Citation: Hong-Yu Chu, Guang-Chi Liu, Fu-Xue Wang, Lian-Sheng Cui, Chong-Chen Wang. Microcystis aeruginosa removal over MOFs-based materials and the evaluation methods: State-of-the-art review[J]. Chinese Chemical Letters, ;2025, 36(10): 110745. doi: 10.1016/j.cclet.2024.110745 shu

Microcystis aeruginosa removal over MOFs-based materials and the evaluation methods: State-of-the-art review

    * Corresponding authors.
    E-mail addresses: cls200407@163.com (L.-S. Cui), wangchongchen@bucea.edu.cn (C.-C. Wang).
  • Received Date: 14 August 2024
    Revised Date: 26 October 2024
    Accepted Date: 9 December 2024
    Available Online: 10 December 2024

Figures(8)

  • The harmful algal bloom primarily caused by Microcystis aeruginosa (M. aeruginosa) has become one of the serious biological pollution issues in actual water, which has received intense attention worldwide. Over the past years, increasing number of publications have reported that metal-organic frameworks (MOFs) based functional materials exhibited significant inhibition against M. aeruginosa via multiple mechanisms, but no review papers systematically presented progresses regarding MOFs-based materials for M. aeruginosa control up to now. With this review paper, we summarized the state-of-the-art studies of MOFs-based materials for M. aeruginosa removal, comparing and discussing the design strategies of MOFs-based materials and their antimicrobial mechanisms. Meanwhile, we discussed methods for evaluating the water purification performances of MOFs-based materials against M. aeruginosa. Finally, the perspectives for design of novel MOFs-based functional materials and application scenarios were proposed to provide an outlook on areas where greater efforts should be made in the future.
  • 加载中
    1. [1]

      J.T. Sims, N. Goggin, J. McDermott, Water Sci. Technol. 39 (1999) 291–298.  doi: 10.2166/wst.1999.0558

    2. [2]

      W. Liu, Q. Zhang, G. Liu, Hydrobiologia 644 (2010) 289–299.  doi: 10.1007/s10750-010-0151-9

    3. [3]

      H.S. Ayele, M. Atlabachew, Environ. Sci. Pollut. Res. 28 (2021) 14233–14252.  doi: 10.1007/s11356-020-12081-4

    4. [4]

      C.E.W. Steinberg, H.M. Hartmann, Freshwater Biol. 20 (1988) 279–287.  doi: 10.1111/j.1365-2427.1988.tb00452.x

    5. [5]

      X. Yan, Y. Xia, C. Ti, et al., Sci. Total Environ. 914 (2024) 169821.

    6. [6]

      Q. Wang, L. Sun, Y. Zhu, et al., Sci. Total Environ. 812 (2022) 152558.

    7. [7]

      M.M. Steffen, B.S. Belisle, S.B. Watson, et al., J. Great Lakes Res. 40 (2014) 215–225.

    8. [8]

      C.E. Gibson, G. Wang, R.H. Foy, Freshwater Biol. 45 (2000) 285–293.

    9. [9]

      A. Umehara, H. Tsutsumi, T. Takahashi, Environ. Sci. Pollut. Res. 19 (2012) 3257–3267.  doi: 10.1007/s11356-012-0835-y

    10. [10]

      D. Latour, J. Plankton Res. 26 (2004) 719–726.

    11. [11]

      A. Kemp, J. John, Environ. Toxicol. 21 (2006) 125–130.  doi: 10.1002/tox.20164

    12. [12]

      A.S. Ferrão-Filho, P. Domingos, S.M.F.O. Azevedo, Limnologica 32 (2002) 295–308.

    13. [13]

      S.V. Shestakov, E.A. Karbysheva, Biol. Bull. Rev. 7 (2017) 259–272.

    14. [14]

      G. Muhetaer, T. Asaeda, S.M.D.H. Jayasanka, et al., Water 12 (2020) 407.  doi: 10.3390/w12020407

    15. [15]

      S. Wei, G. Zhuang, L. Cheng, S. Wang, Environ. Sci. Pollut. Res. 29 (2022) 13835–13844.  doi: 10.1007/s11356-021-16719-9

    16. [16]

      J. Yang, H. Tang, X. Zhang, et al., Environ. Sci. Pollut. Res. 25 (2018) 4794–4802.  doi: 10.1007/s11356-017-0887-0

    17. [17]

      H. Imai, K.H. Chang, M. Kusaba, S.I. Nakano, J. Plankton Res. 31 (2008) 171–178.  doi: 10.1093/plankt/fbn110

    18. [18]

      S. Raps, K. Wyman, H.W. Siegelman, P.G. Falkowski, Plant Physiol. 72 (1983) 829–832.  doi: 10.1104/pp.72.3.829

    19. [19]

      H.W. Paerl, P.T. Bland, N.D. Bowles, M.E. Haibach, Appl. Environ. Microb. 49 (1985) 1046–1052.  doi: 10.1128/aem.49.5.1046-1052.1985

    20. [20]

      H.W. Paerl, J. Tucker, P.T. Bland, Limnol. Oceanogr. 28 (1983) 847–857.  doi: 10.4319/lo.1983.28.5.0847

    21. [21]

      H.A. Erikson, J. Opt. Soc. Am. 23 (1933) 170–177.

    22. [22]

      C.C. Bowen, T.E. Jensen, Science 147 (1965) 1460–1462.  doi: 10.1126/science.147.3664.1460

    23. [23]

      K. Zhang, T.F. Lin, T. Zhang, et al., J. Environ. Sci. China 25 (2013) 1539–1548.

    24. [24]

      B. Qin, G. Gao, G. Zhu, et al., Chin. Sci. Bull. 58 (2013) 961–970.  doi: 10.1007/s11434-012-5560-x

    25. [25]

      J. Hou, L. Li, N. Wu, et al., Environ. Pollut. 208 (2016) 477–485.

    26. [26]

      W. Lin, H. Guo, L. Wang, et al., Sci. Total Environ. 702 (2020) 134969.

    27. [27]

      S. Pavagadhi, S. Natera, U. Roessner, R. Balasubramanian, Environ. Sci. Technol. 47 (2013) 14376–14384.  doi: 10.1021/es4004125

    28. [28]

      P.J. Oberholster, A. Botha, J.U. Grobbelaar, Afr. J. Biotechnol. 3 (2004) 159–168.

    29. [29]

      S. Gu, M. Jiang, B. Zhang, Toxins 14 (2022) 715.  doi: 10.3390/toxins14100715

    30. [30]

      C. Zheng, H. Zeng, H. Lin, et al., Hepatology 66 (2017) 1519–1528.  doi: 10.1002/hep.29310

    31. [31]

      E.D.C. Oliveira, R. Castelo-Branco, L. Silva, et al., Toxins 11 (2019) 669.

    32. [32]

      G. Joh, Y.S. Choi, J. Shin, J. Lee, J. Water Supply: Res. Technol. 60 (2011) 219–230.  doi: 10.2166/aqua.2011.035

    33. [33]

      W.K. Dodds, W.W. Bouska, J.L. Eitzmann, et al., Environ. Sci. Technol. 43 (2009) 12–19.  doi: 10.1021/es801217q

    34. [34]

      R. Sun, P. Sun, J. Zhang, et al., Bioresour. Technol. 248 (2018) 12–20.

    35. [35]

      T. Li, Y. Bi, J. Liu, C. Wu, Environ. Sci. Pollut. Res. 23 (2016) 20297–20306.  doi: 10.1007/s11356-016-7235-7

    36. [36]

      A. Magdaleno, C.G. Vélez, M.T. Wenzel, G. Tell, Bull. Environ. Contam. Toxicol. 92 (2014) 202–207.  doi: 10.1007/s00128-013-1171-8

    37. [37]

      S.P. Zuo, K. Wan, S.M. Ma, L.T. Ye, Allelopathy J. 34 (2014) 315.

    38. [38]

      C. Wang, Y. Ho, Scientometrics 109 (2016) 481–513.  doi: 10.1007/s11192-016-1986-2

    39. [39]

      S.L. James, Chem. Soc. Rev. 32 (2003) 276.

    40. [40]

      J. Li, C. Wang, H. Fu, et al., Dalton Trans. 46 (2017) 10197–10201.

    41. [41]

      X. Du, C. Wang, J. Liu, et al., J. Colloid Interface Sci. 506 (2017) 437–441.

    42. [42]

      Y. Li, S. Gao, L. Zhang, et al., Chin. Chem. Lett. 35 (2024) 109894.

    43. [43]

      Y. Li, C. Wang, F. Wang, et al., Appl. Catal., B 331 (2023) 122699.

    44. [44]

      Y. Liang, X. Yang, X. Wang, et al., Nat. Commun. 14 (2023) 5223.

    45. [45]

      S. Hou, J. Dong, X. Jiang, et al., Angew. Chem. Int. Ed. 58 (2019) 577–581.  doi: 10.1002/anie.201811506

    46. [46]

      S. Liu, H. Fu, F. Wang, et al., Appl. Catal. B 346 (2024) 123753.

    47. [47]

      K. Suresh, A.J. Matzger, Angew. Chem. Int. Ed. 58 (2019) 16790–16794.  doi: 10.1002/anie.201907652

    48. [48]

      R.F. Mendes, F. Figueira, J.P. Leite, et al., Chem. Soc. Rev. 49 (2020) 9121–9153.  doi: 10.1039/d0cs00883d

    49. [49]

      C. Wang, C. Wang, X. Zhang, et al., Chin. Chem. Lett. 33 (2022) 1353–1357.

    50. [50]

      C. Wang, H. Fu, P. Wang, C. Wang, Appl. Organomet. Chem. 33 (2019) e5021.

    51. [51]

      K. Jayaramulu, D.P. Dubal, A. Schneemann, et al., Adv. Funct. Mater. 29 (2019) 1902539.

    52. [52]

      T. Liu, P. Li, N. Yao, et al., Angew. Chem. 131 (2019) 4727–4732.  doi: 10.1002/ange.201901409

    53. [53]

      A. Liu, C. Wang, C. Wang, et al., J. Colloid Interface Sci. 512 (2018) 730–739.

    54. [54]

      H. Chu, H. Fu, A. Liu, et al., Polyhedron 188 (2020) 114684.

    55. [55]

      D. Sheberla, J.C. Bachman, J.S. Elias, et al., Nat. Mater. 16 (2017) 220–224.  doi: 10.1038/nmat4766

    56. [56]

      H. Furukawa, K.E. Cordova, M.O. Keeffe, O.M. Yaghi, Science 341 (2013) 1230444.

    57. [57]

      F. Wang, Y. Gao, H. Fu, et al., Appl. Catal. B 339 (2023) 123178.

    58. [58]

      H. Tian, T. Araya, R. Li, et al., Appl. Catal. B 254 (2019) 371–379.

    59. [59]

      Y. Li, S. Shang, J. Shang, W. Wang, Environ. Pollut. 291 (2021) 118199.

    60. [60]

      H. Chu, C. Wang, Chem. Eng. J. 476 (2023) 146684.

    61. [61]

      N. Gu, J. Gao, K. Wang, et al., J. Taiwan Inst. Chem. E 64 (2016) 189–195.

    62. [62]

      C. Cai, G. Fan, B. Du, et al., Catal. Sci. Technol. 12 (2022) 3767–3777.  doi: 10.1039/d2cy00393g

    63. [63]

      X. He, P. Wu, S. Wang, et al., J. Clean. Prod. 289 (2021) 125755.

    64. [64]

      S. Hadjoudja, V. Deluchat, M. Baudu, J. Colloid Interface Sci. 342 (2010) 293–299.

    65. [65]

      M. Jost, D.D. Jones, Can. J. Microbiol. 16 (1970) 159–164.  doi: 10.1139/m70-028

    66. [66]

      M. Berchel, T.L. Gall, C. Denis, et al., New J. Chem. 35 (2011) 1000–1003.  doi: 10.1039/c1nj20202b

    67. [67]

      L. Zeng, X. Guo, C. He, C. Duan, ACS Catal. 6 (2016) 7935–7947.  doi: 10.1021/acscatal.6b02228

    68. [68]

      A. Dhakshinamoorthy, Z. Li, H. Garcia, Chem. Soc. Rev. 47 (2018) 8134–8172.  doi: 10.1039/c8cs00256h

    69. [69]

      C. Wang, J. Li, X. Lv, et al., Energy Environ. Sci. 7 (2014) 2831–2867.

    70. [70]

      F. Wang, Y. Gao, H. Chu, et al., ACS ES & T Eng. 4 (2024) 153–165.  doi: 10.1021/acsestengg.3c00195

    71. [71]

      Y. Shang, Y. Kan, X. Xu, Chin. Chem. Lett. 34 (2023) 108278.

    72. [72]

      J. Guo, Y. Wang, Y. Shang, et al., Proc. Natl. Acad. Sci. U. S. A. 121 (2024) e1981580175.

    73. [73]

      G. Fan, M. Bao, X. Zheng, et al., J. Hazard. Mater. 367 (2019) 529–538.

    74. [74]

      J. Guo, B. Gao, Q. Li, et al., Adv. Mater. 36 (2024) 2403965.

    75. [75]

      A.G. Torres, J. Putnam, B. Jefferson, et al., Water Res. 60 (2014) 197–209.  doi: 10.1080/10412905.2014.882277

    76. [76]

      R. Ettlinger, U. Lächelt, R. Gref, et al., Chem. Soc. Rev. 51 (2022) 464–484.  doi: 10.1039/d1cs00918d

    77. [77]

      D. Tsikas, Anal. Biochem. 524 (2017) 13–30.

    78. [78]

      K. Martín-Betancor, S. Aguado, I. Rodea-Palomares, et al., Sci. Total Environ. 595 (2017) 547–555.

    79. [79]

      P. Wiśniewska, J. Haponiuk, M.R. Saeb, et al., Chem. Eng. J. 471 (2023) 144400.

    80. [80]

      A. Liu, C. Wang, C. Chu, et al., J. Environ. Chem. Eng. 6 (2018) 4961–4969.

    81. [81]

      G. Fan, L. Hong, X. Zheng, et al., RSC Adv. 8 (2018) 35314–35326.  doi: 10.1039/c8ra05608k

    82. [82]

      Y. Li, W. Wang, Environ. Pollut. 346 (2024) 123595.

    83. [83]

      Y. Li, Z. Xu, W. Wang, Chem. Eng. J. 433 (2022) 134584.

    84. [84]

      X. Yi, G. Liu, H. Chu, et al., Chem. Commun. 60 (2024) 9530–9533.  doi: 10.1039/d4cc03367a

    85. [85]

      L. Yue, M. Tao, L. Xu, et al., J. Hazard. Mater. 462 (2024) 132799.

    86. [86]

      S. Nakai, Y. Inoue, M. Hosomi, Water Res. 35 (2001) 1855–1859.

    87. [87]

      X. Wang, K. Huang, J. Gao, et al., Sci. Total Environ. 792 (2021) 148247.

    88. [88]

      X. Yi, H. Ji, C. Wang, et al., Appl. Catal. B 293 (2021) 120229.

    89. [89]

      J. Wang, F. Qiu, P. Wang, et al., J. Clean. Prod. 279 (2021) 123408.

    90. [90]

      H. Chu, C. Wang, Prog. Nat. Sci. Mater. Int. 33 (2023) 386–406.

    91. [91]

      J. Low, J. Yu, M. Jaroniec, et al., Adv. Mater. 29 (2017) 1601694.

    92. [92]

      A. Dhakshinamoorthy, Z. Li, S. Yang, H. Garcia, Chem. Soc. Rev. 53 (2024) 3002–3035.  doi: 10.1039/d3cs00205e

    93. [93]

      M. Lan, Y. Li, C. Wang, et al., Nat. Commun. 15 (2024) 7208.

    94. [94]

      M. Wang, J. Chen, L. Hu, et al., Chem. Eng. J. 456 (2023) 141154.

    95. [95]

      G. Fan, J. Zhou, X. Zheng, et al., Chemosphere 239 (2020) 124721.

    96. [96]

      X. Cao, G. Fan, J. Luo, et al., J. Hazard. Mater. 478 (2024) 135461.

    97. [97]

      G. Fan, J. Zhan, J. Luo, et al., J. Hazard. Mater. 404 (2021) 124062.

    98. [98]

      Z. Wang, Y. Xu, C. Wang, et al., Sep. Purif. Technol. 313 (2023) 123515.

    99. [99]

      X. Qi, K. Liu, Z. Chang, Chem. Eng. J. 441 (2022) 135953.

    100. [100]

      J. Fonseca, T. Gong, Coord. Chem. Rev. 462 (2022) 214520.

    101. [101]

      Y. He, Y. Wang, J. Shi, et al., Chem. Eng. J. 446 (2022) 136866.

    102. [102]

      F. Wang, Z. Zhang, C. Wang, et al., Sep. Purif. Technol. 337 (2024) 126409.

    103. [103]

      T. Shahryari, V. Alizadeh, P. Kazemzadeh, et al., Appl. Phys. A 128 (2022) 396.

    104. [104]

      Y. Kim, P. Kalimuthu, G. Nam, J. Jung, Environ. Res. 224 (2023) 115532.

    105. [105]

      F. Wang, Z. Zhang, Z. Zhang, et al., Chem. Eng. J. 487 (2024) 150506.

    106. [106]

      X. Yi, C. Wang, Chin. Chem. Lett. 35 (2024) 109094.

    107. [107]

      G. Fan, J. Zhang, J. Zhan, et al., J. Hazard. Mater. 419 (2021) 126407.

    108. [108]

      G. Fan, Z. Chen, B. Wang, et al., Catalysts 9 (2019) 698.  doi: 10.3390/catal9080698

    109. [109]

      X. Guo, H. Yang, J. Wang, Inorg. Chem. Front. 9 (2021) 155–164.

    110. [110]

      M. Wang, J. Chen, Y. Wei, et al., J. Hazard. Mater. 465 (2024) 133273.

    111. [111]

      X. Zhu, X. Cheng, X. Luo, et al., Environ. Sci. Technol. 54 (2020) 6365–6374.  doi: 10.1021/acs.est.9b06779

    112. [112]

      Y. Su, C. Yang, S. Wang, et al., Environ. Sci. Technol. 58 (2024) 10764–10775.  doi: 10.1021/acs.est.4c00846

    113. [113]

      G. Tan, H. Yu, Nat. Rev. Mater. 9 (2024) 4–5.

    114. [114]

      Y. Liu, M. Yang, Y. Cao, et al., J. Environ. Chem. Eng. 11 (2023) 111130.

    115. [115]

      A.M. Rashad, Constr. Build. Mater. 121 (2016) 338–353.

    116. [116]

      G. Liu, X. Yi, H. Chu, et al., J. Hazard. Mater. 472 (2024) 134420.

    117. [117]

      S.E. Fratesi, F.L. Lynch, B.L. Kirkland, L.R. Brown, J. Sediment. Res. 74 (2004) 858–867.  doi: 10.1306/042604740858

    118. [118]

      J. Zhao, C. Lyu, R. Zhang, et al., J. Hazard. Mater. 442 (2023) 130018.

    119. [119]

      L. Hu, J. Chen, Y. Wei, et al., J. Hazard. Mater. 442 (2023) 130059.

    120. [120]

      P. Saxena, V. Saharan, P.K. Baroliya, et al., Toxicol. Rep. 8 (2021) 724–731.

    121. [121]

      S. Zhang, B. Zhang, W. Dai, X. Zhang, J. Plant Physiol. 168 (2011) 639–643.

    122. [122]

      Z. Wang, D. Li, H. Qin, Y. Li, Environ. Pollut. 160 (2012) 34–41.

    123. [123]

      Y. Li, W. Wang, Environ. Sci. Technol. 57 (2023) 118–127.  doi: 10.1021/acs.est.2c03780

    124. [124]

      L. Liu, C. Xing, H. Yan, et al., Sensors 14 (2014) 14672–14685.  doi: 10.3390/s140814672

    125. [125]

      W. Li, J. Duan, C. Niu, et al., J. Chromatogr. Sci. 49 (2011) 665–670.  doi: 10.1093/chrsci/49.9.665

    126. [126]

      D. Wolf, W. Georgic, H.A. Klaiber, J. Environ. Manag. 199 (2017) 148–157.

  • 加载中
    1. [1]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    2. [2]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    3. [3]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    4. [4]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    5. [5]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    6. [6]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    7. [7]

      Ran GaoQian ZouQian-Qian SuXiu-Fang MaYe-Hui QinRui LiaoSong-Song BaoLi-Min Zheng . Photoresponsive lanthanide-dianthracene framework: Introduction of photoactive anthracene pairs by controlling the synthesis temperature. Chinese Chemical Letters, 2025, 36(10): 110404-. doi: 10.1016/j.cclet.2024.110404

    8. [8]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    9. [9]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    10. [10]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    11. [11]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    12. [12]

      Lei ZhuHai-Ruo LiYi-Ning MaoRuiying LiuBo ZhangJing ChenWengui XuLibo ZhangCheng-Peng Li . A four-fold interpenetrated MOF for efficient perrhenate/pertechnetate removal from alkaline nuclear effluents. Chinese Chemical Letters, 2024, 35(12): 109921-. doi: 10.1016/j.cclet.2024.109921

    13. [13]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    14. [14]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    15. [15]

      Yao-Yu MaWen-Juan ShiGang-Ding WangXin LiuLei HouYao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729

    16. [16]

      Quanquan LiChenzhu ZhaoShanshan JiaQiang ChenXusheng LiMengyao SheHua LiuPing LiuYaoyu WangJianli Li . Design and fabrication of CuI/CuII-MOF-incorporated hydrogel photocatalysts for synergy removal of Cr(VI) and congo red. Chinese Chemical Letters, 2025, 36(5): 109936-. doi: 10.1016/j.cclet.2024.109936

    17. [17]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    18. [18]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    19. [19]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    20. [20]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

Metrics
  • PDF Downloads(0)
  • Abstract views(76)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return