Citation: Siyu Cao, Yufei Shu, Li Wang, Qi Han, Meng Zhang, Mengxia Wang, How Yong Ng, Zhongying Wang. Controlling nanomaterial distribution and aggregation in thin-film nanocomposite membranes: Role of substrate pore's relative size with nanomaterials[J]. Chinese Chemical Letters, ;2025, 36(10): 110793. doi: 10.1016/j.cclet.2024.110793 shu

Controlling nanomaterial distribution and aggregation in thin-film nanocomposite membranes: Role of substrate pore's relative size with nanomaterials

    * Corresponding authors.
    E-mail addresses: huanghy@bnu.edu.cn (H.Y. Ng), wangzy6@sustech.edu.cn (Z. Wang).
  • Received Date: 26 August 2024
    Revised Date: 30 October 2024
    Accepted Date: 20 December 2024
    Available Online: 20 December 2024

Figures(7)

  • Thin-film nanocomposite (TFN) membranes have garnered considerable attention for their potential to improve separation performance by incorporating nanomaterials. However, challenges such as these materials' uneven distribution and aggregation have hindered practical applications. While prior studies have largely concentrated on modifying nanosheets for compatibility with polymer matrices, the role of substrate pore size in influencing nanosheet distribution has been overlooked. In this work, MoS2 nanosheets were dispersed in an aqueous phase to fabricate TFN membranes, investigating the effect of substrate pore size relative to the nanosheets. By systematically varying the particle size of MoS2 and the pore size of the substrate, we reveal how these factors impact material distribution and structural uniformity within the membranes. Our findings reveal that larger substrate pores allow the MoS2-containing monomer solution to infiltrate more effectively, minimizing nanosheet aggregation. This enhances membrane performance by promoting better dispersion. Our results underscore the importance of considering the relative size of substrate pores and nanosheets in TFN membrane design, providing a pathway to improved material integration and higher membrane efficiency.
  • 加载中
    1. [1]

      D.M. Warsinger, S. Chakraborty, E.W. Tow, et al., Prog. Polym. Sci. 81 (2018) 209–237.

    2. [2]

      Y.K. Ong, T.S. Chung, Environ. Sci. Technol. 48 (2014) 13933–13940.  doi: 10.1021/es503258s

    3. [3]

      Y. Du, Y. Lv, W.Z. Qiu, et al., Chem. Commun. 52 (2016) 8589–8592.

    4. [4]

      H.B. Park, J. Kamcev, L.M. Robeson, et al., Science 356 (2017) eaab0530.

    5. [5]

      B.E. Logan, M. Elimelech, Nature 488 (2012) 313–319.  doi: 10.1038/nature11477

    6. [6]

      R. Zhang, J. Tian, S. Gao, et al., J. Mater. Chem. A 8 (2020) 8831–8847.  doi: 10.1039/d0ta02510k

    7. [7]

      H. Wu, B. Tang, P. Wu, J. Phys. Chem. C 114 (2010) 16395–16400.  doi: 10.1021/jp107280m

    8. [8]

      Z. Yang, H. Guo, C.Y. Tang, J. Membr. Sci. 590 (2019) 117297.

    9. [9]

      Y. Liu, Y. Zhao, X. Wang, et al., J. Membr. Sci. 582 (2019) 274–283.

    10. [10]

      H. Abadikhah, E.N. Kalali, S. Behzadi, et al., Polymer 154 (2018) 200–209.

    11. [11]

      S. Islam, K. Touati, S. Rahaman, ACS EST Engin. 1 (2021) 467–477.

    12. [12]

      M. Ghanbari, D. Emadzadeh, W.J. Lau, et al., Desalination 371 (2015) 104–114.

    13. [13]

      T. Li, Y. Xiao, D. Guo, et al., J. Colloid Interface Sci. 572 (2020) 114–121.  doi: 10.3390/pr8010114

    14. [14]

      S.M. Xue, Z.L. Xu, Y.J. Tang, et al., ACS Appl. Mater. Interfaces 8 (2016) 19135–19144.  doi: 10.1021/acsami.6b05545

    15. [15]

      H. Wu, H. Sun, W. Hong, et al., ACS Appl. Mater. Interfaces 9 (2017) 32255–32263.  doi: 10.1021/acsami.7b09680

    16. [16]

      S. Bano, A. Mahmood, S.-J. Kim, et al., J. Mater. Chem. A 3 (2015) 2065–2071.

    17. [17]

      W. Zhao, H. Liu, N. Meng, et al., J. Membr. Sci. 565 (2018) 380–389.

    18. [18]

      Y. Li, J. Jiao, Q. Wu, et al., Chin. Chem. Lett. 33 (2022) 5001–5012.

    19. [19]

      H. Liu, M. Zhang, H. Zhao, et al., RSC Adv. 10 (2020) 4045–4057.  doi: 10.1039/c9ra09672h

    20. [20]

      H. Liu, B. Li, P. Zhao, et al., Chin. Chem. Lett. 34 (2023) 108369.

    21. [21]

      S.Y. Fang, P. Zhang, J.L. Gong, et al., Chem. Eng. J. 385 (2020) 123400.

    22. [22]

      D. Emadzadeh, W.J. Lau, M. Rahbari-Sisakht, et al., Desalination 368 (2015) 106–113.

    23. [23]

      Z. Zhang, J. Hu, S. Liu, et al., Chin. Chem. Lett. 32 (2021) 2882–2886.

    24. [24]

      S. Abdikheibari, W. Lei, L.F. Dumée, et al., J. Mater. Chem. A 6 (2018) 12066–12081.  doi: 10.1039/c8ta03446j

    25. [25]

      S. Yang, Q. Jiang, K. Zhang, J. Membr. Sci. 604 (2020) 118052.

    26. [26]

      M.Q. Ma, C. Zhang, C.Y. Zhu, et al., J. Membr. Sci. 591 (2019) 117316.

    27. [27]

      X. Wu, R.W. Field, J.J. Wu, et al., J. Membr. Sci. 540 (2017) 251–260.

    28. [28]

      Q. Xie, W. Shao, S. Zhang, et al., RSC Adv. 7 (2017) 54898–54910.

    29. [29]

      Z. Yang, H. Guo, Z. Yao, et al., Environ. Sci. Technol. 53 (2019) 5301–5308.  doi: 10.1021/acs.est.9b00473

    30. [30]

      B. Rajaeian, A. Rahimpour, M.O. Tade, et al., Desalination 313 (2013) 176–188.

    31. [31]

      S. Yang, K. Zhang, J. Membr. Sci. 595 (2020) 117526.

    32. [32]

      Y. Qin, H. Liu, Y. Liu, et al., J. Membr. Sci. 604 (2020) 118064.

    33. [33]

      M.E.A. Ali, L. Wang, X. Wang, et al., Desalination 386 (2016) 67–76.

    34. [34]

      H.R. Chae, C.H. Lee, P.K. Park, et al., J. Membr. Sci. 525 (2017) 99–106.

    35. [35]

      K. Zarshenas, H. Dou, S. Habibpour, et al., ACS Appl. Mater. Interface 14 (2022) 1838–1849.  doi: 10.1021/acsami.1c16229

    36. [36]

      R. Xu, F. Gao, Y. Wu, et al., Sep. Purif. Technol. 281 (2022) 119884.

    37. [37]

      A.K. Ghosh, E.M.V. Hoek, J. Membr. Sci. 336 (2009) 140148.

    38. [38]

      L.E. Peng, Z. Yao, Z. Yang, et al., Environ. Sci. Technol. 54 (2020) 6978–6986.  doi: 10.1021/acs.est.0c01427

    39. [39]

      S. Cao, A. Deshmukh, L. Wang, et al., Environ. Sci. Technol. 56 (2022) 8807–8818.  doi: 10.1021/acs.est.2c00551

    40. [40]

      R. Dai, Z. Yang, Z. Qiu, et al., J. Membr. Sci. 662 (2022) 120966.

    41. [41]

      C. Jiang, X. Ma, L. Zhang, et al., J. Membr. Sci. 653 (2022) 120522.

    42. [42]

      S. Zhao, L. Li, M. Wang, et al., Sep. Purif. Technol. 258 (2021) 118029.

    43. [43]

      K. Chen, F. Li, T. Wei, et al., J. Membr. Sci. 684 (2023) 121882.

    44. [44]

      S. Karan, Z. Jiang, A.G. Livingston, Science 348 (2015) 1357–1351.

    45. [45]

      X. Song, B. Gan, S. Qi, et al., Env. Sci. Technol. 54 (2020) 3559–3569.  doi: 10.1021/acs.est.9b05892

    46. [46]

      J. Wang, R. Xu, F. Yang, et al., J. Membr. Sci. 556 (2018) 374–383.

    47. [47]

      H.J. Kim, M.Y. Lim, K.H. Jung, et al., J. Mater. Chem. A 3 (2015) 6798–6809.

    48. [48]

      J. Schaep, B. Van der Bruggen, C. Vandecasteele, et al., Sep. Purif. Technol. 14 (1998) 155–162.

    49. [49]

      B. Mi, Science 343 (2014) 740–742.  doi: 10.1126/science.1250247

    50. [50]

      G.S. Lai, W.J. Lau, S.R. Gray, et al., J. Mater. Chem. A 4 (2016) 4134–4144.

    51. [51]

      Z. Wang, Q. Tu, S. Zheng, et al., Nano Lett. 17 (2017) 7289–7298.  doi: 10.1021/acs.nanolett.7b02804

    52. [52]

      K. Yuan, Y. Liu, H. Feng, et al., Chin. Chem. Lett. 35 (2024) 109022.

    53. [53]

      Z. Yang, X. Huang, X. Ma, et al., J. Membr. Sci. 570–571 (2019) 314–321.

    54. [54]

      K.P. Schlichting, D. Poulikakos, ACS Appl. Mater. Interfaces 12 (2020) 36468–36477.  doi: 10.1021/acsami.0c07277

    55. [55]

      B. Liu, Q. Han, L. Li, et al., Environ. Sci. Technol. 55 (2021) 16379–16389.  doi: 10.1021/acs.est.1c03576

    56. [56]

      H. Wu, B. Tang, P. Wu, J. Membr. Sci. 428 (2013) 341–348.

    57. [57]

      S. Sorribas, P. Gorgojo, C. Téllez, et al., J. Am. Chem. Soc. 135 (2013) 15201–15208.  doi: 10.1021/ja407665w

    58. [58]

      G.N.B. Baroña, J. Lim, M. Choi, et al., Desalination 325 (2013) 138–147.

    59. [59]

      M. Amini, J. Membr. Sci. 435 (2013) 233–241.

    60. [60]

      J. Yin, G. Zhu, B. Deng, Desalination 379 (2016) 93–101.

  • 加载中
    1. [1]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    2. [2]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    3. [3]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    4. [4]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    5. [5]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    6. [6]

      Xian-Rui Meng Qian Chen Mei-Feng Wu Qiang Wu Su-Qin Wang Li-Ping Jin Fan Zhou Ren-Li Ma Jian-Ping Zou . Nano-flowers FeS/MoS2 composites as a peroxymonosulfate activator for efficient p-chlorophenol degradation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100543-100543. doi: 10.1016/j.cjsc.2025.100543

    7. [7]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    8. [8]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    9. [9]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    10. [10]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    11. [11]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    12. [12]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    13. [13]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    14. [14]

      Yayun ShiCongcong LiuZhijun ZuoXiaowei Yang . Self-assembled ultrathick MoS2 conductive hydrogel membrane via ionic gelation for superior capacitive energy storage. Chinese Chemical Letters, 2025, 36(6): 109772-. doi: 10.1016/j.cclet.2024.109772

    15. [15]

      Zheng ZhangLei ShiBin WangJingyuan QuXiaoling WangTao WangQitao JiangWuhong XueXiaohong Xu . Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chinese Chemical Letters, 2025, 36(3): 109687-. doi: 10.1016/j.cclet.2024.109687

    16. [16]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    17. [17]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    18. [18]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    19. [19]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(0)
  • Abstract views(90)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return