Hierarchical self-assembly of fluorinated poly-N-heterocyclic carbene pillarplexes with anions
-
* Corresponding author.
E-mail address: yfhan@nwu.edu.cn (Y.-F. Han).
Citation:
Ming-Ming Gan, Zi-En Zhang, Xin Li, F. Ekkehardt Hahn, Ying-Feng Han. Hierarchical self-assembly of fluorinated poly-N-heterocyclic carbene pillarplexes with anions[J]. Chinese Chemical Letters,
;2025, 36(10): 110624.
doi:
10.1016/j.cclet.2024.110624
N. Sinha, F.E. Hahn, Acc. Chem. Res. 50 (2017) 2167–2184.
doi: 10.1021/acs.accounts.7b00158
M.M. Gan, J.Q. Liu, L. Zhang, et al., Chem. Rev. 118 (2018) 9587–9641.
doi: 10.1021/acs.chemrev.8b00119
S. Ibáñez, M. Poyatos, E. Peris, Acc. Chem. Res. 53 (2020) 1401–1413.
doi: 10.1021/acs.accounts.0c00312
Y. Li, J.G. Yu, L.L. Ma, et al., Sci. China Chem. 64 (2021) 701–718.
doi: 10.1007/s11426-020-9937-4
R. Banerjee, D. Chakraborty, P.S. Mukherjee, J. Am. Chem. Soc. 145 (2023) 7692–7711.
doi: 10.1021/jacs.3c01084
Q. Chai, L. Duan, Y. Ma, T. Hou, T. Tu, Sci. China Chem. 67 (2024) 1510–1523.
doi: 10.1007/s11426-023-1919-2
S. Ibáñez, P. Salvà, L.N. Dawe, E. Peris, Angew. Chem. Int. Ed. 63 (2024) e202318829.
doi: 10.1002/anie.202318829
D. Wang, B. Zhang, C. He, P. Wu, C. Duan, Chem. Commun. 46 (2010) 4728–4730.
doi: 10.1039/c000793e
P.J. Altmann, A. Pöthig, J. Am. Chem. Soc. 138 (2016) 13171–13174.
doi: 10.1021/jacs.6b08571
P.J. Altmann, D.T. Weiss, C. Jandl, F. Kühn, Chem. Asian J. 11 (2016) 1597–1605.
doi: 10.1002/asia.201600198
P.J. Altmann, A. Pöthig, Angew. Chem. Int. Ed. 56 (2017) 15733–15736.
doi: 10.1002/anie.201709921
K. Hua, X. Li, Y.F. Han, J. Organomet. Chem. 917 (2020) 121250.
doi: 10.1016/j.jorganchem.2020.121250
T. Liu, S. Bai, L. Zhang, F.E. Hahn, Y.F. Han, Natl. Sci. Rev. 9 (2022) nwac067.
doi: 10.1093/nsr/nwac067
S. Rupp, P.D. Dutschke, J. Kinas, A. Hepp, F.E. Hahn, Eur. J. Inorg. Chem. 2022 (2022) e202200216.
A.A. Heidecker, M. Stasi, A. Spears, J. Boekhoven, A. Pöthig, ChemPlusChem 88 (2023) e202300234.
doi: 10.1002/cplu.202300234
Y. Wang, J.P. Chang, R. Xu, et al., Chem. Soc. Rev. 50 (2021) 13559–13586.
doi: 10.1039/d1cs00296a
K. Reichenbächer, H.I. Süss, J. Hulliger, Chem. Soc. Rev. 34 (2005) 22–30.
doi: 10.1039/B406892K
R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger, Chem. Soc. Rev. 40 (2011) 3496–3508.
doi: 10.1039/c0cs00221f
A.E. Amooghin, H. Sanaeepur, R. Luque, H. Garcia, B. Chen, Chem. Soc. Rev. 51 (2022) 7427–7508.
doi: 10.1039/D2CS00442A
S. Niu, L.L. Mao, H. Xiao, et al., Chin. Chem. Lett. 33 (2022) 1970–1974.
doi: 10.1016/j.cclet.2021.09.090
K. Sato, Langmuir 40 (2024) 2809–2814.
doi: 10.1021/acs.langmuir.3c03665
D.C. Masison, R.B. Wickner, Science 270 (1995) 93–95.
doi: 10.1126/science.270.5233.93
I.B. Hilton, A.M. D'Ippolito, C.M. Vockley, et al., Nat. Biotechnol. 33 (2015) 510–517.
doi: 10.1038/nbt.3199
C. Rest, R. Kandanelli, G. Fernández, Chem. Soc. Rev. 44 (2015) 2543–2572.
doi: 10.1039/C4CS00497C
D.B. Amabilino, D.K. Smith, J.W. Steed, Chem. Soc. Rev. 46 (2017) 2404–2420.
doi: 10.1039/C7CS00163K
S. Datta, M.L. Saha, P.J. Stang, Acc. Chem. Res. 51 (2018) 2047–2063.
doi: 10.1021/acs.accounts.8b00233
M.B. Avinash, T. Govindaraju, Acc. Chem. Res. 51 (2018) 414–426.
doi: 10.1021/acs.accounts.7b00434
S. Chakraborty, G. Newkome, Chem. Soc. Rev. 47 (2018) 3991–4016.
doi: 10.1039/c8cs00030a
J.M. Cameron, G. Guillemot, T. Galambos, et al., Chem. Soc. Rev. 51 (2022) 293–328.
doi: 10.1039/d1cs00832c
W. Fang, Y. Zhang, J. Wu, et al., Chem. Asian J. 13 (2018) 712–729.
doi: 10.1002/asia.201800017
B. Jiang, L.J. Chen, Y. Zhang, et al., Chin. Chem. Lett. 27 (2016) 607–612.
doi: 10.1016/j.cclet.2016.03.017
Z. Sun, P. Li, S. Xu, et al., J. Am. Chem. Soc. 142 (2020) 10833–10840.
doi: 10.1021/jacs.0c03330
S.C. Wang, K.Y. Cheng, J.H. Fu, Y.C. Cheng, Y.T. Chan, J. Am. Chem. Soc. 142 (2020) 16661–16667.
doi: 10.1021/jacs.0c06618
L. He, S.C. Wang, L.T. Lin, et al., J. Am. Chem. Soc. 142 (2020) 7134–7144.
doi: 10.1021/jacs.0c01482
H. Wang, K. Wang, Y. Xu, et al., J. Am. Chem. Soc. 143 (2021) 5826–5835.
doi: 10.1021/jacs.1c00625
Z. Yang, N. Zhang, L. Lei, et al., JACS Au 2 (2022) 819–826.
doi: 10.1021/jacsau.1c00556
G. Wu, F. Li, B. Tang, X. Zhang, J. Am. Chem. Soc. 144 (2022) 14962–14975.
doi: 10.1021/jacs.2c02434
Y. He, D. Luo, V.M. Lynch, et al., Chem 9 (2023) 93–101.
doi: 10.1117/12.3009523
Q.S. Mu, X. Gao, Z. Cui, Y.J. Lin, G.X. Jin, Sci. China Chem. 66 (2023) 2885–2891.
doi: 10.1007/s11426-023-1675-0
Z. Zhang, X. Hu, S. Qiu, et al., J. Am. Chem. Soc. 146 (2024) 11328–11341.
doi: 10.1021/acs.jpclett.4c02383
Z. Zhang, B. Mu, X. Miao, et al., Chem 10 (2024) 1279–1294.
doi: 10.1016/j.chempr.2024.01.026
X. Zhang, D. Zhang, C. Wei, et al., Nat. Commun. 15 (2024) 3766.
doi: 10.1038/s41467-024-48135-1
M. Li, H. Zhu, S. Adorinni, et al., Angew. Chem. Int. Ed. 63 (2024) e202406909.
doi: 10.1002/anie.202406909
H.N. Zhang, G.X. Jin, Angew. Chem. Int. Ed. 62 (2024) e202313605.
H.Y. Gong, B.M. Rambo, E. Karnas, V.M. Lynch, J.L. Sessler, Nat. Chem. 2 (2010) 406–409.
doi: 10.1038/nchem.597
H.Y. Gong, B.M. Rambo, E. Karnas, et al., J. Am. Chem. Soc. 133 (2011) 1526–1533.
doi: 10.1021/ja109102k
W. Zhao, A.H. Flood, N.G. White, Chem. Soc. Rev. 49 (2020) 7893–7906.
doi: 10.1039/d0cs00486c
G.L. Li, Z. Zhuo, B. Wang, et al., J. Am. Chem. Soc. 143 (2021) 10920–10929.
doi: 10.1021/jacs.1c01161
Y. Huang, R.H. Gao, M. Liu, et al., Angew. Chem. Int. Ed. 60 (2021) 15166–15191.
doi: 10.1002/anie.202002666
X. Chi, J. Tian, D. Luo, et al., Molecules 26 (2021) 2426.
doi: 10.3390/molecules26092426
X.Q. Guo, L.P. Zhou, S.J. Hu, et al., J. Am. Chem. Soc. 143 (2021) 6202–6210.
doi: 10.1021/jacs.1c01168
Y. Gao, J. Zhao, Z. Huang, et al., Angew. Chem. Int. Ed. 61 (2022) e202201793.
doi: 10.1002/anie.202201793
Q. Bai, Y.M. Guan, T. Wu, et al., Angew. Chem. Int. Ed. 62 (2023) e202309027.
doi: 10.1002/anie.202309027
Y. Chun, N.J. Singh, I.C. Hwang, et al., Nat. Commun. 4 (2013) 1797.
doi: 10.1038/ncomms2758
L. Zhang, L.Y. Sun, J.P. Chang, et al., Chin. Chem. Lett. 33 (2022) 4567–4571.
doi: 10.1016/j.cclet.2022.01.064
F.L. Hirshfeld, Theor. Chim. Acta 44 (1977) 129–138.
doi: 10.1007/BF00549096
P.R. Spackman, M.J. Turner, J.J. McKinnon, et al., J. Appl. Cryst. 54 (2021) 1006–1011.
doi: 10.1107/s1600576721002910
B.L. Sibanda, J.M. Thornton, Nature 316 (1985) 170–174.
doi: 10.1038/316170a0
P. Wei, X. Yan, T.R. Cook, et al., ACS Macro Lett. 5 (2016) 671–675.
doi: 10.1021/acsmacrolett.6b00286
Z.E. Zhang, Y.F. Zhang, Y.Z. Zhang, et al., J. Am. Chem. Soc. 145 (2023) 7446–7453.
doi: 10.1021/jacs.3c00024
Z.E. Zhang, Y.Y. An, B. Zheng, J.P. Chang, Y.F. Han, Sci. China Chem. 64 (2021) 1177–1183.
doi: 10.1007/s11426-021-9977-5
K. Kakhiani, U. Lourderaj, W. Hu, D. Birney, W.L. Hase, J. Phys. Chem. A 113 (2009) 4570–4580.
doi: 10.1021/jp811208g
Zhao Gu , Yunhui Yang , Song Ye , Congyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334
Kun Tang , Fen Su , Shijie Pan , Fengfei Lu , Zhongfu Luo , Fengrui Che , Xingxing Wu , Yonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495
Lingyun Shen , Shenxiang Yin , Qingshu Zheng , Zheming Sun , Wei Wang , Tao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Xingwen Cheng , Haoran Ren , Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306
Le Zhang , Hui-Yu Xie , Xin Li , Li-Ying Sun , Ying-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465
Wenlong Li , Feishi Shan , Qingdong Bao , Qinghua Li , Hua Gao , Leyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060
Chen-Chang Cui , Shao-Qing Shi , Lu-Yao Wang , Feng Lin , Man-Su Tu , Wen-Juan Hao , Bo Jiang . Accessing polyarene-fused ten-membered lactams via oxidative N-heterocyclic carbene (NHC)-catalyzed high-order [7 + 3] annulation. Chinese Chemical Letters, 2025, 36(6): 110541-. doi: 10.1016/j.cclet.2024.110541
Zhu Shu , Xin Lei , Yeye Ai , Ke Shao , Jianliang Shen , Zhegang Huang , Yongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
Ran Cen , Yan-Yan Tang , Li-Xia Chen , Zhu Tao , Xin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744
Kun Zhang , Xin-Yue Lou , Yan Wang , Weiwei Huan , Ying-Wei Yang . Emission enhancement induced by the supramolecular assembly of leggero pillar[5]arenes for the detection and separation of silver ions. Chinese Chemical Letters, 2025, 36(6): 110464-. doi: 10.1016/j.cclet.2024.110464
Shengyong Liu , Hui Li , Wei Zhang , Yan Zhang , Yan Dong , Wei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Xiangjun Zhang , Xiaodi Yang , Yan Wang , Zhongping Xu , Sisi Yi , Tao Guo , Yue Liao , Xiyu Tang , Jianxiang Zhang , Ruibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Fadeng Yang , Pengli Zhang , Jianbo Liu , Chuan Wan , Jinming Sun , Chuan Dai , Zhihong Liu , Yuhao An , Yujie Wu , Yun Xing , Feng Yin , Yuxin Ye , Wei Han , Zigang Li . Self-assembly of a cyclo-pentapeptide with a novel frame structure. Chinese Chemical Letters, 2025, 36(9): 110785-. doi: 10.1016/j.cclet.2024.110785
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
Xinguo Mao , Shuo Zhang , Qiang Shi , Hua Cheng , Leyong Wang . Macrocyclic host molecules: Rising as a promising supramolecular material. Chinese Chemical Letters, 2025, 36(6): 110950-. doi: 10.1016/j.cclet.2025.110950