-
[1]
V. Istokskaia, M. Tosca, L. Giuffrida, et al., Commun. Phys. 6 (2023) 27.
-
[2]
M. Mathew, Prog. Nucl. Energ. 143 (2022) 104080.
-
[3]
S. Chidiac, M. El-Samrah, M. Reda, et al., Constr. Build. Mater. 313 (2021) 125466.
-
[4]
T. Nomoto, Y. Inoue, Y. Yao, et al., Sci. Adv. 6 (2020) eaaz1722.
-
[5]
S. Mo, Z. Wang, D. Ding, et al., Chin. Chem. Lett. 36 (2025) 110190.
-
[6]
H.R. Marschall, G.L. Foster, Boron Isotopes: The Fifth Element, Springer, Cham, 2018, pp. 1–11.
-
[7]
A. Palko, Ind. Eng. Chem. 51 (1959) 121–124.
doi: 10.1021/ie50590a029
-
[8]
W. Xiao, D. Pan, Z. Niu, et al., Chin. Chem. Lett. 33 (2022) 3413–3421.
-
[9]
B. Weaver, Anal. Chem. 26 (1954) 474–475.
doi: 10.1021/ac60087a013
-
[10]
A. Conn, J. Wolf, J. Ind. Eng. Chem. 50 (1958) 1231–1234.
doi: 10.1021/ie50585a024
-
[11]
V.A. Ivanov, S.G. Katalnikov, Sep. Sci. Technol. 36 (2001) 1737–1768.
-
[12]
H. Kakihana, M. Kotaka, S. Satoh, et al., Chem. Soc. Jpn. 50 (1977) 158–163.
doi: 10.1246/bcsj.50.158
-
[13]
Y. Sakuma, M. Aida, M. Okamoto, et al., B. Chem. Soc. Jpn. 53 (1980) 1860–1863.
doi: 10.1246/bcsj.53.1860
-
[14]
M. Aida, Y. Fujii, M. Okamoto, Sep. Sci. Technol. 21 (1986) 643–654.
doi: 10.1080/01496398608056140
-
[15]
T. Oi, T. Tsukamoto, H. Akai, et al., J. Chromatogr. A 450 (1988) 343–352.
-
[16]
T. Tsukamoto, T. Oi, M. Hosoe, et al., Isotopes. Environ. Health. Stud. 27 (1991) 90–92.
doi: 10.1080/10256019108622476
-
[17]
T. Oi, H. Shimazaki, R. Ishii, et al., Sep. Sci. Technol. 32 (1997) 1821–1834.
doi: 10.1080/01496399708000739
-
[18]
T. Oi, H. Takeuchi, A. Sakurai, et al., Z. Naturforsch. A 52 (1997) 821–827.
doi: 10.1515/zna-1997-1110
-
[19]
A. Sonoda, Y. Makita, K. Ooi, et al., B. Chem. Soc. Jpn. 73 (2000) 1131–1133.
-
[20]
M. Musashi, M. Matsuo, T. Oi, et al., J. Chromatogr. A 1131 (2006) 97–102.
-
[21]
M. Musashi, M. Matsuo, T. Oi, et al., J. Nucl. Sci. Technol. 43 (2006) 461–467.
-
[22]
A. Sonoda, Y. Makita, T. Hirotsu, J. Nucl. Sci. Technol. 43 (2006) 437–440.
-
[23]
M. Musashi, T. Oi, M. Matsuo, et al., J. Chromatogr. A 1201 (2008) 48–53.
-
[24]
A. Sonoda, Y. Makita, T. Hirotsu, J. Nucl. Sci. Technol. 45 (2008) 117–121.
doi: 10.1080/00223131.2008.10875991
-
[25]
W. Luo, G. Xiao, F. Tian, et al., Energy. Environ. Sci. 12 (2019) 607–614.
doi: 10.1039/c8ee01438h
-
[26]
M.C. Basso, S. Giovando, A. Pizzi, et al., Ind. Crops. Prod. 49 (2013) 17–22.
-
[27]
P.M. Kowalski, B. Wunder, Boron isotope fractionation among vapor-liquids–solids-melts: experiments and atomistic modeling, in: H. Marschall, G. Foster (Eds.), Boron Isotopes: The Fifth Element, Springer, Cham, 2018, pp. 33–69.
-
[28]
M. Fan, X. Liang, Q. Li, et al., Chin. Chem. Lett. 34 (2023) 107275.
-
[29]
K. Klochko, A.J. Kaufman, W. Yao, et al., Earth. Planet. Sci. Lett. 248 (2006) 276–285.
-
[30]
H. Xiao, Y. Wang, B. Hao, et al., Adv. Mater. 34 (2022) 2107891.
-
[31]
S. Quideau, D. Deffieux, C. Douat-Casassus, et al., Angew. Chem. Int. Ed. 50 (2011) 586–621.
doi: 10.1002/anie.201000044
-
[32]
J. Guo, B.L. Tardy, A.J. Christofferson, et al., Nat. Nanotechnol. 11 (2016) 1105–111.
doi: 10.1038/nnano.2016.172
-
[33]
Y. Ju, H. Liao, J.J. Richardson, et al., Chem. Soc. Rev. 51 (2022) 4287–4336.
doi: 10.1039/d1cs00343g
-
[34]
D.W. Tanner, T.C. Bruice, J. Am. Chem. Soc. 89 (1967) 6954–6971.
doi: 10.1021/ja01002a026
-
[35]
S.J. Rowan, S.J. Cantrill, G.R. Cousins, et al., Angew. Chem. Int. Ed. 41 (2002) 898–952.
-
[36]
G. Springsteen, B. Wang, Tetrahedron 58 (2002) 5291–5300.
-
[37]
R. Nishiyabu, Y. Kubo, T.D. James, et al., Chem. Commun. 47 (2011) 1106–1123.
doi: 10.1039/c0cc02920c
-
[38]
R. Nishiyabu, Y. Kubo, T.D. James, et al., Chem. Commun. 47 (2011) 1124–1150.
-
[39]
S.D. Bull, M.G. Davidson, J.M. Van den Elsen, et al., Acc. Chem. Res. 46 (2013) 312–326.
doi: 10.1021/ar300130w
-
[40]
J. Guo, H. Sun, K. Alt, et al., Adv. Healthc. Mater. 4 (2015) 1796–1801.
doi: 10.1002/adhm.201500332
-
[41]
X. Sun, B.M. Chapin, P. Metola, et al., Nat. Chem. 11 (2019) 768–778.
doi: 10.1038/s41557-019-0314-x
-
[42]
M. Guan, Z. Li, L. Hao, et al., Chem. Eng. J. 423 (2021) 130166.
-
[43]
A.S. Nazarov, V.N. Demin, E.D. Grayfer, et al., Chem. Asian J. 7 (2012) 554–560.
doi: 10.1002/asia.201100710
-
[44]
S. Wang, X. Wang, B. Jia, et al., Appl. Surf. Sci. 392 (2017) 481–491.
-
[45]
H. Wu, X. Huang, M. Gao, et al., Green. Chem. 13 (2011) 651–658.
doi: 10.1039/c0gc00843e
-
[46]
A. Pilli, J. Jones, V. Lee, et al., Sci. Technol. 36 (2018) 61503.
-
[47]
M. Friedman, H.S. Jürgens., J. Agr. Food. Chem. 48 (2000) 2101–2110.
-
[48]
X. Li, Q. Zhang, S.M. Yu, et al., J. Am. Chem. Soc. 145 (2023) 10901–10916.
doi: 10.1021/jacs.3c00713
-
[49]
H. Liu, B. Qing, X. Ye, et al. Chem. Eng. J. 151 (2009) 235–240.
-
[50]
R. Ha, F. Liu, J. Li, et al., ACS Appl. Mater. Interfaces 15 (2023) 5657–5666.
doi: 10.1021/acsami.2c20309
-
[51]
J. Lyu, Z. Zeng, N. Zhang, et al., React. Funct. Polym. 112 (2017) 1–8.
doi: 10.1109/IAS.2017.8101731
-
[52]
J. Bigeleisen, Science 147 (1965) 463–471.
doi: 10.1126/science.147.3657.463
-
[53]
T. Kanzaki, H. Kakihana, B. Chem. Soc. Jpn. 44 (1971) 305–310.
doi: 10.1246/bcsj.44.305
-
[54]
S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309–319.
doi: 10.1021/ja01269a023
-
[55]
B.E. Reed, M.R. Matsumoto. Sep. Sci. Technol. 28 (1993) 2179–2195.
doi: 10.1080/01496399308016742
-
[56]
J.P. Simonin, Chem. Eng. J. 300 (2016) 254–263.
-
[57]
Y.S. Ho, G. McKay, Process. Biochem. 34 (1999) 451–465.
-
[58]
M. Bishop, N. Shahid, J. Yang, et al., Dalton Trans. 17 (2004) 2621–2634.
-
[59]
M. Van Duin, J. Peters, A. Kieboom, et al., Tetrahedron 40 (1984) 2901–2911.
-
[60]
P. Atkins, J.D. Paula, Atkins’ Physical Chemistry, Vol. 1, Oxford University Press, (2006).
-
[61]
F. Zhou, J. Zhang, P. Bai, et al., J. Chem. Eng. Data 62 (2017) 525–531.
doi: 10.1021/acs.jced.6b00802
-
[62]
J.W. Ochterski, Gaussian Inc. 1 (2000) 1.
-
[63]
J. Yan, G. Springsteen, S. Deeter, et al., Tetrahedron 60 (2004) 11205–11209.