhu, W. Wang, Y. Yin, et al., J. Am. Chem. Soc. 143 (2021) 20302–20308.
-
[1184]
T. Xu, D. Wang, M. Zhang, et al., Adv. Funct. Mater. 34 (2024) 2408465.
-
[1185]
J.L. Yang, Z. Yu, J. Wu, et al., Adv. Mater. 35 (2023) 2306531.
-
[1186]
J. Wu, J.L. Yang, B. Zhang, H.J. Fan, Adv. Energy Mater. 14 (2024) 2302738.
-
[1187]
H. Wu, J. Hao, S. Zhang, et al., J. Am. Chem. Soc. 146 (2024) 16601–16608.
-
[1188]
H. Chen, X. Li, K. Fang, et al., Adv. Energy Mater. 13 (2023) 2302187.
-
[1189]
J.L. Yang, T. Xiao, T. Xiao, et al., Adv. Mater. 36 (2024) 2313610.
-
[1190]
F. Li, C. Zhou, J. Zhang, et al., Adv. Mater. 36 (2024) 2408213.
-
[1191]
F. Wang, W. Liang, X. Liu, et al., Adv. Energy Mater. 14 (2024) 2400110.
-
[1192]
T. Xiao, J.L. Yang, B. Zhang, et al., Angew. Chem. Int. Ed. 63 (2024) e202318470.
-
[1193]
X. Guo, H. Xu, Y. Tang, et al., Adv. Mater. 36 (2024) 2408317.
-
[1194]
N. Li, Z. Yang, Y. Li, et al., Adv. Energy Mater. 14 (2024) 2402846.
-
[1195]
Z. Li, X. Wu, X. Yu, et al., Nano Lett. 22 (2022) 2538–2546.
-
[1196]
Y. Kang, G. Chen, H. Hua, et al., Angew. Chem. Int. Ed. 62 (2023) e202300418.
-
[1197]
H. Xu, R. Zhang, D. Luo, et al., Energy Storage Mater. 63 (2023) 103019.
-
[1198]
Z. Lv, Y. Kang, G. Chen, et al., Adv. Funct. Mater. 34 (2024) 2310476.
-
[1199]
Y. Su, X. Wang, M. Zhang, et al., Angew. Chem. 135 (2023) e202308182.
-
[1200]
Y. Wang, X. Jin, J. Xiong, et al., Adv. Mater. 36 (2024) 2404093.
-
[1201]
J. He, H. Hong, S. Hu, et al., Nano Energy 119 (2024) 109096.
-
[1202]
H. Yang, Y. Qiao, Z. Chang, et al., Adv. Mater. 32 (2020) 2004240.
-
[1203]
J.L. Yang, H.H. Liu, X.X. Zhao, et al., J. Am. Chem. Soc. 146 (2024) 6628–6637.
-
[1204]
K. Wang, H. Li, Z. Xu, et al., Adv. Energy Mater. 14 (2024) 2304110.
-
[1205]
J. Zhang, C. Qiu, C. Zhou, et al., Nano Energy 133 (2024) 110519.
-
[1206]
Z. Chen, J. Zhang, C. Zhou, et al., Adv. Energy Mater. 15 (2025) 2404814.
-
[1207]
P. Jiang, T. Liu, C. Lei, et al., J. Am. Chem. Soc. 146 (2024) 25108–25117.
-
[1208]
T. Liu, C. Lei, H. Wang, et al., Adv. Mater. 36 (2024) 2405473.
-
[1209]
D. Chao, W. Zhou, F. Xie, et al., Sci. Adv. 6 (2020) eaba4098.
-
[1210]
B. Yong, D.T. Ma, Y.Y. Wang, et al., Adv. Energy Mater. 10 (2020) 2002354.
-
[1211]
A. Zhang, R. Zhao, Y. Wang, et al., Energy Environ. Sci. 16 (2023) 3240–3301.
-
[1212]
Z. Liu, Y. Huang, Y. Huang, et al., Chem. Soc. Rev. 49 (2020) 180–232.
-
[1213]
Y. Ren, H. Li, Y. Rao, H. Zhou, S. Guo, Energy Environ. Sci. 17 (2024) 425–441.
-
[1214]
T. Xiong, Y.X. Zhang, W.S.V. Lee, J.M. Xue, Adv. Energy Mater. 10 (2020) 2001769.
-
[1215]
V. Mathew, B. Sambandam, S. Kim, et al., ACS Energy Lett. 5 (2020) 2376–2400.
-
[1216]
Q.H. Zhao, A.Y. Song, S.X. Ding, et al., Adv. Mater. 32 (2020) 2002450.
-
[1217]
Y.H. Xu, G.N. Zhang, J.Q. Liu, et al., Energy Environ. Mater. 6 (2023) E12575.
-
[1218]
J.H. Zhang, W.B. Li, J.J. Wang, et al., Angew. Chem. Int. Ed. 62 (2023) e202215654.
-
[1219]
Y. Li, X. Liu, T. Ji, et al., Chin. Chem. Lett. 36 (2025) 109551.
-
[1220]
J. Huang, Z. Wang, M. Hou, et al., Nat. Commun. 9 (2018) 2906.
-
[1221]
Y. Zeng, D. Luan, X.W. Lou, Chem 9 (2023) 1118–1146.
-
[1222]
G.D. Cui, Y.X. Zeng, J.F. Wu, et al., Adv. Sci. 9 (2022) 2106067.
-
[1223]
Q. Liu, G.L. Fan, Y.X. Zeng, et al., Adv. Energy Mater. 14 (2024) 2402743.
-
[1224]
Y. Xu, G.L. Fan, P.X. Sun, et al., Angew. Chem. Int. Ed. 62 (2023) e202303529.
-
[1225]
T. Zhou, G. Gao, Nano Energy 127 (2024) 109691.
-
[1226]
Z. Feng, J. Sun, Y. Liu, et al., ACS Appl. Mater. Interfaces 13 (2021) 61154–61165.
-
[1227]
H. Liu, J.G. Wang, Z. You, et al., Mater. Today 42 (2021) 73–98.
-
[1228]
I.R. Tay, J.M. Xue, W.S.V. Lee, Adv. Sci. 10 (2023) 2303211.
-
[1229]
F. Wan, Z.Q. Niu, D Angew. Chem. Int. Ed. 58 (2019) 16358–16367.
-
[1230]
S. Liu, Y. Liao, T. Liu, L. Chen, Q. Zhang, Energy Storage Mater. 73 (2024) 103799.
-
[1231]
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, Nat. Energy 1 (2016) 16119.
-
[1232]
X. Chen, H. Zhang, J.H. Liu, et al., Energy Storage Mater. 50 (2022) 21–46.
-
[1233]
M. Liao, J.W. Wang, L. Ye, et al., Angew. Chem. Int. Ed. 59 (2020) 2273–2278.
-
[1234]
J. Guo, Z. Zhuang, W. Liu, G. Huang, Chin. Chem. Lett. 35 (2024) 109803.
-
[1235]
Q. Zhao, W.W. Huang, Z.Q. Luo, et al., Sci. Adv. 4 (2018) eaao1761.
-
[1236]
D.L. Chao, W.H. Zhou, F.X. Xie, et al., Sci. Adv. 6 (2020) eaba4098.
-
[1237]
D. Kundu, P. Oberholzer, C. Glaros, et al., Chem. Mater. 30 (2018) 3874–3881.
-
[1238]
B. Häupler, C. Rössel, A.M. Schwenke, et al., npg Asia Mater. 8 (2016) 283.
-
[1239]
J. Zhou, Q. Li, X. Hu, et al., Chin. Chem. Lett. 35 (2024) 109143.
-
[1240]
X. Wang, Y. Ying, X. Li, et al., Energy Environ. Sci. 16 (2023) 4572–4583.
-
[1241]
X. Wang, Y. Ying, S. Chen, et al., Nano Energy 119 (2024) 109099.
-
[1242]
X. Li, X. Wang, L. Ma, W. Huang, Adv. Energy Mater. 12 (2022) 2202068.
-
[1243]
K. Yan, Y. Fan, F. Hu, et al., Adv. Funct. Mater. 34 (2024) 2307740.
-
[1244]
S. Wang, Y. Ying, S. Chen, et al., Energy Storage Mater. 63 (2023) 102971.
-
[1245]
X. Yang, X. Wang, Y. Xiang, L. Ma, W. Huang, Nano Micro Lett. 16 (2023) 51.
-
[1246]
S. Chen, S. Li, L. Ma, et al., Angew. Chem. Int. Ed. 63 (2024) e202319125.
-
[1247]
S. Wang, S. Chen, Y. Ying, et al., Angew. Chem. Int. Ed. 63 (2024) e202316841.
-
[1248]
S. Chen, C. Peng, D. Xue, L. Ma, C. Zhi, Angew. Chem. Int. Ed. 61 (2022) e202212767.
-
[1249]
S. Chen, T. Wang, L. Ma, et al., Chem 9 (2023) 497–510.
-
[1250]
N. Kittner, F. Lill, D.M. Kammen, Nat. Energy 2 (2017) 6.
-
[1251]
A. Subramanian, Z.H. Pan, G.L. Rong, et al., J. Power Sources 343 (2017) 39–46.
-
[1252]
Y.L. Liang, H. Dong, D. Aurbach, Y. Yao, Nat. Energy 5 (2020) 646–656.
-
[1253]
X.X. Jia, C.F. Liu, Z.G. Neale, J.H. Yang, G.Z. Cao, Chem. Rev. 120 (2020) 7795–7866.
-
[1254]
D. Kundu, S.H. Vajargah, L.W. Wan, et al., Energy Environ. Sci. 11 (2018) 881–892.
-
[1255]
D.L. Chao, W.H. Zhou, C. Ye, et al., Angew. Chem. Int. Ed. 58 (2019) 7823–7828.
-
[1256]
W. Manalastas, S. Kumar, V. Verma, et al., ChemSusChem 12 (2019) 379–396.
-
[1257]
X. Zou, Y. Zhang, Chem. Soc. Rev. 44 (2015) 5148–5180.
-
[1258]
J. Shin, J. Lee, Y. Park, J.W. Choi, Chem. Sci. 11 (2020) 2028–2044.
-
[1259]
A. Ponrouch, J. Bitenc, R. Dominko, N. Lindahl, P. Johansson, Energy Storage Mater. 20 (2019) 253–262.
-
[1260]
B. He, Y. Ling, Z. Wang, et al., eScience 4 (2024) 100293.
-
[1261]
K.L. Hawthorne, T.J. Petek, M.A. Miller, J.S. Wainright, R.F. Savinell, J. Electrochem. Soc. 162 (2015) A108.
-
[1262]
Y. Song, H. Yan, H. Hao, et al., Small 18 (2022) 2204356.
-
[1263]
Y. Song, K. Zhang, X. Li, et al., J. Mater. Chem. A. 9 (2021) 26354–26361.
-
[1264]
Y. Song, H. Yan, Z. Cong, et al., Chem. Eng. J. 487 (2024) 150592.
-
[1265]
Y. Shi, Z. Wang, Y. Yao, W. Wang, Y.C. Lu, Energy Environ. Sci. 14 (2021) 6329–6337.
-
[1266]
A.K. Manohar, S. Malkhandi, B. Yang, et al., J. Electrochem. Soc. 159 (2012) A1209.
-
[1267]
P. Schröder, N. Aguiló Aguayo, D. Obendorf, T. Bechtold, Electrochim. Acta 430 (2022) 141042.
-
[1268]
G.S. Nambafu, A.M. Hollas, S. Zhang, et al., Nat. Commun. 15 (2024) 2566.
-
[1269]
G.S. Nambafu, A.M. Hollas, P.S. Rice, et al., Adv. Energy Mater. 1 (2024) 2403149.
-
[1270]
K. Gong, F. Xu, J.B. Grunewald, et al., ACS Energy Lett. 1 (2016) 89–93.
-
[1271]
M. Shin, C. Noh, Y. Chung, Y. Kwon, Chem. Eng. J. 398 (2020) 125631.
-
[1272]
M. Shin, C. Noh, Y. Kwon, Chem. Eng. J. 453 (2023) 139738.
-
[1273]
X. Liu, T. Li, Z. Yuan, X. Li, J. Energy Chem. 73 (2022) 445–451.
-
[1274]
S. Wang, L. Ma, S. Niu, et al., Angew. Chem. Int. Ed. 63 (2024) e202316593.
-
[1275]
W. Yang, P. Liu, L. Wang, et al., Chem. Eng. J. 487 (2024) 150491.
-
[1276]
H. Jiang, W. Yang, P. Liu, et al., Adv. Energy Mater. 46 (2024) 2402227.
-
[1277]
W. Yang, H. Jiang, L. Wang, et al., ACS Energy Lett. 8 (2024) 3859–3868.
-
[1278]
S. Xin, X. Zhang, L. Wang, et al., J. Electrochem. Soc. 67 (2024) 13–42.
-
[1279]
Z. Yuan, Y. Yin, C. Xie, et al., Adv. Mater. 31 (2019) 1902025.
-
[1280]
Z. Yuan, X.J.S.C.C. Li, J. Electrochem. Soc. 67 (2024) 260–275.
-
[1281]
J. Hu, M. Yue, H. Zhang, Z. Yuan, X. Li, Angew. Chem. Int. Ed. 59 (2020) 6715–6719.
-
[1282]
H. Chen, C. Kang, E. Shang, et al., Ind. Eng. Chem. Res. 62 (2022) 676–684.
-
[1283]
J. Hu, X. Tang, Q. Dai, et al., Nat. Commun. 12 (2021) 3409.
-
[1284]
L. Zhi, C. Liao, P. Xu, et al., Energy Environ. Sci. 17 (2024) 717–726.
-
[1285]
L. Zhi, C. Liao, P. Xu, et al., Angew. Chem. Int. Ed. 63 (2024) e202403607.
-
[1286]
L. Zhi, C. Liao, P. Xu, et al., Angew. Chem. Int. Ed. 63 (2024) e202412559.
-
[1287]
Y. Huang, L. Zhi, R. Bi, Z. Yuan, X. Li, Fundam. Res. (2024), doi:10.1016/j.fmre.2024.06.002.
-
[1288]
S. Zhang, W. Guo, F. Yang, et al., Batter. Supercaps. 2 (2019) 627–637.
-
[1289]
J. Liu, W. Zhou, R. Zhao, et al., J. Am. Chem. Soc. 143 (2021) 15475–15489.
-
[1290]
Z. Li, G. Weng, Q. Zou, G. Cong, Y.C. Lu, Nano Energy 30 (2016) 283–292.
-
[1291]
X. Wei, G.G. Xia, B. Kirby, et al., J. Electrochem. Soc. 163 (2015) A5150.
-
[1292]
Z. Li, Y.C. Lu, Nat. Energy 6 (2021) 517–528.
-
[1293]
M. Gao, S. Huang, F. Zhang, et al., Today Energy 18 (2020) 100540.
-
[1294]
D. Ma, B. Hu, W. Wu, et al., Nat. Commun. 10 (2019) 3367.
-
[1295]
J. Lei, Y. Zhang, Y. Yao, et al., Nat. Energy 8 (2023) 1355–1364.
-
[1296]
T. Zhang, Q. Chen, X. Li, et al., CCS Chem. 4 (2022) 2874–2887.
-
[1297]
J. Lei, Y.C. Lu, Natl. Sci. Rev. 11 (2024) nwae320.
-
[1298]
Y. Yao, J. Lei, Y. Shi, F. Ai, Y.C. Lu, Nat. Energy 6 (2021) 582–588.
-
[1299]
F. Zhang, M. Gao, S. Huang, et al., Adv. Mater. 34 (2022) 2104562.
-
[1300]
J. Lei, Y.C. Lu, Nat. Energy 9 (2024) 1325–1326.
-
[1301]
J. Lei, Y. Yao, Y. Huang, Y.C. Lu, ACS Energy Lett. 8 (2023) 429–435.
-
[1302]
Z. Yang, M.R. Gerhardt, M. Fortin, et al., J. Electrochem. Soc. 168 (2021) 070516.
-
[1303]
M. Ding, H. Fu, X. Lou, et al., ACS Nano 17 (2023) 16252–16263.
-
[1304]
Z. Li, M.S. Pan, L. Su, et al., Joule 1 (2017) 306–327.
-
[1305]
Y. Xia, M. Ouyang, V. Yufit, et al., Nat. Commun. 13 (2022) 2388.
-
[1306]
G. Yang, Y. Zhu, Z. Hao, et al., Adv. Energy Mater. 14 (2024) 2400022.
-
[1307]
L. Zhang, R. Feng, W. Wang, G. Yu, Nat. Rev. Chem. 6 (2022) 524–543.
-
[1308]
X. Zu, L. Zhang, Y. Qian, C. Zhang, G. Yu, Angew. Chem. Int. Ed. 59 (2020) 22163–22170.
-
[1309]
R. Feng, X. Zhang, V. Murugesan, et al., Science 372 (2021) 836–840.
-
[1310]
B. Hu, H. Li, H. Fan, J. Song, Energy Storage Mater. 59 (2023) 102789.
-
[1311]
H. Fan, J. Zhang, M. Ravivarma, et al., ACS Appl. Mater. Interfaces 12 (2020) 43568–43575.
-
[1312]
B. Hu, H. Fan, H. Li, M. Ravivarma, J. Song, Adv. Funct. Mater. 31 (2021) 2102734.
-
[1313]
H. Fan, W. Wu, M. Ravivarma, et al., Adv. Funct. Mater. 32 (2022) 2203032.
-
[1314]
H. Fan, B. Hu, H. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202115908.
-
[1315]
H. Fan, K. Liu, X. Zhang, et al., eScience 4 (2024) 100202.
-
[1316]
H. Li, H. Fan, B. Hu, et al., Angew. Chem. Int. Ed. 60 (2021) 26971–26977.
-
[1317]
Q. Liu, Y.Z. Wang, X. Yang, et al., Chem 7 (2021) 1993–2021.
-
[1318]
J.L. Yang, Y.H. Liu, Y. Zhang, et al., Nano Energy 110 (2023) 17.
-
[1319]
X.Y. Zhao, S.H. Ren, M. Bruns, M. Fichtner, J. Power Sources 245 (2014) 706–711.
-
[1320]
C. Zhang, S.J. Sun, M.F. Wu, X.Y. Zhao, Chin. Chem. Lett. 33 (2022) 2200–2204.
-
[1321]
J.M. Liu, J.H. Zhang, X. Chen, Y. Sun, P. Gao, ChemElectroChem 9 (2022) 7.
-
[1322]
P. Gao, M.A. Reddy, X.K. Mu, et al., Angew. Chem. Int. Ed. 55 (2016) 4285–4290.
-
[1323]
G. Karkera, M. Soans, B. Dasari, et al., Energy Technol. 10 (2022) 6.
-
[1324]
T.T. Yu, Q. Li, X.Y. Zhao, et al., ACS Energy Lett. 2 (2017) 2341–2348.
-
[1325]
Q. Yin, D.M. Rao, G.J. Zhang, et al., Adv. Funct. Mater. 29 (2019) 9.
-
[1326]
Q. Yin, J.N. Luo, J. Zhang, et al., J. Mater. Chem. A 8 (2020) 12548–12555.
-
[1327]
Q. Yin, J.N. Luo, J. Zhang, et al., Adv. Funct. Mater. 30 (2020) 8.
-
[1328]
T.T. Yu, R.J. Yang, X.Y. Zhao, X.D. Shen, ChemElectroChem 6 (2019) 1761–1767.
-
[1329]
T.C. Xia, T.T. Zhu, Y.C. Miao, X.Y. Zhao, ACS Appl. Energy Mater. 5 (2022) 6980–6985.
-
[1330]
X.Y. Zhao, Z.G. Zhao, M. Yang, et al., ACS Appl. Mater. Interfaces 9 (2017) 2535–2540.
-
[1331]
J.L. Yang, Y. Zhang, Y.M. Song, et al., J. Am. Chem. Soc. 146 (2024) 25680–25688.
-
[1332]
F. Gschwind, G.Rodriguez Garcia, D.J.S. Sandbeck, et al., J. Fluorine Chem. 182 (2016) 76–90.
-
[1333]
C. Leroy, D.L. Bryce, Prog. Nucl. Magn. Reson. Spectrosc. 109 (2018) 160–199.
-
[1334]
E.N. Bassey, P.J. Reeves, I.D. Seymour, C.P. Grey, J. Am. Chem. Soc. 144 (2022) 18714–18729.
-
[1335]
O. Pecher, J. Carretero González, K.J. Griffith, C.P. Grey, Chem. Mater. 29 (2017) 213–242.
-
[1336]
C. Li, M. Shen, B. Hu, Acta Phys. Chim. Sin. 36 (2020) 1902019.
-
[1337]
H. Liu, C. Zhao, X. Wu, et al., Energy Environ. Sci. 17 (2024) 668–679.
-
[1338]
Y. Wang, J. Jin, X. Zhao, et al., Angew. Chem. 136 (2024) e202409152.
-
[1339]
D. Sarkar, A. Bhattacharya, J. Meyer, et al., J. Am. Chem. Soc. 145 (2023) 19727–19745.
-
[1340]
B. Peng, M. Shen, J.P. Amoureux, B. Hu, Solid State Nucl. Magn. Reson. 78 (2016) 1–4.
-
[1341]
Y.X. Xiang, G. Zheng, G. Zhong, et al., Solid State Ionics. 318 (2018) 19–26.
-
[1342]
M. Liu, S. Zhang, E.R. Van Eck, et al., Nat. Nanotechnol. 17 (2022) 959–967.
-
[1343]
D. Columbus, V. Arunachalam, F. Glang, et al., J. Am. Chem. Soc. 144 (2022) 9836–9844.
-
[1344]
Q. Wang, C. Zhao, X. Hu, et al., J. Am. Chem. Soc. 146 (2024) 31778–31787.
-
[1345]
K.J. Sanders, A.A. Ciezki, A. Berno, I.C. Halalay, G.R. Goward, J. Am. Chem. Soc. 145 (2023) 21502–21513.
-
[1346]
X. Lin, Y. Shen, Y. Yu, Y. Huang, Adv. Energy Mater. 14 (2024) 2303918.
-
[1347]
H. Huang, T.H. Lambert, Angew. Chem. Int. Ed. 59 (2020) 658.
-
[1348]
R.I. Masel, Z. Liu, H. Yang, et al., Nat. Nanotechnol. 16 (2021) 118–128.
-
[1349]
R. Praud, V. Sarou-Kanian, D. Sicsic, M. Deschamps, E. Salager, Electrochem. Soc. Meet. Abstr. 244 (2023) 97.
-
[1350]
H. Li, J. Ding, X. Guan, et al., J. Am. Chem. Soc. 142 (2020) 13334–13338.
-
[1351]
B. Zhang, Y. Zhang, X. Wang, et al., J. Am. Chem. Soc. 145 (2023) 8700–8713.
-
[1352]
Y. Chen, Z. Ma, Y. Wang, et al., Energy Environ. Sci. 17 (2024) 5613–5626.
-
[1353]
M. Wang, L. Yin, M. Zheng, et al., Nat. Commun. 15 (2024) 8866.
-
[1354]
K.W. Nam, S.M. Bak, E.Y. Hu, et al., Adv. Funct. Mater. 23 (2013) 1047–1063.
-
[1355]
Y. Wu, S.H. Hu, R. Xu, et al., Nano Lett. 19 (2019) 1351–1358.
-
[1356]
T. Akita, N. Taguchi, Surf. Interface Anal. 48 (2016) 1226–1230.
-
[1357]
H.Y. Tan, J. Verbeeck, A. Abakumov, G. Van Tendeloo, Ultramicroscopy. 116 (2012) 24–33.
-
[1358]
A. Lto, K. Shoda, Y. Sato, et al., J. Power Sources 196 (2011) 4785–4790.
-
[1359]
Q. Li, S. Xu, S.H. Guo, et al., Adv. Mater. 32 (2020) 1907936.
-
[1360]
R. Huang, Y. Ikuhara, Curr. Opin. Solid State Mater. Sci. 16 (2012) 31–38.
-
[1361]
E. Liberti, J.G. Lozano, M.A.P. Osorio, et al., Ultramicroscopy. 210 (2020) 112914.
-
[1362]
H.L. Zhu, F. Shen, W. Luo, et al., Nano Energy 33 (2017) 37–44.
-
[1363]
L. Wang, R. Xie, B. Chen, et al., Nat. Commun. 11 (2020) 5889.
-
[1364]
B.W. Liu, N.F. Hu, C. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202209626.
-
[1365]
K. Yamamoto, Y. Iriyama, T. Hirayama, Mater. Trans. 56 (2015) 617–624.
-
[1366]
K. Yamamoto, Y. Iriyama, T. Hirayama, Microscopy 66 (2017) 154-154.
-
[1367]
R. Gao, X. Liang, P.G. Yin, et al., Nano Energy 41 (2017) 535–542.
-
[1368]
Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, Adv. Funct. Mater. 17 (2007) 2855–2861.
-
[1369]
R. Lin, Y. He, C. Wang, et al., Nat. Nanotechnol. 17 (2022) 768–776.
-
[1370]
Z. Zhang, J. Yang, W. Huang, et al., Matter 4 (2021) 302–312.
-
[1371]
E. Stavitski, F.M.F. de Groot, Micron. 41 (2010) 687–694.
-
[1372]
Z.Y. Wang, D. Santhanagopalan, W. Zhang, et al., Nano Lett. 16 (2016) 3760–3767.
-
[1373]
C.M. Wang, W. Xu, J. Liu, et al., J. Mater. Res. 25 (2010) 1541–1547.
-
[1374]
Y.F. Yuan, K. Amine, J. Lu, R. Shahbazian-Yassar, Nat. Commun. 8 (2017) 15806.
-
[1375]
J.Y. Huang, L. Zhong, C.M. Wang, et al., Science 330 (2010) 1515–1520.
-
[1376]
Y. Chen, Z. Wang, X. Li, et al., Nature 578 (2020) 251–255.
-
[1377]
T. Zhou, L. Chang, W. Li, et al., Chem. Commun. 56 (2020) 3753–3756.
-
[1378]
K. Yamamoto, Y. Iriyama, T. Asaka, et al., Angew. Chem. Int. Ed. 49 (2010) 4414–4417.
-
[1379]
L.T. Yang, X. Li, K. Pei, et al., Adv. Funct. Mater. 31 (2021) 2103971.
-
[1380]
J.A. Lewis, F.J.Q. Cortes, M.G. Boebinger, et al., ACS Energy Lett. 4 (2019) 591–599.
-
[1381]
T. Zhou, H. Wang, Y. Wang, et al., Chem. 8 (2022) 2817–2830.
-
[1382]
Q. Cheng, A. Li, N. Li, et al., Joule 3 (2019) 1510–1522.
-
[1383]
T.T. Yang, P. Jia, Q.N. Liu, et al., Angew. Chem. Int. Ed. 57 (2018) 12750–12753.
-
[1384]
H. Liu, M. Bugnet, M.Z. Tessaro, et al., Phys. Chem. Chem. Phys. 18 (2016) 29064–29075.
-
[1385]
Y. Nomura, K. Yamamoto, T. Hirayama, E. Igaki, K. Saitoh, ACS Energy Lett. 5 (2020) 2098–2105.
-
[1386]
Y.F. Deng, S.Y. Dong, Z.F. Li, et al., Small Methods 2 (2018) 27.
-
[1387]
D.Q. Liu, Z. Shadike, R.Q. Lin, et al., Adv. Mater. 31 (2019) 57.
-
[1388]
L.L. Wang, J. Wang, D.H.L. Ng, et al., Chem. Commun. 57 (2021) 9610–9613.
-
[1389]
J.B. Lian, G. Subburam, S.A. El-Khodary, et al., J. Am. Chem. Soc. 146 (2024) 8110–8119.
-
[1390]
S.A. El-Khodary, K. Zhang, B. Zou, et al., CCS Chem. 7 (2025) 2482–2495.
-
[1391]
G. Zhang, Z.W. Zhang, H.J. Peng, J.Q. Huang, Q. Zhang, Small Methods 1 (2017) 1700134.
-
[1392]
A.M. Tripathi, W.N. Su, B.J. Hwang, Chem. Soc. Rev. 47 (2018) 736–851.
-
[1393]
M.T. Xia, T.T. Liu, N. Peng, et al., Small Methods 3 (2019) 1900119.
-
[1394]
R.R. Chianelli, J.C. Scanlon, B.M.L. Rao, J. Electrochem. Soc. 125 (1978) 1563–1566.
-
[1395]
J.R. Dahn, M.A. Py, R.R. Haering, Can. J. Phys. 60 (1982) 307–313.
-
[1396]
W. Li, J.N. Reimers, J.R. Dahn, Solid State Ionics 67 (1993) 123–130.
-
[1397]
G.G. Amatucci, J.M. Tarascon, L.C. Klein, J. Electrochem. Soc. 143 (1996) 1114–1123.
-
[1398]
S. Mukerjee, T.R. Thurston, N.M. Jisrawi, et al., J. Electrochem. Soc. 145 (1998) 466–472.
-
[1399]
C. Baehtz, T. Buhrmester, N.N. Bramnik, K. Nikolowski, H. Ehrenberg, Solid State Ionics 176 (2005) 1647–1652.
-
[1400]
A.S. Christiansen, R.E. Johnsen, P. Norby, et al., J. Electrochem. Soc. 162 (2015) A531–A537.
-
[1401]
M. Fleischmann, A. Oliver, J. Robinson, Electrochim. Acta 31 (1986) 899–906.
-
[1402]
F. Lin, Y.J. Liu, X.Q. Yu, et al., Chem. Rev. 117 (2017) 13123–13186.
-
[1403]
X. Xu, C. Ye, D.L. Chao, et al., Adv. Mater. 34 (2022) 2108688.
-
[1404]
K.V. Graae, P. Norby, ACS Appl. Energy Mater. 5 (2022) 11392–11401.
-
[1405]
J. Conder, R. Bouchet, S. Trabesinger, et al., Nat. Energy 2 (2017) 17069.
-
[1406]
C.J. Pan, C.Z. Yuan, G.Z. Zhu, et al., Proc. Natl. Acad. Sci. USA 115 (2018) 5670–5675.
-
[1407]
V. Shutthanandan, M. Nandasiri, J.M. Zheng, et al., J. Electron Spectrosc. Relat. Phenom. 231 (2019) 2–10.
-
[1408]
D. Atkins, E. Ayerbe, A. Benayad, et al., Adv. Energy Mater. 12 (2022) 23.
-
[1409]
L. Li, K. Yang, C. Xi, et al., Chin. Chem. Lett. 35 (2024) 108814.
-
[1410]
K.N. Wood, G. Teeter, ACS Appl. Energy Mater. 1 (2018) 4493–4504.
-
[1411]
W.L. Yu, Z.A. Yu, Y. Cui, Z.A. Bao, ACS Energy Lett. 7 (2022) 3270–3275.
-
[1412]
L.L. Lu, Z.X. Zhu, T. Ma, et al., Adv. Mater. 34 (2022) 9.
-
[1413]
J. Chen, X.L. Fan, Q. Li, et al., Nat. Energy. 5 (2020) 386–397.
-
[1414]
S. Hashimoto, J. Surf. Anal. 10 (2003) 136–143.
-
[1415]
S. Malmgren, K. Ciosek, M. Hahlin, et al., Electrochim. Acta 97 (2013) 23–32.
-
[1416]
D. Liu, Z. Shadike, R. Lin, et al., Adv. Mater. 31 (2019) 1806620.
-
[1417]
Y.N. Zhou, J.L. Yue, E. Hu, et al., Adv. Energy Mater. 6 (2016) 1600597.
-
[1418]
X. Cai, Z. Shadike, N. Wang, et al., Next Mater. 2 (2024) 100086.
-
[1419]
Y.J. Li, S.L. Chou, Y. Xiao, Chin. Chem. Lett. 36 (2025) 110389.
-
[1420]
Z. Shadike, H. Lee, O. Borodin, et al., Nat. Nanotechnol. 16 (2021) 549–554.
-
[1421]
S. Tan, J.M. Kim, A. Corrao, et al., Nat. Nanotechnol. 18 (2022) 243–249.
-
[1422]
M.W. Terban, S.J.L. Billinge, Chem. Rev. 122 (2021) 1208–1272.
-
[1423]
B. Dong, M.P. Stockham, P.A. Chater, P.R. Slater, Dalton. Trans. 49 (2020) 12466-12466.
-
[1424]
J.M. Stratford, A.K. Kleppe, D.S. Keeble, et al., J. Am. Chem. Soc. 143 (2021) 14274–14286.
-
[1425]
K.M. Wiaderek, O.J. Borkiewicz, E. Castillo-Martínez, et al., J. Am. Chem. Soc. 135 (2013) 4070–4078.
-
[1426]
M. Liao, Y. Xu, M.M. Rahman, et al., Nat. Sustain. 7 (2024) 1709–1718.
-
[1427]
S.M. Bak, Z. Shadike, R. Lin, X. Yu, X.Q. Yang, npg Asia Mater. 10 (2018) 563–580.
-
[1428]
T. Yang, K. Zhang, Y. Zuo, et al., Nat. Sustain. 7 (2024) 1204–1214.
-
[1429]
S.Y. Yang, Z. Shadike, W.W. Wang, et al., Energy Storage Mater. 45 (2022) 1165–1174.
-
[1430]
S. Tan, Z. Shadike, J. Li, et al., Nat. Energy. 7 (2022) 484–494.
-
[1431]
Y. Wang, Z. Feng, P. Cui, et al., Nat. Commun. 12 (2021) 13.
-
[1432]
K. Fang, J. Yin, G. Zeng, et al., J. Am. Chem. Soc. 146 (2024) 31860–31872.
-
[1433]
X. Cai, N. Wang, L. Liang, et al., Adv. Funct. Mater. 34 (2024) 2409732.
-
[1434]
F. Rostami, P. Patrizio, L. Jimenez, C. Pozo, N.Mac Dowell, Energy Environ. Sci. 17 (2024) 5241–5259.
-
[1435]
G. Harper, R. Sommerville, E. Kendrick, et al., Nature. 575 (2019) 75–86.
-
[1436]
J. Lin, X. Zhang, E. Fan, et al., Energy Environ. Sci. 16 (2023) 745–791.
-
[1437]
W. Lv, Z. Wang, H. Cao, et al., ACS Sustain. Chem. Eng. 6 (2018) 1504–1521.
-
[1438]
S.Maryam Sadeghi, J. Jesus, H.M.V.M. Soares, Waste Manage. 113 (2020) 342–350.
-
[1439]
W. Zhang, J. Yang, X. Wu, et al., Renew. Sustain. Energy Rev. 61 (2016) 108–122.
-
[1440]
N. Zhang, Z. Xu, W. Deng, X. Wang, Electrochem. Energy Rev. 5 (2022) 33.
-
[1441]
J. Lin, C. Liu, H. Cao, et al., Green. Chem. 21 (2019) 5904–5913.
-
[1442]
X. Zhang, L. Li, E. Fan, et al., Chem. Soc. Rev. 47 (2018) 7239–7302.
-
[1443]
B.K. Biswal, B. Zhang, P. Thi Minh Tran, J. Zhang, R. Balasubramanian, Chem. Soc. Rev. 53 (2024) 5552–5592.
-
[1444]
K. Hantanasirisakul, M. Sawangphruk, Global Challenges 7 (2023) 2200212.
-
[1445]
J. Xiao, J. Li, Z. Xu, Environ. Sci. Technol. 51 (2017) 11960–11966.
-
[1446]
F. Liu, C. Peng, Q. Ma, et al., Sep. Purif. Technol. 259 (2021) 118181.
-
[1447]
Y. Tang, B. Zhang, H. Xie, et al., J. Power Sources 474 (2020) 228596.
-
[1448]
D. Wang, X. Zhang, H. Chen, J. Sun, Miner. Eng. 126 (2018) 28–35.
-
[1449]
J. Lin, E. Fan, X. Zhang, et al., Adv. Energy Mater. 12 (2021) 2103288.
-
[1450]
R.E. Ciez, J.F. Whitacre, Nat. Sustain. 2 (2019) 148–156.
-
[1451]
E. Fan, L. Li, Z. Wang, F. Wu, et al., Chem. Rev. 120 (2020) 7020–7063.
-
[1452]
H. Yao, Y. Zhang, G. Yang, et al., ACS Appl. Mater. Interfaces 16 (2024) 67087–67105.
-
[1453]
W. Yu, Y. Guo, S. Xu, et al., Energy Storage Mater. 54 (2023) 172–220.
-
[1454]
G.H. Zhu, H.X. Huan, D. Yu, X.Y. Guo, Q.H. Tian, Prog. Chem. 35 (2023) 287–301.
-
[1455]
E.G. Pinna, M.C. Ruiz, M.W. Ojeda, M.H. Rodriguez, Hydrometallurgy 167 (2017) 66–71.
-
[1456]
R. Sattar, S. Ilyas, H.N. Bhatti, A. Ghaffar, Sep. Purif. Technol. 209 (2019) 725–733.
-
[1457]
D.Y. Zhao, X. Zhang, X. Fan, Y.W. Sui, Energy Storage Sci. Technol. 12 (2023) 3087–3098.
-
[1458]
L. Yu, X. Liu, S. Feng, et al., Chem. Eng. J. 476 (2023) 146733.
-
[1459]
Y. Sun, H. Yang, J. Li, et al., J. Power Sources 602 (2024) 234407.
-
[1460]
D.F. Wang, M. Chen, J.J. Zhao, et al., Rare Metals 44 (2025) 2059–2070.
-
[1461]
Y. Li, L. Dong, P. Shi, Z. Ren, Z. Zhou, J. Power Sources. 598 (2024) 234158.
-
[1462]
C. Yang, J.L. Zhang, Q.K. Jing, et al., Int. J. Miner. Metall. Mater. 28 (2021) 1478–1487.
-
[1463]
D. Fu, W. Zhou, J. Liu, et al., Sep. Purif. Technol. 342 (2024) 127069.
-
[1464]
B. Musariri, G. Akdogan, C. Dorfling, S. Bradshaw, Miner. Eng. 137 (2019) 108–117.
-
[1465]
K. Liu, M. Wang, Q. Zhang, et al., J. Hazard. Mater. 445 (2023) 130502.
-
[1466]
G. Siyu, D. Enhua, L. Bingguo, et al., Sep. Purif. Technol. 348 (2024) 127771.
-
[1467]
S. Kim, S. Park, D. Kim, et al., Chem. Eng. J. 494 (2024) 153199.
-
[1468]
D.C. Zhang, T.Y. Li, H. Wang, et al., J. Cent. South Univ. 30 (2023) 2205–2216.
-
[1469]
L. Yuan, J. Wen, P. Ning, et al., ACS Sustain. Chem. Eng. 10 (2022) 1160–1171.
-
[1470]
B. Zhang, S. Chen, L. Yang, et al., ACS Nano 18 (2024) 23773–23784.
-
[1471]
T. Wang, L. Wang, C. Yi, et al., Chem. Eng. J. 492 (2024) 152298.
-
[1472]
M. Ahuis, S. Doose, D. Vogt, et al., Nat. Energy 9 (2024) 373–385.
-
[1473]
A.I. Waidha, A. Salihovic, M. Jacob, et al., ChemSusChem 16 (2023) e202202361.
-
[1474]
K. Schneider, V. Kiyek, M. Finsterbusch, B. Yagmurlu, D. Goldmann. Metals. (Basel) 13 (2023) 834.
-
[1475]
D.H.S. Tan, H. Yang, P. Xu, Sustainable closed-loop recycling of spent solid electrolytes and electrodes in all solid-State batteries, in: ECS Meeting, 2020, p. 75. MA2020-01.
-
[1476]
Y. Chen, Y. Shen, Z. Shi, et al., Sep. Purif. Technol. 359 (2025) 130473.
-
[1477]
J. Wang, H. Ji, J. Li, et al., Nat. Sustain. 7 (2024) 1283–1293.
-
[1478]
K. Jia, J. Ma, J. Wang, et al., Adv. Mater. 35 (2023) 2208034.
-
[1479]
J. Zhou, C. Xing, J. Huang, et al., Adv. Energy Mater. 14 (2024) 2302761.
-
[1480]
L. Zhang, Z. Xu, Z. He, ACS Sustain Chem. Eng. 8 (2020) 11596–11605.
-
[1481]
H. Nie, L. Xu, D. Song, et al., Green. Chem. 17 (2015) 1276–1280.
-
[1482]
W. Chen, R.V. Salvatierra, J.T. Li, et al., Adv. Mater. 35 (2023) 2207303.
-
[1483]
H. Zhang, Y. Ji, Y. Yao, et al., Energy Environ. Sci. 16 (2023) 2561–2571.
-
[1484]
R. Shi, N. Zheng, H. Ji, et al., Adv. Mater. 36 (2024) 2311553.
-
[1485]
X. Lv, J. Lin, Q. Huang, et al., ACS Energy Lett. 8 (2023) 4287–4295.