Guest-triggered gate-opening of flexible hydrogen-bonded framework for separation of styrene and ethylbenzene
-
* Corresponding author.
E-mail address: hxxyxpc@tjnu.edu.cn (P. Xue).
Citation:
He Zhao, Baiyang Fan, Siwen Hu, Xingliang Liu, Bo Tang, Pengchong Xue. Guest-triggered gate-opening of flexible hydrogen-bonded framework for separation of styrene and ethylbenzene[J]. Chinese Chemical Letters,
;2025, 36(10): 111005.
doi:
10.1016/j.cclet.2025.111005
Kirk-OthmerEncyclopedia of Chemical Technology, John Wiley & Sons, Inc., New York, 2008.
Y. Yang, P. Bai, X. Guo, Ind. Eng. Chem. Res. 56 (2017) 14725–14753.
doi: 10.1021/acs.iecr.7b03127
G. Zhang, B. Hua, A. Dey, et al., Acc. Chem. Res. 54 (2021) 155–168.
doi: 10.1021/acs.accounts.0c00582
F. Xie, L. Yu, H. Wang, J. Li, Angew. Chem. Int. Ed. 62 (2023) e202300722.
doi: 10.1002/anie.202300722
M. Yan, Y. Wang, J. Zhou, Cell Reports Phys. Sci. 4 (2023) 101637.
doi: 10.1016/j.xcrp.2023.101637
Z.M. Ye, X.F. Zhang, D.X. Liu, et al., Sci. China Chem. 65 (2022) 1552–1558.
doi: 10.1007/s11426-022-1304-1
M. Maes, F. Vermoortele, L. Alaerts, et al., J. Am. Chem. Soc. 132 (2010) 15277–15285.
doi: 10.1021/ja106142x
Y. Li, J. Cui, Q. Wang, et al., Chem. Eng. J. 453 (2023) 139756.
doi: 10.1016/j.cej.2022.139756
A. Dey, S. Chand, B. Maity, et al., J. Am. Chem. Soc. 143 (2021) 4090–4094.
doi: 10.1021/jacs.0c13019
Y. Ding, A. Dey, L.O. Alimi, et al., Chem. Mater. 34 (2022) 197–202.
doi: 10.1021/acs.chemmater.1c03084
H. Yamagishi, H. Sato, A. Hori, et al., Science 361 (2018) 1242–1246.
doi: 10.1126/science.aat6394
R.B. Lin, Y. He, P. Li, et al., Chem. Soc. Rev. 48 (2019) 1362–1389.
doi: 10.1039/c8cs00155c
Q. Chen, X. Chen, M. Liang, Y. Han, P. Xue, CrystEngComm 24 (2022) 2575–2590.
doi: 10.1039/d1ce01702k
S. Hu, H. Zhao, M. Liang, J. Hao, P. Xue, Chem. Commun. 60 (2024) 8140–8152.
doi: 10.1039/d4cc01875c
C. Chen, L. Shen, H. Lin, et al., Chem. Soc. Rev. 53 (2024) 2738 2760.
X. Gao, W. Lu, Y. Wang, et al., Sci. China Chem. 65 (2022) 2077–2095.
doi: 10.1007/s11426-022-1333-9
S. Cai, Z. An, W. Huang, Adv. Funct. Mater. 32 (2022) 2207145.
doi: 10.1002/adfm.202207145
J. Huang, Y. Li, H. Zhang, et al., Angew. Chem. Int. Ed. 62 (2023) e202315987.
doi: 10.1002/anie.202315987
C. Jiang, J. Wang, D. Liu, et al., Angew. Chem. Int. Ed. 63 (2024) e202404734.
doi: 10.1002/anie.202404734
G. Chen, S. Huang, X. Ma, R. He, G. Ouyang, Nat. Protoc. 18 (2023) 2032–2050.
doi: 10.1038/s41596-023-00828-5
R. Zhu, S. Yu, X. Yang, et al., Chin. Chem. Lett. 35 (2024) 109539.
doi: 10.1016/j.cclet.2024.109539
Y. Han, T. Zhang, X. Chen, et al., ACS Appl. Mater. Interfaces 13 (2021) 32270–32277.
doi: 10.1021/acsami.1c08316
T. Lin, C. Tian, Y. Sun, et al., Chin. Chem. Lett. 34 (2023) 107864.
doi: 10.1016/j.cclet.2022.107864
Y. Wang, D. Liu, J. Yin, et al., Chem. Commun. 56 (2020) 703–706.
doi: 10.1039/c9cc09171h
Z. Xiong, S. Xiang, Y. Lv, B. Chen, Z. Zhang, Adv. Funct. Mater. 34 (2024) 2403635.
doi: 10.1002/adfm.202403635
Z. Fan, S. Zheng, H. Zhang, et al., Chin. Chem. Lett. 33 (2022) 4317–4320.
doi: 10.1016/j.cclet.2022.01.009
T. Lin, C. Tian, Y. Sun, et al., Chin. Chem. Lett. 34 (2023) 107864.
doi: 10.1016/j.cclet.2022.107864
L. Chen, Z. Yuan, F. Feng, et al., Chin. Chem. Lett. 35 (2024) 109344.
doi: 10.1016/j.cclet.2023.109344
S.C. Pal, D. Mukherjee, R. Sahoo, S. Mondal, M.C. Das, ACS Energy Lett. 6 (2021) 4431–4453.
doi: 10.1021/acsenergylett.1c02045
T. Chen, H.B. Jiang, K.B. Jiang, et al., ACS Appl. Mater. Interfaces 14 (2022) 11619–11625.
doi: 10.1021/acsami.1c23328
B. Yu, X. Ding, X. Huang, et al., Sci. China Chem. 68 (2025) 2415–2423.
doi: 10.1007/s11426-024-2377-9
K.E. Maly, T. Maris, E. Gagnon, J.D. Wuest, Cryst. Growth Des. 6 (2006) 461–466.
doi: 10.1021/cg050384a
Y. Lv, D. Li, A. Ren, et al., ACS Appl. Mater. Interfaces 13 (2021) 28662–28667.
doi: 10.1021/acsami.1c06312
Y. Shang, L. Lv, J. Du, et al., Inorg. Chem. Commun. 112 (2020) 107703.
doi: 10.1016/j.inoche.2019.107703
Z. Yuan, X. Jiang, L. Chen, et al., CCS Chem. 6 (2024) 663–671.
doi: 10.31635/ccschem.023.202302840
L. Li, F. Xiang, Y. Li, et al., Angew. Chem. Int. Ed. 64 (2025) e202419047.
doi: 10.1002/anie.202419047
X. Zheng, N. Xiao, Z. Long, et al., Synth. Met. 263 (2020) 116365.
doi: 10.1016/j.synthmet.2020.116365
Q. Huang, W. Li, Z. Mao, et al., Nat. Commun. 10 (2019) 3074.
doi: 10.1038/s41467-019-10575-5
Q. Huang, W. Li, Z. Yang, et al., CCS Chem. 4 (2022) 1642–1653.
doi: 10.3390/life12101642
M. Liang, S. Hu, N. Zhou, et al., Small 19 (2023) 2304340.
doi: 10.1002/smll.202304340
S. Hu, H. Zhao, M. Liang, et al., ACS Appl. Mater. Interfaces 16 (2024) 4863–4872.
doi: 10.1021/acsami.3c17865
S. Hu, H. Zhao, M. Liang, et al., J. Mater. Chem. A 12 (2024) 21301–21309.
doi: 10.1039/d4ta03910f
Z. Liu, T. Lu, Q. Chen, Carbon 171 (2021) 514–523.
doi: 10.1016/j.carbon.2020.09.048
H. Zhao, X. Wang, S. Hu, M. Liang, P. Xue, Cryst. Growth Des. 24 (2024) 7504–7513.
doi: 10.1021/acs.cgd.4c00687
Q. Huang, X. Chen, W. Li, et al., Chem 9 (2023) 1241–1254.
doi: 10.1016/j.chempr.2023.01.013
Q. Chen, T. Zhang, X. Chen, et al., ACS Appl. Mater. Interfaces 14 (2022) 24509–24517.
doi: 10.1021/acsami.2c05897
S. Dong, Y. Tao, X. Shen, Z. Pan, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 69 (2013) 896–900.
doi: 10.1107/S0108270113017423
L. Li, H. Ma, J. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 3856–3864.
doi: 10.1021/jacs.0c12153
M. Wang, J. Zhou, E. Li, et al., J. Am. Chem. Soc. 141 (2019) 17102–17106.
doi: 10.1021/jacs.9b09988
J.R. Wu, B. Li, Y.W. Yang, Angew. Chem. Int. Ed. 59 (2020) 2251–2255.
doi: 10.1002/anie.201911965
Z. Li, Y.W. Yang, Adv. Mater. 34 (2022) 2107401.
doi: 10.1002/adma.202107401
B. Li, Y. Wang, L. Liu, M. Dong, C. Li, JACS Au 3 (2023) 1590–1595.
doi: 10.1021/jacsau.3c00131
K. Jie, M. Liu, Y. Zhou, et al., J. Am. Chem. Soc. 139 (2017) 2908–2911.
doi: 10.1021/jacs.6b13300
Y. Mi, J. Ma, W. Liang, et al., J. Am. Chem. Soc. 143 (2021) 1553–1561.
doi: 10.1021/jacs.0c11833
Rongxin Zhu , Shengsheng Yu , Xuanzong Yang , Ruyu Zhu , Hui Liu , Kaikai Niu , Lingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539
Yarui Li , Huangjie Lu , Yingzhe Du , Jie Qiu , Peng Lin , Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562
Yao-Yu Ma , Wen-Juan Shi , Gang-Ding Wang , Xin Liu , Lei Hou , Yao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729
Sha-Sha Meng , Xiao-Yi Fu , Hai-Yue Wei , Ming Xu , Zhi-Yuan Gu . Improving the separation ability of MOF-based stationary phases by increasing the thermodynamic differentiation of analytes. Chinese Chemical Letters, 2025, 36(9): 110720-. doi: 10.1016/j.cclet.2024.110720
Qiuting Zhang , Fan Wu , Jin Liu , Hang Su , Yanhui Zhong , Zian Lin . Facile synthesis of single-crystal 3D covalent organic frameworks as stationary phases for high-performance liquid chromatographic separation. Chinese Chemical Letters, 2025, 36(8): 110649-. doi: 10.1016/j.cclet.2024.110649
Liangji Chen , Zhen Yuan , Fudong Feng , Xin Zhou , Zhile Xiong , Wuji Wei , Hao Zhang , Banglin Chen , Shengchang Xiang , Zhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344
Haoquan Huang , Haiting Chen , Xinran Dong , Yanbin Xu , Anlian Huang , Qiaoyi Cen , Huairou Zhu , Guosheng Chen , Wei Yi , Siming Huang , Gangfeng Ouyang . Site-specific surface amination strategy facilitates biomimetic encapsulation of enzymes within hydrogen-bonded organic framework. Chinese Chemical Letters, 2025, 36(9): 111223-. doi: 10.1016/j.cclet.2025.111223
Zhiyao Yang , Kuirong Fu , Wentao Yu , Along Jia , Xinnan Chen , Yimin Cai , Xiaowei Li , Wen Feng , Lihua Yuan . A multi-stimuli responsive [3]rotaxane based on hydrogen-bonded aramide azo-macrocycles. Chinese Chemical Letters, 2025, 36(9): 110842-. doi: 10.1016/j.cclet.2025.110842
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
Xi Feng , Ding-Yi Hu , Zi-Jun Liang , Mu-Yang Zhou , Zhi-Shuo Wang , Wen-Yu Su , Rui-Biao Lin , Dong-Dong Zhou , Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Haiyan Yin , Abdusalam Ablez , Zhuangzhuang Wang , Weian Li , Yanqi Wang , Qianqian Hu , Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Xiaxi Yao , Xiuli Hu , Fangcheng Huang , Xuhong Wang , Xuekun Hong , Dawei Wang . Improved hydrogen and oxygen evolution rates in Pt@TiO2@RuO2 hollow nanoshells through dielectric Mie resonance and spatial cocatalyst separation. Chinese Chemical Letters, 2025, 36(5): 110192-. doi: 10.1016/j.cclet.2024.110192
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
Huangjie Lu , Yingzhe Du , Peng Lin , Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
Yongqing Zeng , Caijun Liang , Xin Lu , Lingxue Zhao , Fangting Wu , Tao Hou , Anting Zhao , Menglan Lv , Zhu Tao , Qing Li . Perfect separation of pyridine and 3-methylpyridine by cucurbit[6]uril. Chinese Chemical Letters, 2025, 36(9): 110807-. doi: 10.1016/j.cclet.2024.110807