Enhanced removal of polystyrene nanoplastics by air flotation modified by dodecyltrimethylammonium chloride: Performance and mechanism
-
* Corresponding author.
E-mail address: zjing428@163.com (J. Zhang).
Citation:
Jinhui Xu, Yanting Zhang, Kecheng Wen, Xinyu Wang, Zhiwei Yang, Yuan Huang, Guozhong Zheng, Lupeng Huang, Jing Zhang. Enhanced removal of polystyrene nanoplastics by air flotation modified by dodecyltrimethylammonium chloride: Performance and mechanism[J]. Chinese Chemical Letters,
;2025, 36(5): 110240.
doi:
10.1016/j.cclet.2024.110240
A.A. Horton, A. Walton, D.J. Spurgeon, et al., Sci. Total Environ. 586 (2017) 127–141.
doi: 10.1016/j.scitotenv.2017.01.190
T. Wang, X. Zou, B. Li, et al., Environ. Pollut. 245 (2019) 965–974.
doi: 10.1016/j.envpol.2018.10.110
S.B. Kurniawan, N.S.M. Said, M.F. Imron, et al., Environ. Technol. Innov. 23 (2021) 101790.
doi: 10.1016/j.eti.2021.101790
K. Duis, A. Coors, Environ. Sci. Eur. 28 (2016) 2.
doi: 10.1186/s12302-015-0069-y
O.S. Alimi, J. Farner Budarz, L.M. Hernandez, et al., Environ. Sci. Technol. 52 (2018) 1704–1724.
doi: 10.1021/acs.est.7b05559
B. Zhang, Q. Wu, S. Gao, et al., Environ. Pollut. 320 (2023) 121076.
doi: 10.1016/j.envpol.2023.121076
A. Yaseen, I. Assad, M.S. Sofi, et al., Environ. Res. 212 (2022) 113258.
doi: 10.1016/j.envres.2022.113258
X. Wang, K. Deng, P. Zhang, et al., Sci. Total Environ. 919 (2024) 170962.
doi: 10.1016/j.scitotenv.2024.170962
H. Ye, Q. Li, J. Li, et al., Chin. Chem. Lett. 36 (2025) 109861.
doi: 10.1016/j.cclet.2024.109861
S.R. Balabantaray, P.K. Singh, A.K. Pandey, et al., Environ. Sci. Pollut. R. 30 (2023) 123039–123054.
doi: 10.1007/s11356-023-30799-9
J.P. Da Costa, P.S.M. Santos, A.C. Duarte, et al., Sci. Total Environ. 566-567 (2016) 15–26.
doi: 10.1016/j.scitotenv.2016.05.041
D.M. Mitrano, P. Wick, B. Nowack, Nat. Nanotechnol. 16 (2021) 491–500.
doi: 10.1038/s41565-021-00888-2
Z. Song, X. Yang, F. Chen, et al., Sci. Total Environ. 669 (2019) 120–128.
doi: 10.1016/j.scitotenv.2019.03.102
M. Shen, Y. Zhang, Y. Zhu, et al., Environ. Pollut. 252 (2019) 511–521.
doi: 10.1016/j.envpol.2019.05.102
S. Dai, R. Ye, J. Huang, et al., J. Nanobiotechnol. 20 (2022) 191.
doi: 10.1186/s12951-022-01321-z
Z. Liu, A. Sokratian, A.M. Duda, et al., Sci. Adv. 9 (2023) i8716.
doi: 10.1126/sciadv.adi8716
A.R. Hammodat, S. Nassar, M.M. Mortula, et al., J. Environ. Manage. 345 (2023) 118779.
doi: 10.1016/j.jenvman.2023.118779
N. Qian, X. Gao, X. Lang, et al., P. Natl. Acad. Sci. U. S. A. 121 (2024) e1994385175.
A.A. Koelmans, N.H. Mohamed Nor, E. Hermsen, et al., Water Res. 155 (2019) 410–422.
doi: 10.1016/j.watres.2019.02.054
D. Pedrero, C. Edo, F. Fernández-Piñas, et al., Sep. Purif. Technol. 333 (2024) 125816.
doi: 10.1016/j.seppur.2023.125816
G. Zhou, X. Huang, H. Xu, et al., Sci. Total Environ. 820 (2022) 153190.
doi: 10.1016/j.scitotenv.2022.153190
H. Jiang, Y. Zhang, K. Bian, et al., Chem. Eng. J. 448 (2022) 137692.
doi: 10.1016/j.cej.2022.137692
J.D. Ladouceur, R.M. Narbaitz, C.Q. Lan, J. Water Process Eng. 56 (2023) 104391.
doi: 10.1016/j.jwpe.2023.104391
J. Hongru, Z. Yingshuang, W. Hui, Environ. Sci. Technol. 54 (2020) 9742–9756.
doi: 10.1021/acs.est.9b07861
O. Kökkılıç, S. Mohammadi-Jam, P. Chu, et al., Adv. Colloid Interfac. 308 (2022) 102769.
doi: 10.1016/j.cis.2022.102769
H. Jiang, J. Bu, K. Bian, et al., Water Res. 233 (2023) 119794.
doi: 10.1016/j.watres.2023.119794
F. Yuan, X. Li, W. Yu, et al., J. Water Process Eng. 49 (2022) 103084.
doi: 10.1016/j.jwpe.2022.103084
B. Swart, A. Pihlajamäki, Y.M. John Chew, et al., Chem. Eng. J. 449 (2022) 137866.
doi: 10.1016/j.cej.2022.137866
Y. Zhang, H. Jiang, K. Bian, et al., Sci. Total Environ. 792 (2021) 148345.
doi: 10.1016/j.scitotenv.2021.148345
C. Oliveira, J. Rubio, Int. J. Miner. Process. 98 (2011) 118–123.
doi: 10.1016/j.minpro.2010.10.006
S. Ye, M. Cheng, G. Zeng, et al., Water Res. 179 (2020) 115876.
doi: 10.1016/j.watres.2020.115876
J. Li, G. Wang, X. Gou, et al., Anal. Chem. 94 (2022) 12657–12663.
doi: 10.1021/acs.analchem.2c01703
M. Zhang, J. Yang, Z. Kang, et al., J. Hazard. Mater. 404 (2021) 124095.
doi: 10.1016/j.jhazmat.2020.124095
B.K. Pramanik, S.K. Pramanik, S. Monira, Chemosphere 282 (2021) 131053.
doi: 10.1016/j.chemosphere.2021.131053
P. Pal, A.G. Corpuz, S.W. Hasan, et al., Chemosphere 273 (2021) 128568.
doi: 10.1016/j.chemosphere.2020.128568
T. Kim, H. Park, M. Han, Civ. Eng. 21 (2017) 2567–2572.
doi: 10.1007/s12205-017-0025-z
Y. Wang, Y. Li, L. Tian, et al., Water Environ. Res. 93 (2021) 693–702.
doi: 10.1002/wer.1352
C. Li, H. Zhang, J. Ind. Eng. Chem. 106 (2022) 37–51.
doi: 10.1016/j.jiec.2021.11.009
M.R. Cordova, A.I.S. Purwiyanto, Y. Suteja, Mar. Pollut. Bull. 142 (2019) 183–188.
doi: 10.1016/j.marpolbul.2019.03.040
S. Liu, J. Wang, Chem. Eng. J. 469 (2023) 143910.
doi: 10.1016/j.cej.2023.143910
Y.S. Ho, G. McKay, Chem. Eng. J. 70 (1998) 115–124.
doi: 10.1016/S0923-0467(98)00076-1
S. Ma, Y. Han, Y. Zhang, et al., J. Mol. Liq. 362 (2022) 119700.
doi: 10.1016/j.molliq.2022.119700
B.P. Bastakoti, S. Guragain, A. Yoneda, Polym. Chem. 1 (2010) 347–353.
doi: 10.1039/B9PY00231F
X. Xing, Y. Zhang, G. Zhou, et al., Sci. Total Environ. 876 (2023) 162763.
doi: 10.1016/j.scitotenv.2023.162763
K. Loganathan, J. Saththasivam, S. Sarp, Desalination 433 (2018) 25–32.
doi: 10.1016/j.desal.2018.01.012
R.K. Henderson, S.A. Parsons, B. Jefferson, Environ. Technol. 31 (2010) 781–790.
doi: 10.1080/09593331003663302
S. Zhao, H. Zhong, G. Liu, J. Cent. South Univ. Technol. 14 (2007) 500–503.
doi: 10.1007/s11771-007-0097-x
Y. Shi, J. Yang, J. Ma, et al., Front. Env. Sci. Eng. 11 (2017) 10.
M. Zhang, P. Guiraud, Water Res. 126 (2017) 399–410.
doi: 10.1016/j.watres.2017.09.051
S. Kam, J. Gregory, Colloid Surf. A 159 (1999) 165–179.
doi: 10.1016/S0927-7757(99)00172-7
Y. Jiang, S. Zhou, J. Fei, et al., Water Res. 215 (2022) 118262.
doi: 10.1016/j.watres.2022.118262
V. Filipe, A. Hawe, W. Jiskoot, Pharm. Res. Dordr. 27 (2010) 796–810.
doi: 10.1007/s11095-010-0073-2
R. Li, Y. Zhou, B. Albijanic, et al., Energ. Fuel 37 (2023) 13673–13685.
doi: 10.1021/acs.energyfuels.3c01703
H. Jiang, Y. Gao, Q. Yang, et al., Powder Technol. 331 (2018) 218–225.
doi: 10.3901/jme.2018.17.218
H. Jiang, Y. Zhang, K. Bian, et al., J. Environ. Chem. Eng. 10 (2022) 107834.
doi: 10.1016/j.jece.2022.107834
H. Wang, C. Wang, J. Fu, Waste Manage. 33 (2013) 2623–2631.
doi: 10.1016/j.wasman.2013.09.003
C. Wang, H. Wang, G. Gu, et al., Waste Manage. 46 (2015) 56–61.
doi: 10.11728/cjss2015.01.056
H. Wang, C. Wang, J. Fu, et al., Waste Manage. 34 (2014) 309–315.
doi: 10.1016/j.wasman.2013.11.007
Y. Zhang, X. Su, N.F.Y. Tam, et al., Chin. Chem. Lett. 33 (2022) 5213–5217.
doi: 10.3390/polym14235213
R.K. Henderson, S.A. Parsons, B. Jefferson, Sep. Sci. Technol. 44 (2009) 1923–1940.
doi: 10.1080/01496390902955628
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Liangbo Zhang , Jun Cheng , Yahui Shi , Kunjie Hou , Qi An , Jingyi Li , Baohui Cui , Fei Chen . Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism. Chinese Chemical Letters, 2025, 36(7): 110400-. doi: 10.1016/j.cclet.2024.110400
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Li Li , Xue Ke , Shan Wang , Zhuo Jiang , Yuzheng Guo , Chunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423
Hui Liu , Baoying Xiao , Yaming Zhao , Wei Wang , Qiong Jia . Adsorption of heavy metals with hyper crosslinked polymers: Progress, challenges and perspectives. Chinese Chemical Letters, 2025, 36(8): 110619-. doi: 10.1016/j.cclet.2024.110619
Meixin Wang , Yizhi Zhang , Shanshan Liu , Xiao Shen . Synthesis of rigidified cyclohexanes enabled by visible-light-induced trifluoroacetylsilane-mediated [2 + 2] cycloaddition of cyclopropenes. Chinese Chemical Letters, 2025, 36(8): 110758-. doi: 10.1016/j.cclet.2024.110758
Tingting Du , Siyu Lu , Zongnan Zhu , Mei Zhu , Yan Zhang , Jian Zhang , Jixiang Chen . Pyrazole derivatives: Recent advances in discovery and development of pesticides. Chinese Chemical Letters, 2025, 36(9): 110912-. doi: 10.1016/j.cclet.2025.110912
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Bowen Song , Chenxu Shi , Yinghao Qu , Hongjun Liu , Hui Yang , Xiaoming Wu , Xijun Liu . The electrical properties and charge transport mechanism of MXenes. Chinese Chemical Letters, 2025, 36(6): 110823-. doi: 10.1016/j.cclet.2025.110823
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Xinyu Hu , Bo Song , Shukai Song , Qinghui Ling , Bangkun Yue , Lianrui Hu , Feifei Wang , Li He , Lin Xu . Development of luminescent metallohelicate as a selective chloride transporter. Chinese Chemical Letters, 2025, 36(12): 110918-. doi: 10.1016/j.cclet.2025.110918
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328