Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet
-
* Corresponding authors.
E-mail addresses: zhaojingxiang@hrbnu.edu.cn (J. Zhao), xpsun@uestc.edu.cn (X. Sun).
Citation:
Yue Zhang, Xiaoya Fan, Xun He, Tingyu Yan, Yongchao Yao, Dongdong Zheng, Jingxiang Zhao, Qinghai Cai, Qian Liu, Luming Li, Wei Chu, Shengjun Sun, Xuping Sun. Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet[J]. Chinese Chemical Letters,
;2024, 35(8): 109806.
doi:
10.1016/j.cclet.2024.109806
S. Kim, S.H. Ye, A. Adamo, et al., J. Mater. Chem. B 8 (2020) 8305–8314.
doi: 10.1039/D0TB01220C
P.M. Glibert, J. Harrison, C. Heil, S. Seitzinger, Biogeochem 77 (2006) 441–463.
doi: 10.1007/s10533-005-3070-5
A. Yapicioglu, I. Dincer, Renew. Sustain. Energy Rev. 103 (2019) 96–108.
doi: 10.1016/j.rser.2018.12.023
F. Barzagli, F. Mani, M. Peruzzini, Green Chem. 13 (2011) 1267–1274.
doi: 10.1039/c0gc00674b
J.G. Chen, R.M. Crooks, L.C. Seefeldt, et al., Science 360 (2018) 6391.
S. Li, Y. Zou, C. Chen, S. Wang, Z.Q. Liu, Chin. Chem. Lett. 35 (2024) 109147.
doi: 10.1016/j.cclet.2023.109147
C. Chen, X. Zhu, X. Wen, et al., Nat. Chem. 12 (2020) 717–724.
doi: 10.1038/s41557-020-0481-9
Y. Huang, Y. Wang, Y. Wu, et al., Sci. China Chem. 65 (2022) 204–206.
doi: 10.1007/s11426-021-1173-8
X. Liu, Y. Jiao, Y. Zheng, et al., Nat. Commun. 13 (2022) 5471.
doi: 10.1038/s41467-022-33258-0
Z. Zhang, D. Li, Y. Tu, et al., SusMat 4 (2024) e193.
X. Fan, C. Liu, X. He, et al., Adv. Mater. (2024), https://doi.org/10.1002/adma.202401221.
doi: 10.1002/adma.202401221
M. Yuan, J. Chen, Y. Bai, et al., Chem. Sci. 12 (2021) 6048–6058.
doi: 10.1039/D1SC01467F
X. Chen, S. Lv, J. Kang, et al., Proc. Natl. Acad. Sci. U. S. A. 120 (2023) e2306841120.
M. Yuan, J. Chen, H. Zhang, et al., Energy Environ. Sci. 15 (2022) 2084–2095.
doi: 10.1039/D1EE03918K
X. Zhu, Y, Li, ACS Catal. 13 (2023) 15322–15330.
doi: 10.1021/acscatal.3c03491
J. Liu, X. Lv, Y. Ma, et al., ACS Nano 17 (2023) 25667–25678.
doi: 10.1021/acsnano.3c10451
J. Liang, Q. Liu, A.A. Alshehri, X. Sun, Nano Res. Energy 1 (2022) e9120010.
H.Q. Yin, L.L. Yang, H. Sun, et al., Chin. Chem. Lett. 34 (2023) 107337.
doi: 10.1016/j.cclet.2022.03.060
D. Chen, M. Luo, S. Ning, et al., Small 18 (2022) 2104043.
doi: 10.1002/smll.202104043
D. Chen, J. Lan, F. Xie, et al., Chem. Eng. J. 475 (2023) 146137.
doi: 10.1016/j.cej.2023.146137
J. Lan, M. Luo, J. Han, et al., Small 17 (2021) 2102814.
doi: 10.1002/smll.202102814
W. Peng, M. Luo, X. Xu, et al., Adv. Energy Mater. 10 (2020) 2001364.
doi: 10.1002/aenm.202001364
X. He, J. Li, R. Li, et al., Inorg. Chem. 62 (2023) 25–29.
doi: 10.1021/acs.inorgchem.2c03640
J. Leverett, T. Tran-Phu, J.A. Yuwono, et al., Adv. Energy Mater. 12 (2022) 2201500.
doi: 10.1002/aenm.202201500
Y. Mao, Y. Jiang, H. Liu, et al., Chin. Chem. Lett. 35 (2024) 108540.
doi: 10.1016/j.cclet.2023.108540
Y. Luo, K. Xie, P. Ou, et al., Nat. Catal. 6 (2023) 939–948.
doi: 10.1038/s41929-023-01020-4
X. He, T. Xie, K. Dong, et al., Sci. China Mater. (2024), doi:10.1007/s40843-024-2798-5.
doi: 10.1007/s40843-024-2798-5
Y. Zhao, Y. Ding, W. Li, et al., Nat. Commun. 14 (2023) 4491.
doi: 10.1038/s41467-023-40273-2
C. Chen, S. Li, X. Zhu, et al., Carbon Energy 5 (2023) e345.
H. Song, D.A. Chipoco Haro, P.W. Huang, et al., Acc. Chem. Res. 56 (2023) 2944–2953.
doi: 10.1021/acs.accounts.3c00424
C. Tang, Y. Zheng, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 133 (2021) 2–21.
doi: 10.1002/ange.202014556
C. Lv, L. Zhong, C. Yan, et al., Nat. Sustain. 4 (2021) 868–876.
doi: 10.1038/s41893-021-00741-3
Y. Mao, Y. Jiang, Q. Gou, et al., Appl. Catal. B: Environ. 340 (2024) 123189.
doi: 10.1016/j.apcatb.2023.123189
Z. Li, P. Zhou, M. Zhou, et al., Appl. Catal. B: Environ. (338) (2023) 122962.
J. Qin, N. Liu, L. Chen, et al., ACS Sustainable Chem. Eng. 10 (2022) 15869–15875.
doi: 10.1021/acssuschemeng.2c05110
C. Liu, H. Tong, P. Wang, et al., Appl. Catal. B: Environ. 336 (2023) 122917.
doi: 10.1016/j.apcatb.2023.122917
X. Zhu, X. Yuan, Y. Wang, M. Ge, Y. Tang, J. Catal. 429 (2024) 115218.
doi: 10.1016/j.jcat.2023.115218
Y. Wang, S. Xia, J. Zhang, et al., ACS Energy Lett. 8 (2023) 3373–3380.
doi: 10.1021/acsenergylett.3c00824
S. Shin, S. Sultan, Z.X. Chen, et al., Energy Environ. Sci. 16 (2023) 2003–2013.
doi: 10.1039/D3EE00008G
N. Meng, X. Ma, C. Wang, et al., ACS Nano 16 (2022) 9095–9104.
doi: 10.1021/acsnano.2c01177
F.Y. Chen, Z.Y. Wu, S. Gupta, et al., Nat. Nanotechnol. 17 (2022) 759–767.
doi: 10.1038/s41565-022-01121-4
Y. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 59 (2020) 5350–5354.
doi: 10.1002/anie.201915992
J. Liang, Z. Li, L. Zhang, et al., Chem 9 (2023) 1768–1827.
doi: 10.1016/j.chempr.2023.05.037
T. Zhao, K. Chen, X. Xu, et al., Appl. Catal. B: Environ. 339 (2023) 123156.
doi: 10.1016/j.apcatb.2023.123156
R.D. Milton, S.D. Minteer, ChemPlusChem 82 (2017) 513–521.
doi: 10.1002/cplu.201600442
E. Murphy, Y. Liu, I. Matanovic, et al., ACS Catal. 12 (2022) 6651–6662.
doi: 10.1021/acscatal.2c01367
P. Huang, M. Cheng, H. Zhang, et al., Nano Energy 61 (2019) 428–434.
doi: 10.1016/j.nanoen.2019.05.003
M. Sun, G. Wu, J. Jiang, et al., Angew. Chem. Int. Ed. 62 (2023) e202301957.
J. Yu, W. Yu, B. Chang, et al., Chin. Chem. Lett. 33 (2023) 3231–3235.
Z. Nie, Z. Tang, D. Jiao, et al., ChemCatChem 14 (2022) e202101885.
Y. Wu, K. Yao, Z. Zhao, et al., Chem. Eng. J. 479 (2024) 147602.
doi: 10.1016/j.cej.2023.147602
X. Ye, J. Ma, W. Yu, et al., J. Energy Chem. 67 (2022) 184–192.
doi: 10.1016/j.jechem.2021.10.017
N.H. Attanayake, H.R. Banjade, A.C. Thenuwara, et al., Chem. Commun. 57 (2021) 1675–1678.
doi: 10.1039/D0CC05822J
J. Li, C. Zhang, C. Wu, et al., Chin. Chem. Lett. 35 (2024) 108782.
doi: 10.1016/j.cclet.2023.108782
Y. Wan, M. Zheng, R. Lv, Mater. Today Energy 32 (2023) 101240.
doi: 10.1016/j.mtener.2022.101240
X. Ren, J. Zhao, Q. Wei, et al., ACS Cent. Sci. 5 (2019) 116–121.
doi: 10.1021/acscentsci.8b00734
X. Liu, W. Sun, J. Chen, Z. Wen, Angew. Chem. Int. Ed. 136 (2023) e202317313.
X. He, X. Li, X. Fan, et al., ACS Appl. Nano Mater. 5 (2022) 14246–14250.
doi: 10.1021/acsanm.2c03720
Z. Nie, L. Zhang, Q. Zhu, et al., J. Energy Chem. 88 (2024) 202–212.
doi: 10.1016/j.jechem.2023.09.009
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Zhaoyu Jin , Renjun Guan , Xin Li , Dunyi Yuan , Panpan Li . Advanced characterization techniques for understanding electrocatalytic behavior of oxidized nitrogen waste upcycling processes. Chinese Chemical Letters, 2025, 36(7): 110506-. doi: 10.1016/j.cclet.2024.110506
Huakang Zong , Xinyue Li , Yanlin Zhang , Faxun Wang , Xingxing Yu , Guotao Duan , Yuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Ming Yue , Yi-Rong Wang , Jia-Yong Weng , Jia-Li Zhang , Da-Yu Chi , Mingjin Shi , Xiao-Gang Hu , Yifa Chen , Shun-Li Li , Ya-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049
Tan Zhang , Zhikai Che , Yuru Song , Jinping Li , Yuhan Sun , Guang Liu . Reinforced nitrogen fixation via synergistic Ru-Ni dual sites. Chinese Chemical Letters, 2025, 36(9): 111295-. doi: 10.1016/j.cclet.2025.111295
Anni Wu , Chengyi Hong , Hu Zheng , Wei Teng . Multi-site synergistic relay electrocatalysis with high-entropy nanoalloys for effective nitrate reduction to ammonia. Chinese Chemical Letters, 2025, 36(12): 111066-. doi: 10.1016/j.cclet.2025.111066
Sadia Rani , Najoua Sbei , Seyfeddine Rahali , Samina Aslam , Tomas Hardwick , Nisar Ahmed . Electrochemical synthesis: A green & powerful approach to modern organic synthesis and future directions. Chinese Chemical Letters, 2025, 36(11): 111216-. doi: 10.1016/j.cclet.2025.111216
Qianqing Xu , Qu Jiang , Haoyue Zhang , Fang Song . Deciphering the active species of anodically activated carbon-based electrocatalysts for oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(11): 111417-. doi: 10.1016/j.cclet.2025.111417
Guanjun Chen , Jiayi Yang , Zheming Huang , Long Chen , Wenyuan Duan , Tong Wang , Xingang Kong , Haibo Yang . Engineering the interlayer sodium density in layered sodium cobalt oxide for boosted chlorine evolution reaction. Chinese Chemical Letters, 2025, 36(12): 111662-. doi: 10.1016/j.cclet.2025.111662
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282