Valence-programmed RNA origami for potent innate immune activation
-
* Corresponding authors.
E-mail addresses: yaoguangbao@sjtu.edu.cn (G. Yao), limin2021@sjtu.edu.cn (M. Li).
Citation:
Yue Jin, Kun Dai, Lu Song, Xiaolei Zuo, Guangbao Yao, Min Li. Valence-programmed RNA origami for potent innate immune activation[J]. Chinese Chemical Letters,
;2025, 36(10): 110744.
doi:
10.1016/j.cclet.2024.110744
E. Benson, A. Mohammed, J. Gardell, et al., Nature 523 (2015) 441–444.
doi: 10.1038/nature14586
H. Dietz, S.M. Douglas, W.M. Shih, Science 325 (2009) 725–730.
doi: 10.1126/science.1174251
R. Veneziano, S. Ratanalert, K. Zhang, et al., Science 352 (2016) 1534.
doi: 10.1126/science.aaf4388
F. Hong, F. Zhang, Y. Liu, H. Yan, Chem. Rev. 117 (2017) 12584–12640.
doi: 10.1021/acs.chemrev.6b00825
F. Ricci, H. Dietz, Nat. Nanotechnol. 18 (2023) 541–542.
doi: 10.1038/s41565-023-01362-x
P. Guo, Nat. Nanotechnol. 5 (2010) 833–842.
doi: 10.1038/nnano.2010.231
M. Hu, C. Feng, Q. Yuan, et al., Nat. Commun. 14 (2023) 1307.
doi: 10.1038/s41467-023-37020-y
Z. Ge, J. Liu, L. Guo, et al., J. Am. Chem. Soc. 142 (2020) 8800–8808.
doi: 10.1021/jacs.0c01580
X. Qi, X. Liu, L. Matiski, et al., ACS Nano 14 (2020) 4727–4740.
doi: 10.1021/acsnano.0c00602
P. Guo, C. Zhang, C. Chen, K. Garver, M. Trottier, Mol. Cell 2 (1998) 149–155.
doi: 10.1016/S1097-2765(00)80124-0
E. Westhof, B. Masquida, L. Jaeger, Fold. Des. 1 (1996) R78–R88.
doi: 10.1016/S1359-0278(96)00037-5
E.F. Khisamutdinov, D.L. Jasinski, P. Guo, ACS. Nano 8 (2014) 4771–4781.
doi: 10.1021/nn5006254
K.A. Afonin, E. Bindewald, A.J. Yaghoubian, et al., Nat. Nanotechnol. 5 (2010) 676–682.
doi: 10.1038/nnano.2010.160
L. Nasalean, S. Baudrey, N.B. Leontis, L. Jaeger, Nucleic. Acids. Res. 34 (2006) 1381–1392.
doi: 10.1093/nar/gkl008
I.V. Novikova, B.H. Hassan, M.G. Mirzoyan, N.B. Leontis, Nucleic. Acids. Res. 39 (2011) 2903–2917.
doi: 10.1093/nar/gkq1231
D. Shu, Y. Shu, F. Haque, S. Abdelmawla, P. Guo, Nat. Nanotechnol. 6 (2011) 658–667.
doi: 10.1038/nnano.2011.105
L. Ponchon, F. Dardel, Nat. Methods 4 (2007) 571–576.
doi: 10.1038/nmeth1058
I. Severcan, C. Geary, A. Chworos, et al., Nat. Chem. 2 (2010) 772–779.
doi: 10.1038/nchem.733
C. Chen, C. Zhang, P. Guo, RNA 5 (1999) 805–818.
doi: 10.1017/S1355838299990350
C. Geary, A. Chworos, L. Jaeger, Nucleic Acids Res. 39 (2011) 1066–1080.
doi: 10.1093/nar/gkq748
W.W. Grabow, P. Zakrevsky, K.A. Afonin, et al., Nano Lett. 11 (2011) 878–887.
doi: 10.1021/nl104271s
D. Shu, W.D. Moll, Z. Deng, C. Mao, P. Guo, Nano Lett. 4 (2004) 1717–1723.
doi: 10.1021/nl0494497
Y. Shu, D. Shu, F. Haque, P. Guo, Nat. Protoc. 8 (2013) 1635–1659.
doi: 10.1038/nprot.2013.097
H. Ohno, T. Kobayashi, R. Kabata, et al., Nat. Nanotechnol. 6 (2011) 116–120.
doi: 10.1038/nnano.2010.268
D. Han, X. Qi, C. Myhrvold, et al., Science 358 (2017) eaao2648.
doi: 10.1126/science.aao2648
W.M. Shih, J.D. Quispe, G.F. Joyce, Nature 427 (2004) 618–621.
doi: 10.1038/nature02307
C. Lin, M. Xie, J.J. Chen, Y. Liu, H. Yan, Angew. Chem. Int. Ed. 45 (2006) 7537–7539.
doi: 10.1002/anie.200602113
C. Geary, P.W. Rothemund, E.S. Andersen, Science 345 (2014) 799–804.
doi: 10.1126/science.1253920
C. Lin, S. Rinker, X. Wang, et al., Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 17626–17631.
doi: 10.1073/pnas.0805416105
C. Ducani, C. Kaul, M. Moche, W.M. Shih, B. Hogberg, Nat. Methods 10 (2013) 647–652.
doi: 10.1038/nmeth.2503
C. Geary, G. Grossi, E.K.S. McRae, P.W.K. Rothemund, E.S. Andersen, Nat. Chem. 13 (2021) 549–558.
doi: 10.1038/s41557-021-00679-1
T. Yip, X. Qi, H. Yan, Y. Chang, ACS. Nano 18 (2024) 4056–4067.
doi: 10.1021/acsnano.3c07284
J.A. Kretzmann, A. Liedl, A. Monferrer, et al., Nat. Commun. 14 (2023) 1017.
doi: 10.1038/s41467-023-36601-1
A. Krissanaprasit, C. Key, M. Fergione, et al., Adv. Mater. 31 (2019) e1808262.
doi: 10.1002/adma.201808262
E.K.S. McRae, H.O. Rasmussen, J. Liu, et al., Nat. Nanotechnol. 18 (2023) 808–817.
doi: 10.1038/s41565-023-01321-6
M.D.E. Jepsen, S.M. Sparvath, T.B. Nielsen, et al., Nat. Commun. 9 (2018) 18.
doi: 10.1038/s41467-017-02435-x
K. Dai, Y. Xu, Y. Yang, et al., J. Am. Chem. Soc. 145 (2023) 17112–17124.
doi: 10.1021/jacs.3c03477
N.Sampedro Vallina, E.K.S. McRae, B.K. Hansen, A. Boussebayle, E.S. Andersen, Nucleic. Acids. Res. 51 (2023) 4613–4624.
doi: 10.1093/nar/gkad224
M.L. Mansfield, Nat. Struct. Biol. 1 (1994) 213–214.
doi: 10.1038/nsb0494-213
W.R. Taylor, Nature 406 (2000) 916–919.
doi: 10.1038/35022623
J.R. Wagner, J.S. Brunzelle, K.T. Forest, R.D. Vierstra, Nature 438 (2005) 325–331.
doi: 10.1038/nature04118
J. Hahn, S.F. Wickham, W.M. Shih, S.D. Perrault, ACS. Nano 8 (2014) 8765–8775.
doi: 10.1021/nn503513p
A.R. Chandrasekaran, J. Vilcapoma, P. Dey, et al., J. Am. Chem. Soc. 142 (2020) 6814–6821.
doi: 10.1021/jacs.0c02211
S. Guo, H. Li, M. Ma, et al., Mol. Ther. Nucleic. Acids 9 (2017) 399–408.
doi: 10.1016/j.omtn.2017.10.010
M. Shanmugasundaram, A. Senthilvelan, A.R. Kore, Chem. Rec. 22 (2022) e202200005.
doi: 10.1002/tcr.202200005
E.L. Blanchard, D. Vanover, S.S. Bawage, et al., Nat. Biotechnol. 39 (2021) 717–726.
doi: 10.1038/s41587-021-00822-w
A. Amiri, R. Bagherifar, E.Ansari Dezfouli, et al., J. Transl. Med. 20 (2022) 125.
doi: 10.1007/s10799-021-00348-2
R.L. Juliano, X. Ming, K. Carver, B. Laing, Nucleic Acid Ther. 24 (2014) 101–113.
doi: 10.1089/nat.2013.0463
R. Juliano, M.R. Alam, V. Dixit, H. Kang, Nucleic Acids Res. 36 (2008) 4158–4171.
doi: 10.1093/nar/gkn342
M. Schlee, G. Hartmann, Nat. Rev. Immunol. 16 (2016) 566–580.
doi: 10.1038/nri.2016.78
L. Alexopoulou, A.C. Holt, R. Medzhitov, R.A. Flavell, Nature 413 (2001) 732–738.
doi: 10.1038/35099560
S.S. Diebold, T. Kaisho, H. Hemmi, S. Akira, C. Reis e Sousa, Science 303 (2004) 1529–1531.
doi: 10.1126/science.1093616
F. Heil, H. Hemmi, H. Hochrein, et al., Science 303 (2004) 1526–1529.
doi: 10.1126/science.1093620
H. Hemmi, O. Takeuchi, T. Kawai, et al., Nature 408 (2000) 740–745.
doi: 10.1038/35047123
E. Hong, J.R. Halman, A.B. Shah, et al., Nano Lett. 18 (2018) 4309–4321.
doi: 10.1021/acs.nanolett.8b01283
M. Matsumoto, M. Tatematsu, F. Nishikawa, et al., Nat. Commun. 6 (2015) 6280.
doi: 10.1038/ncomms7280
R. Veneziano, T.J. Moyer, M.B. Stone, et al., Nat. Nanotechnol. 15 (2020) 716–723.
doi: 10.1038/s41565-020-0719-0
Y.C. Zeng, O.J. Young, C.M. Wintersinger, et al., Nat. Nanotechnol. 19 (2024) 1055–1065.
doi: 10.1038/s41565-024-01615-3
J. Spratt, J.M. Dias, C. Kolonelou, et al., Nat. Nanotechnol. 19 (2024) 237–245.
doi: 10.1038/s41565-023-01507-y
Huiping Shi , Shaojun Peng , Minghui Yang , Yuanyu Huang . Engineering circular RNA with Tetrahymena group Ⅰ intron ribozyme. Chinese Chemical Letters, 2025, 36(9): 111160-. doi: 10.1016/j.cclet.2025.111160
Yongjuan Li , Rongrong Zhu , Yichen Guo , Yayun Wang , Rong Ma , Kunru Ma , Yongxing Zhao , Weijing Yang . Sequential-gated transformable nanoprodrug potentiates antitumor immunity through TME modulation and STING activation. Chinese Chemical Letters, 2025, 36(9): 110704-. doi: 10.1016/j.cclet.2024.110704
Jun Xiong , Ke-Ke Chen , Neng-Bin Xie , Wei Chen , Wen-Xuan Shao , Tong-Tong Ji , Si-Yu Yu , Yu-Qi Feng , Bi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
Yan Liu , Yang Wang , Jiayi Zhu , Xuxian Su , Xudong Lin , Liang Xu , Xiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427
Keqiang Shi , Xiujuan Hong , Dongyan Xu , Tao Pan , Huiwen Wang , Hongru Feng , Cheng Guo , Yuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079
Hyoseok Kim , Changyi Cui , Kohei Toh , Genyir Ado , Tetsuya Ogawa , Yixin Zhang , Shin-ichi Sato , Yong-Beom Lim , Hiroki Kurata , Lu Zhou , Motonari Uesugi . Discovery of a self-assembling small molecule that sequesters RNA-binding proteins. Chinese Chemical Letters, 2025, 36(5): 110135-. doi: 10.1016/j.cclet.2024.110135
Zhe Li , Haozhi Lei , Zhiqiang Ren , Cheng Wang , Qian Xia , Weihong Tan . Enhancing the stability of 68Ga-labeled RNA aptamers for pancreatic β-cell and insulinoma imaging through nucleoside modifications. Chinese Chemical Letters, 2025, 36(10): 110804-. doi: 10.1016/j.cclet.2024.110804
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
Fanjun Kong , Jing Zhang , Yuting Tang , Chencheng Sun , Chunfu Lin , Tao Zhang , Wangsheng Chu , Li Song , Liang Zhang , Shi Tao . Introducing high-valence element into P2-type layered cathode material for high-rate sodium-ion batteries. Chinese Chemical Letters, 2025, 36(8): 110993-. doi: 10.1016/j.cclet.2025.110993
Haiyan Yin , Abdusalam Ablez , Zhuangzhuang Wang , Weian Li , Yanqi Wang , Qianqian Hu , Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Jing Zhang , Charles Wang , Yaoyao Zhang , Haining Xia , Yujuan Wang , Kun Ma , Junfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
Yuanpeng Ye , Longfei Yao , Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460
Na Wang , Wang Luo , Huaiyi Shen , Huakai Li , Zejiang Xu , Zhiyuan Yue , Chao Shi , Hengyun Ye , Leping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
Wu-Jian Long , Yang Yu , Chuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943