Citation: Junyi Yu, Yin Cheng, Anhong Cai, Xianfeng Huang, Qingrui Zhang. Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes[J]. Chinese Chemical Letters, ;2025, 36(2): 110549. doi: 10.1016/j.cclet.2024.110549 shu

Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes

    * Corresponding authors.
    E-mail addresses: xianfeng_huang@wzu.edu.cn (X. Huang), zhangqr@ysu.edu.cn (Q. Zhang).
  • Received Date: 8 January 2024
    Revised Date: 11 October 2024
    Accepted Date: 13 October 2024
    Available Online: 14 October 2024

Figures(6)

  • Herein, the Cu(Ⅲ) synthesized from copper plating effluent was developed for the first time to evaluate the onsite degradation performance of heavy metal complexes in the wastewater, thus achieving the purpose of "treating waste with waste". The results indicated that synthetic Cu(Ⅲ) presented the excellent decomplexation performance for Cu(Ⅱ)/Ni(Ⅱ)-organic complexes. The removal efficiency of Cu(Ⅱ)/Ni(Ⅱ)-EDTA significantly increased with increasing Cu(Ⅲ) dosage, and the degradation of Cu(Ⅱ)/Ni(Ⅱ)-EDTA by synthetic Cu(Ⅲ) system displayed highly pH-dependent reactivity. The radical quencher experiments confirmed that Cu(Ⅲ) direct oxidation were mainly involved in the degradation of Cu(Ⅱ)-EDTA. Additionally, the continuous decarboxylation process was proven to be the main degradation pathway of Cu(Ⅱ)-EDTA in Cu(Ⅲ) system. The coexisting substances (SO42−, Cl and fulvic acids) showed little impacts at low level for the removal of Cu(Ⅱ)/Ni(Ⅱ)-EDTA, while retarded the degradation of Cu(Ⅱ)-EDTA slightly at high level, which features high selective oxidation. Encouragingly, it was also effective to remove Cu(Ⅱ)/Ni(Ⅱ)-EDTA from in treating actual Cu/Ni-containing wastewater through synthetic Cu(Ⅲ) treatment.
  • 加载中
    1. [1]

      D. Yuan, C. Zhang, S. Tang, et al., Chin. Chem. Lett. 32 (2021) 3387–3392.

    2. [2]

      Y. Ye, P. Yang, Y. Deng, et al., Chin. Chem. Lett. 33 (2022) 3127–3132.

    3. [3]

      Z. Xu, Q. Zhang, X.C. Li, X.F. Huang, Chem. Eng. J. 429 (2022) 131688.

    4. [4]

      L. Song, S. Jing, Y. Qiu, F. Liu, A. Li, Chin. Chem. Lett. 34 (2023) 107180.

    5. [5]

      S. Wang, M.R. Razanajatovo, X. Du, et al., Chin. Chem. Lett. 35 (2024) 109140.

    6. [6]

      L. Zhang, B. Wu, G. Zhang, Y. Gan, S. Zhang, Chem. Eng. J. 358 (2019) 1218–1226.

    7. [7]

      J. Du, B. Zhang, J. Li, B. Lai, Chin. Chem. Lett. 31 (2020) 2575–2582.

    8. [8]

      H. Tian, X. Wang, R. Pan, et al., Environ. Sci. Pollut. Res. 30 (2023) 62733–62743.  doi: 10.1007/s11356-023-26594-1

    9. [9]

      J. Zhao, X. Hu, L. Kong, X. Peng, J. Hazard. Mater. 465 (2024) 133131.

    10. [10]

      X. Huang, X. Wang, D.X. Guan, et al., Environ. Sci. Pollut. Res. 26 (2019) 8516–8524.  doi: 10.1007/s11356-018-04091-0

    11. [11]

      C. Chen, A. Chen, X. Huang, et al., J. Clean. Prod. 298 (2021) 126837.

    12. [12]

      B. Thalmann, U. von Gunten, R. Kaegi, Water Res. 134 (2018) 170–180.

    13. [13]

      L. Wu, S. Garg, J. Xie, et al., Environ. Sci. Technol. 57 (2023) 12476–12488.  doi: 10.1021/acs.est.3c02550

    14. [14]

      C. Chen, P. Liu, Y. Li, et al., Water Res. 218 (2022) 118502.

    15. [15]

      J. Du, T.D. Waite, P.M. Biesheuvel, W. Tang, J. Hazard. Mater. 442 (2023) 130023.

    16. [16]

      Y. Liu, J. Li, B. Zhou, et al., Environ. Chem. Lett. 7 (2009) 363–368.  doi: 10.1007/s10311-008-0180-z

    17. [17]

      Z. Xu, C. Shan, B. Xie, Y. Liu, B. Pan, Appl. Catal. B 200 (2017) 439–447.

    18. [18]

      S. Lan, Y. Xiong, S. Tian, J. Feng, T. Xie, Appl. Catal. B 183 (2016) 371–376.

    19. [19]

      Z. Wang, J. Li, W. Song, X. Zhang, J. Song, Water Sci. Technol. 79 (2019) 589–596.  doi: 10.2166/wcc.2018.167

    20. [20]

      C. Durante, A.A. Isse, G. Sandona, A. Gennaro, Chemosphere 78 (2010) 620–625.

    21. [21]

      Z. Yang, J. Qian, C. Shan, et al., Environ. Sci. Technol. 55 (2021) 14494–14514.  doi: 10.1021/acs.est.1c05862

    22. [22]

      M. Li, S. You, X. Duan, Y. Liu, Appl. Catal. B 312 (2022) 121419.

    23. [23]

      J. Li, A.N. Pham, R. Dai, Z. Wang, T.D. Waite, J. Hazard. Mater. 392 (2020) 122261.

    24. [24]

      F.E.K. Okaikue-Woodi, J.R. Ray, J. Mater. Chem. A 11 (2023) 13552–13563.  doi: 10.1039/d3ta01950k

    25. [25]

      S. Li, R. Zheng, Y. Zhou, et al., ACS ES&T Water 3 (2023) 488–499.

    26. [26]

      Y. Wang, Y. Wu, Y. Yu, et al., Water Res. 186 (2020) 116326.

    27. [27]

      S. Sun, C. Shan, Z. Yang, S. Wang, B. Pan, Environ. Sci. Technol. 56 (2021) 634–641.

    28. [28]

      C. Li, V. Goetz, S. Chiron, J. Environ. Chem. Eng. 9 (2021) 105145.

    29. [29]

      Y. Feng, W. Qing, L. Kong, et al., Water Res. 149 (2019) 1–8.

    30. [30]

      J. Chen, X. Zhou, P. Sun, Y. Zhang, C.H. Huang, Environ. Sci. Technol. 53 (2019) 11774–11782.  doi: 10.1021/acs.est.9b03873

    31. [31]

      K. McCann, D.M. Brigham, S. Morrison, J.C. Braley, Inorg. Chem. 55 (2016) 11971–11978.  doi: 10.1021/acs.inorgchem.6b02120

    32. [32]

      J.S.D. Jeremias, J.Y. Lin, M.L.P. Dalida, M.C. Lu, J. Environ. Chem. Eng. 11 (2023) 109336.

    33. [33]

      C. Ling, Y. Zhao, Z. Ren, et al., Chin. Chem. Lett. 30 (2019) 2196–2200.

    34. [34]

      J. Yu, W. Deng, X. Huang, et al., J. Hazard. Mater. 465 (2024) 133521.

    35. [35]

      M.C. Collivignarelli, A. Abbà, M. Bestetti, B.M. Crotti, M.C. Miino, Water Air Soil Pollut. 230 (2019) 101.

    36. [36]

      D. Chen, C. Zhang, H. Rong, M. Zhao, S. Gou, Sep. Purif. Technol. 234 (2020) 116043.

    37. [37]

      G.V. Buxton, Q.G. Mulazzani, A.B. Ross, J. Phys. Chem. Ref. Data 24 (1995) 1055–1349.  doi: 10.1063/1.555966

    38. [38]

      Z. Wang, Q. Liu, F. Yang, et al., Environ. Int. 132 (2019) 105128.

    39. [39]

      X. Huang, Y. Wang, X. Li, et al., Environ. Sci. Technol. 53 (2019) 2036–2044.  doi: 10.1021/acs.est.8b05346

    40. [40]

      Y. Deng, A.D. Handoko, Y. Du, S. Xi, B.S. Yeo, ACS Catal. 6 (2016) 2473–2481.  doi: 10.1021/acscatal.6b00205

    41. [41]

      Q. Zhao, X. Zhang, D. Huang, et al., Chemosphere 284 (2021) 131329.

    42. [42]

      D.G. Brown, U. Weser, Inorg. Chem. 19 (1980) 264–266.  doi: 10.1021/ic50203a055

    43. [43]

      L. Wang, H. Xu, N. Jiang, et al., Environ. Sci. Technol. 54 (2020) 4686–4694.  doi: 10.1021/acs.est.0c00284

    44. [44]

      N. Li, T. Liu, S. Xiao, et al., J. Hazard. Mater. 445 (2023) 130536.

    45. [45]

      T. Wang, H. Zhang, A. Cai, et al., J. Environ. Manag. 370 (2024) 122798.

    46. [46]

      M. Deborde, U. Von Gunten, Water Res. 42 (2008) 13–51.

    47. [47]

      Y. Liu, Y. Yang, A. Li, et al., Appl. Catal. B 345 (2024) 123717.

    48. [48]

      Z. Guan, Y. Guo, Z. Huang, et al., Chem. Eng. J. 428 (2022) 131250.

  • 加载中
    1. [1]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    2. [2]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    3. [3]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    4. [4]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    5. [5]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    6. [6]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    7. [7]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    8. [8]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    9. [9]

      Feng-Fan YangYin-Kang DingLin-Kai WuJiayue TianShuai DouWenjing WangLinfeng Liang . A 1,3,5-triazine μ3-bridged neutral Cu(Ⅰ) framework with enhanced stability and CO2 capture selectivity. Chinese Chemical Letters, 2025, 36(12): 110550-. doi: 10.1016/j.cclet.2024.110550

    10. [10]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    11. [11]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    13. [13]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    14. [14]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    15. [15]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    16. [16]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    17. [17]

      Shuang MaGuangying WanZhuoying YanXuecheng LiuTiezhu ChenXinmin WangJinhang DaiJuan LinTiefeng LiuXingxing Gu . Eco-friendly aqueous binder derived from waste ramie for high-performance Li-S battery. Chinese Chemical Letters, 2025, 36(5): 109853-. doi: 10.1016/j.cclet.2024.109853

    18. [18]

      Zhaoyu JinRenjun GuanXin LiDunyi YuanPanpan Li . Advanced characterization techniques for understanding electrocatalytic behavior of oxidized nitrogen waste upcycling processes. Chinese Chemical Letters, 2025, 36(7): 110506-. doi: 10.1016/j.cclet.2024.110506

    19. [19]

      Xinwen LiLili LiJunqiu JiangWangyang MeiZhaoxia WangQingwei GaoHuimin ZhouLiangliang WeiQingliang Zhao . Seeking breakthroughs in advanced oxidation processes for waste activated sludge dewatering: A critical review of developments, bibliometrics and sustainable solutions. Chinese Chemical Letters, 2025, 36(11): 110847-. doi: 10.1016/j.cclet.2025.110847

    20. [20]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

Metrics
  • PDF Downloads(3)
  • Abstract views(1141)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return