Merging catalytic electron donor-acceptor complex and copper catalysis: Enantioselective radical carbocyanation of alkenes
-
* Corresponding author.
E-mail address: yuanwm@hust.edu.cn (W. Yuan)
Citation:
Hongping Zhao, Weiming Yuan. Merging catalytic electron donor-acceptor complex and copper catalysis: Enantioselective radical carbocyanation of alkenes[J]. Chinese Chemical Letters,
;2025, 36(10): 110894.
doi:
10.1016/j.cclet.2025.110894
R.S. Mulliken, J. Am. Chem. Soc. 72 (1950) 600–608.
doi: 10.1021/ja01157a151
R. Foster, J. Phys. Chem. 84 (1980) 2135–2141.
doi: 10.1021/j100454a006
S.V. Rosokha, J.K. Kochi, Acc. Chem. Res. 41 (2008) 641–653.
doi: 10.1021/ar700256a
C.G.S. Lima, T. de M. Lima, M. Duarte, I.D. Jurberg, M.W. Paixão, ACS Catal. 6 (2016) 1389–1407.
doi: 10.1021/acscatal.5b02386
G.E.M. Crisenza, D. Mazzarella, P. Melchiorre, J. Am. Chem. Soc. 142 (2020) 5461–5476.
doi: 10.1021/jacs.0c01416
L. Zheng, L. Cai, K. Tao, et al., Asian J. Org. Chem. 10 (2021) 711–748.
doi: 10.1002/ajoc.202100009
A.K. Wortman, C.R.J. Stephenson, Chem 9 (2023) 2390–2415.
doi: 10.1016/j.chempr.2023.06.013
M. Tobisu, T. Furukawa, N. Chatani, Chem. Lett. 42 (2013) 1203–1205.
doi: 10.1246/cl.130547
S.R. Kandukuri, A. Bahamonde, I. Chatterjee, et al., Angew. Chem. Int. Ed. 54 (2015) 1485–1489.
doi: 10.1002/anie.201409529
B. Liu, C.H. Lim, G.M. Miyake, J. Am. Chem. Soc. 139 (2017) 13616–13619.
doi: 10.1021/jacs.7b07390
S. Xie, D. Li, H. Huang, F. Zhang, Y. Chen, J. Am. Chem. Soc. 141 (2019) 16237–16242.
doi: 10.1021/jacs.9b09099
M. Lübbesmeyer, E.G. Mackay, M.A.R. Raycroft, et al., J. Am. Chem. Soc. 142 (2020) 2609–2616.
doi: 10.1021/jacs.9b12343
J. Wu, L. He, A. Noble, V.K. Aggarwal, J. Am. Chem. Soc. 140 (2018) 10700–10704.
doi: 10.1021/jacs.8b07103
I. Kim, S. Park, S. Hong, Org. Lett. 22 (2020) 8730–8734.
doi: 10.1021/acs.orglett.0c03347
Q. Guo, M. Wang, H. Liu, R. Wang, Z. Xu, Angew. Chem. Int. Ed. 57 (2018) 4747–4751.
doi: 10.1002/anie.201800767
Q. Xia, Y. Li, L. Cheng, et al., Org. Lett. 22 (2020) 9638–9643.
doi: 10.1021/acs.orglett.0c03703
L. Marzo, S. Wang, B. König, Org. Lett. 19 (2017) 5976–5979.
doi: 10.1021/acs.orglett.7b03001
H.H. Zhang, S. Yu, Org. Lett. 21 (2019) 3711–3715.
doi: 10.1021/acs.orglett.9b01169
Z. Chen, S. Zheng, Z. Wang, Z. Liao, W. Yuan, ChemPhotoChem 5 (2021) 906–910.
doi: 10.1002/cptc.202100133
J. Zhang, Y. Li, R. Xu, Y. Chen, Angew. Chem. Int. Ed. 56 (2017) 12619–12623.
doi: 10.1002/anie.201707171
J. Sun, Y. He, X.D. An, et al., Org. Chem. Front. 5 (2018) 977–981.
doi: 10.1039/c7qo00992e
X. Sun, W. Wang, Y. Li, J. Ma, S. Yu, Org. Lett. 18 (2016) 4638–4641.
doi: 10.1021/acs.orglett.6b02271
J. Davies, S.G. Booth, S. Essafi, R.A.W. Dryfe, D. Leonori, Angew. Chem. Int. Ed. 54 (2015) 14017–14021.
doi: 10.1002/anie.201507641
Y. Liu, X.L. Chen, K. Sun, et al., Org. Lett. 21 (2019) 4019–4024.
doi: 10.1021/acs.orglett.9b01175
Y. Cheng, S. Yu, Org. Lett. 18 (2016) 2962–2965.
doi: 10.1021/acs.orglett.6b01301
J. Wu, P.S. Grant, X. Li, A. Noble, V.K. Aggarwal, Angew. Chem. Int. Ed. 58 (2019) 5697–5701.
doi: 10.1002/anie.201814452
E. Arceo, I.D. Jurberg, A. Álvarez-Fernández, P. Melchiorre, Nat. Chem. 5 (2013) 750–756.
doi: 10.1038/nchem.1727
Ł. Woźniak, J.J. Murphy, P. Melchiorre, J. Am. Chem. Soc. 137 (2015) 5678–5681.
doi: 10.1021/jacs.5b03243
A. Bahamonde, P. Melchiorre, J. Am. Chem. Soc. 138 (2016) 8019–8030.
doi: 10.1021/jacs.6b04871
T. Morack, C. Mück-Lichtenfeld, R. Gilmour, Angew. Chem. Int. Ed. 58 (2019) 1208–1212.
doi: 10.1002/anie.201809601
M.C. Fu, R. Shang, B. Zhao, B. Wang, Y. Fu, Science 363 (2019) 1429–1434.
doi: 10.1126/science.aav3200
Y.T. Wang, M.C. Fu, B. Zhao, R. Shang, Y. Fu, Chem. Commun. 56 (2020) 2495–2498.
doi: 10.1039/c9cc09654j
C. Liu, N. Shen, R. Shang, Org. Chem. Front. 8 (2021) 4166–4170.
doi: 10.1039/d1qo00648g
G.Z. Wang, M.C. Fu, B. Zhao, R. Shang, Sci. China Chem. 64 (2021) 439–444.
doi: 10.1007/s11426-020-9905-1
I. Bosque, T. Bach, ACS Catal. 9 (2019) 9103–9109.
doi: 10.1021/acscatal.9b01039
E.J. McClain, T.M. Monos, M. Mori, J.W. Beatty, C.R.J. Stephenson, ACS Catal. 10 (2020) 12636–12641.
doi: 10.1021/acscatal.0c03837
E. de Pedro Beato, D. Spinnato, W. Zhou, P. Melchiorre, J. Am. Chem. Soc. 143 (2021) 12304–12314.
doi: 10.1021/jacs.1c05607
A. Dewanji, L. van Dalsen, J.A. Rossi-Ashton, et al., Nat. Chem. 15 (2023) 43–52.
doi: 10.1038/s41557-022-01092-y
D.J. Castillo-Pazos, J.D. Lasso, E. Hamzehpoor, et al., Chem. Sci. 14 (2023) 3470–3481.
doi: 10.1039/d2sc07078b
J.D. Lasso, D.J. Castillo-Pazos, J.M. Salgado, et al., J. Am. Chem. Soc. 146 (2024) 2583–2592.
doi: 10.1021/jacs.3c11225
T. Tasnim, C. Ryan, M.L. Christensen, C.J. Fennell, S.P. Pitre, Org. Lett. 24 (2022) 446–450.
doi: 10.1021/acs.orglett.1c04139
H. Li, X. Tang, J.H. Pang, et al., J. Am. Chem. Soc. 143 (2021) 481–487.
doi: 10.1021/jacs.0c11968
S. Wang, H. Wang, B. König, J. Am. Chem. Soc. 143 (2021) 15530–15537.
doi: 10.1021/jacs.1c07785
E. Le Saux, M. Zanini, P. Melchiorre, J. Am. Chem. Soc. 144 (2022) 1113–1118.
doi: 10.1021/jacs.1c11712
V. Quint, F. Morlet-Savary, J.F. Lohier, et al., J. Am. Chem. Soc. 138 (2016) 7436–7441.
doi: 10.1021/jacs.6b04069
W. Zhou, S. Wu, P. Melchiorre, J. Am. Chem. Soc. 144 (2022) 8914–8919.
doi: 10.1021/jacs.2c03546
Y. Aramaki, N. Imaizumi, M. Hotta, J. Kumagai, T. Ooi, Chem. Sci. 11 (2020) 4305–4311.
doi: 10.1039/d0sc01159b
W. Yuan, J. Huang, X. Xu, L. Wang, X.Y. Tang, Org. Lett. 23 (2021) 7139–7143.
doi: 10.1021/acs.orglett.1c02553
A. Runemark, H. Sundén, J. Org. Chem. 87 (2022) 1457–1469.
doi: 10.1021/acs.joc.1c02776
A.Y. Chan, I.B. Perry, N.B. Bissonnette, et al., Chem. Rev. 122 (2022) 1485–1542.
doi: 10.1021/acs.chemrev.1c00383
R.H. Li, Y.L. Zhao, Q.K. Shang, et al., ACS Catal. 11 (2021) 6633–6642.
doi: 10.1021/acscatal.1c01222
H. Zhao, X. Xi, T. Wu, et al., Sci. China Chem. 67 (2024) 3019–3028.
doi: 10.1007/s11426-024-2123-0
F. Wang, P. Chen, G. Liu, Nat. Synth. 1 (2022) 107–116.
doi: 10.1038/s44160-021-00016-x
F. Wang, P. Chen, G. Liu, Acc. Chem. Res. 51 (2018) 2036–2046.
doi: 10.1021/acs.accounts.8b00265
D. Liang, W. Xiao, S. Lakhdar, J. Chen, Green Synth. Catal. 3 (2022) 212–218.
F. Wang, D. Wang, X. Wan, et al., J. Am. Chem. Soc. 138 (2016) 15547–15550.
doi: 10.1021/jacs.6b10468
F. Wang, D. Wang, Y. Zhou, et al., Angew. Chem. Int. Ed. 57 (2018) 7140–7145.
doi: 10.1002/anie.201803668
G. Zhang, S. Zhou, L. Fu, et al., Angew. Chem. Int. Ed. 59 (2020) 20439–20444.
doi: 10.1002/anie.202008338
D. Wang, N. Zhu, P. Chen, Z. Lin, G. Liu, J. Am. Chem. Soc. 139 (2017) 15632–15635.
doi: 10.1021/jacs.7b09802
P.Z. Wang, Y. Gao, J. Chen, et al., Nat. Commun. 12 (2021) 1815–1824.
doi: 10.1038/s41467-021-22127-x
F.D. Lu, D. Liu, L. Zhu, et al., J. Am. Chem. Soc. 141 (2019) 6167–6172.
doi: 10.1021/jacs.9b02338
Y. Deng, R. Lu, P. Chen, G. Liu, Chem. Commun. 59 (2023) 4656–4659.
doi: 10.1039/d3cc00410d
J. Chen, P.Z. Wang, B. Lu, et al., Org. Lett. 21 (2019) 9763–9768.
doi: 10.1021/acs.orglett.9b03970
H.W. Chen, F.D. Lu, Y. Cheng, et al., Chin. J. Chem. 38 (2020) 1671–1675.
doi: 10.1002/cjoc.202000309
X. Bao, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 58 (2019) 2139–2143.
doi: 10.1002/anie.201813356
H. Chen, W. Jin, S. Yu, Org. Lett. 22 (2020) 5910–5914.
doi: 10.1021/acs.orglett.0c02008
T. Wang, Y.N. Wang, R. Wang, et al., Nat. Commun. 10 (2019) 5373–5381.
doi: 10.1038/s41467-019-13369-x
Z. Zhang, D.T. Ngo, D.A. Nagib, ACS Catal. 11 (2021) 3473–3477.
doi: 10.1021/acscatal.1c00404
M. Zheng, K. Gao, H. Qin, G. Li, H. Lu, Angew. Chem. Int. Ed. 60 (2021) 22892–22899.
doi: 10.1002/anie.202108617
D. Forster, W. Guo, Q. Wang, J. Zhu, ACS Catal. 13 (2023) 7523–7528.
doi: 10.1021/acscatal.3c01782
S. Qian, T.M. Lazarus, D.A. Nicewicz, J. Am. Chem. Soc. 145 (2023) 18247–18252.
doi: 10.1021/jacs.3c06936
B. Zhang, T.T. Li, Z.C. Mao, et al., J. Am. Chem. Soc. 146 (2024) 1410–1422.
doi: 10.1021/jacs.3c10439
W. Shang, L. Deng, S. Ni, et al., ACS Catal. 8 (2018) 7489–7494.
doi: 10.1021/acscatal.8b01863
F.D. Lu, L.Q. Lu, G.F. He, et al., J. Am. Chem. Soc. 143 (2021) 4168–4173.
doi: 10.1021/jacs.1c01260
S. Duan, Y. Du, L. Wang, et al., Angew. Chem. Int. Ed. 62 (2023) e202300605.
doi: 10.1002/anie.202300605
W. Zhao, R.P. Wurz, J.C. Peters, G.C. Fu, J. Am. Chem. Soc. 139 (2017) 12153–12156.
doi: 10.1021/jacs.7b07546
Huaixiang Yang , Miao-Miao Li , Aijun Zhang , Jiefei Guo , Yongqi Yu , Wei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425
Liangfeng Yang , Liang Zeng , Yanping Zhu , Qiuan Wang , Jinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685
Zhenkang Ai , Hui Chen , Xuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954
Er-Meng Wang , Ziyi Wang , Xu Ban , Xiaowei Zhao , Yanli Yin , Zhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843
Fan Chen , Xiaoyu Zhao , Weihang Miao , Yingying Li , Ye Yuan , Lingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239
Luyun Zhang , Ding Liu , Huri Piao , Zhenhua Jia , Fen-Er Chen . A modified Bis-OPNN phosphorus ligand for Rh-catalyzed linear-selective hydroformylation of alkenes. Chinese Chemical Letters, 2025, 36(7): 110640-. doi: 10.1016/j.cclet.2024.110640
Yaqi Deng , Jian Xue , Xiang Wu , Shunying Liu . Highly regioselective electrochemical oxidative 2,1-azolization of alkenes with azoles and nucleophiles. Chinese Chemical Letters, 2025, 36(9): 110822-. doi: 10.1016/j.cclet.2025.110822
Gangsheng Li , Xiang Yuan , Fu Liu , Zhihua Liu , Xujie Wang , Yuanyuan Liu , Yanmin Chen , Tingting Wang , Yanan Yang , Peicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880
Zhiwei Zhong , Yanbin Huang , Wantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339
Zhixiang Li , Zhirong Yang , Chang Yao , Bin Wu , Gang Qian , Xuezhi Duan , Xinggui Zhou , Jing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
Min Yan , Zihao Ye , Ping Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Jing-Jing Zhang , Lujun Lou , Rui Lv , Jiahui Chen , Yinlong Li , Guangwei Wu , Lingchao Cai , Steven H. Liang , Zhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047