The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction
-
* Corresponding authors.
E-mail addresses: zhuyanwei@hnu.edu.cn (Y. Zhu), wanglonglu@njupt.edu.cn (L. Wang).
Citation:
Junan Pan, Xinyi Liu, Huachao Ji, Yanwei Zhu, Yanling Zhuang, Kang Chen, Ning Sun, Yongqi Liu, Yunchao Lei, Kun Wang, Bao Zang, Longlu Wang. The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction[J]. Chinese Chemical Letters,
;2024, 35(11): 109515.
doi:
10.1016/j.cclet.2024.109515
S. Wang, J. Li, S. Hu, et al., ACS Appl. Nano Mater. 5 (2022) 2273–2279.
H. Wang, C. Tsai, D. Kong, et al., Nano Res. 8 (2015) 566–575.
doi: 10.1007/s12274-014-0677-7
D. Saha, V. Patel, P.R. Selvaganapathy, et al., Nanoscale Adv. 4 (2022) 125–137.
doi: 10.1039/D1NA00456E
X. Liu, B. Li, F.A. Soto, et al., ACS Catal. 11 (2021) 12159–12169.
doi: 10.1021/acscatal.1c03016
S. Cao, A. Deshmukh, L. Wang, et al., Environ. Sci. Technol. 56 (2022) 8807–8818.
doi: 10.1021/acs.est.2c00551
Y. Chen, Z. Tian, X. Wang, et al., Adv. Mater. 34 (2022) 2201630.
doi: 10.1002/adma.202201630
J. Cho, H. Seok, I. Lee, et al., Sci. Rep. 12 (2022) 10335.
doi: 10.1038/s41598-022-14233-7
L. Wang, X. Liu, Q. Zhang, et al., Nano Energy 61 (2019) 194–200.
doi: 10.1016/j.nanoen.2019.04.060
S.H. Kim, J. Lim, R. Sahu, et al., Adv. Mater. 32 (2020) 1907235.
doi: 10.1002/adma.201907235
L. Xie, L. Wang, W. Zhao, et al., Nat. Commun. 12 (2021) 5070.
doi: 10.1038/s41467-021-25381-1
G. Zhou, Y. Shan, L. Wang, et al., Nat. Commun. 10 (2019) 399.
doi: 10.1038/s41467-019-08358-z
J. Tang, Z. Wei, Q. Wang, et al., Small 16 (2020) 2004276.
doi: 10.1002/smll.202004276
M. Tayyab, A. Hussain, W.A. Syed, et al., J. Mol. Model. 27 (2021) 213.
doi: 10.1007/s00894-021-04834-w
Z. Wei, J. Tang, X. Li, et al., Small Methods 5 (2021) 2100091.
doi: 10.1002/smtd.202100091
K. Vega-Granados, Y. Gochi-Ponce, N. Alonso-Vante, Curr. Opin. Electrochem. 33 (2022) 100955.
doi: 10.1016/j.coelec.2022.100955
Y. Li, K. Yin, L. Wang, et al., Appl. Catal. B 239 (2018) 537–544.
doi: 10.1016/j.apcatb.2018.05.080
L. Wang, Q. Zhang, J. Zhu, et al., Energy Stor. Mater. 16 (2019) 37–45.
L. Wang, X. Liu, J. Luo, et al., Angew. Chem. Int. Ed. 129 (2017) 7718–7722.
doi: 10.1002/ange.201703066
K. Sun, Y. Liu, C. Liu, IOP Conf. Ser. : Earth Environ. Sci. 252 (2019) 022136.
doi: 10.1088/1755-1315/252/2/022136
S. Wang, D. Zhang, B. Li, et al., Adv. Energy Mater. 8 (2018) 1801345.
doi: 10.1002/aenm.201801345
J. Pan, P. Wang, Z. Chen, Mater. Today Chem. 21 (2021) 100528.
doi: 10.1016/j.mtchem.2021.100528
L. Pang, A. Barras, Y. Zhang, ACS Appl. Mater. Interfaces 11 (2019) 31889–31898.
doi: 10.1021/acsami.9b09112
A. Muthurasu, V. Maruthapandian, H.Y. Kim, Appl. Catal. B: Environ. 248 (2019) 202–210.
doi: 10.1016/j.apcatb.2019.02.014
M.S. Kim, D.T. Tran, T.H. Nguyen, Energy Environ. Mater. 5 (2022) 1340–1349.
doi: 10.1002/eem2.12366
N. Zhang, Z. Yang, W. Liu, Catalysts 13 (2023) 90.
doi: 10.3390/catal13010090
I.S. Amiinu, Z. Pu, X. Liu, Adv. Funct. Mater. 27 (2017) 1702300–1702310.
doi: 10.1002/adfm.201702300
Q. Ji, M. Kan, Y. Zhang, et al., Nano Lett. 15 (2014) 198–205.
Z. Yang, X. Xia, M. Fang, et al., Chem. Eng. J. 476 (2023) 146544.
doi: 10.1016/j.cej.2023.146544
Z. Yang, X. Xia, M. Fang, et al., Mater. Today Phys. 36 (2023) 101158.
doi: 10.1016/j.mtphys.2023.101158
X. Liu, Y. Hou, M. Tang, et al., Chin. Chem. Lett. 34 (2023) 107489.
doi: 10.1016/j.cclet.2022.05.003
J. Chen, Y. Tang, S. Wang, et al., Chin. Chem. Lett. 33 (2022) 1468–1474.
doi: 10.1016/j.cclet.2021.08.103
C. Sun, L. Wang, W. Zhao, et al., Adv. Funct. Mater. 32 (2022) 2206163.
doi: 10.1002/adfm.202206163
M. Liu, H. Li, S. Liu, et al., Nano Res. 15 (2022) 5946–5952.
doi: 10.1007/s12274-022-4267-9
X. Cheng, L. Wang, L. Xie, et al., Chem. Eng. J. 439 (2022) 135757.
doi: 10.1016/j.cej.2022.135757
S. Wang, L. Wang, L. Xie, et al., Nano Res. 15 (2022) 4996–5003.
doi: 10.1007/s12274-022-4158-0
C. Chang, L. Wang, L. Xie, et al., Nano Res. 15 (2022) 8613–8635.
doi: 10.1007/s12274-022-4507-z
R. Sukanya, D.C. da Silva Alves, C.B. Breslin, J. Electrochem. Soc. 169 (2022) 064504.
doi: 10.1149/1945-7111/ac7172
D.J. Trainer, J. Nieminen, F. Bobba, et al., npj 2D Mater. Appl. 6 (2022) 13.
doi: 10.1038/s41699-022-00286-9
P. Vancsó, G. Magda, J. Pető, et al., Sci. Rep. 6 (2016) 29726.
doi: 10.1038/srep29726
G. Wang, Y.P. Wang, S. Li, et al., Adv. Sci. 9 (2022) 2200700.
doi: 10.1002/advs.202200700
N. Sun, C. Gu, H.C. Ji, et al., Desalination 575 (2024) 117270.
doi: 10.1016/j.desal.2023.117270
X. Wu, Y. Gu, R. Ge, et al., Npj 2D Mater. Appl. 6 (2022) 31.
doi: 10.1038/s41699-022-00306-8
F. Zakerian, M. Fathipour, R. Faez, et al., J. Theoret. Appl. Phys. 13 (2019) 55–62.
doi: 10.1007/s40094-019-0320-9
J. Du, D. Xiang, K. Zhou, et al., Nano Energy (2022) 107875.
G. Shao, X. Xue, B. Wu, Adv. Funct. Mater. 30 (2020) 1906069.
doi: 10.1002/adfm.201906069
G. Shao, X. Xue, X. Zhou, ACS Nano 13 (2019) 8265–8274.
doi: 10.1021/acsnano.9b03648
J. Xu, G. Shao, Tang X, et al., Nat. Commun. 13 (2022) 2193.
doi: 10.1038/s41467-022-29929-7
X. Chen, B. Lei, Y. Zhu, et al., Nanoscale 12 (2020) 17005–17012.
doi: 10.1039/D0NR03530K
Z. Cheng, Y. Xiao, W. Wu, et al., ACS Nano 15 (2021) 11417–11427.
doi: 10.1021/acsnano.1c01024
Z. Guo, L. Wang, M. Han, et al., ACS Nano 16 (2022) 11268–11277.
doi: 10.1021/acsnano.2c04664
Q. Han, H. Cao, Y. Sun, et al., Phys. Chem. Chem. Phys. 24 (2022) 13305–13316.
doi: 10.1039/D2CP00705C
Z. Lai, Q. He, T.H. Tran, et al., Nat. Mater. 20 (2021) 1113–1120.
doi: 10.1038/s41563-021-00971-y
X. Gong, Z. Jiang, W. Zeng, Nano Lett. 22 (2022) 9411–9417.
doi: 10.1021/acs.nanolett.2c03359
M. Mathankumar, K. Karthick, A.K. Nanda Kumar, et al., ACS Sustain. Chem. Eng. 9 (2021) 14744–14755.
doi: 10.1021/acssuschemeng.1c04106
K. Nie, X. Qu, D. Gao, et al., ACS Appl. Mater. Interfaces 14 (2022) 19847–19856.
doi: 10.1021/acsami.2c01358
M. Okada, J. Pu, Y.C. Lin, et al., ACS Nano 16 (2022) 13069–13081.
doi: 10.1021/acsnano.2c05699
J. Pan, R. Wang, X. Xu, et al., Nanoscale 11 (2019) 10402–10409.
doi: 10.1039/C9NR00997C
J. Pan, W. Zhang, X. Xu, et al., RSC Adv. 11 (2021) 23055–23063.
doi: 10.1039/D1RA03821D
B. Mohanty, M. Ghorbani-Asl, S. Kretschmer, ACS Catal. 8 (2018) 1683–1689.
doi: 10.1021/acscatal.7b03180
Q. Peng, X. Qi, X. Gong, et al., Materials (Basel) 14 (2021) 4073.
J. Seok, J.H. Lee, S. Cho, et al., 2D Mater. 4 (2017) 025061.
doi: 10.1088/2053-1583/aa659d
Y. Shi, D. Zheng, X. Zhang, et al., Chem. Mater. 33 (2021) 6217–6226.
doi: 10.1021/acs.chemmater.1c01965
G. Zhan, J.F. Zhang, Y. Wang, J. Colloid Interf. Sci. 566 (2020) 411–418.
doi: 10.1016/j.jcis.2020.01.109
Z.M. Sun, J.L. He, M.W. Yuan, Nano Energy 65 (2019) 103996.
doi: 10.1016/j.nanoen.2019.103996
J. Strachan, A.F. Masters, T. Maschmeyer, ACS Appl. Nano Mater. 4 (2021) 2030–2036.
doi: 10.1021/acsanm.0c03355
Y. Yu, G.H. Nam, Q. He, et al., Nat. Chem. 10 (2018) 638–643.
doi: 10.1038/s41557-018-0035-6
X. Zhao, S. Ning, W. Fu, et al., Adv. Mater. 30 (2018) 1802397.
doi: 10.1002/adma.201802397
F. He, Y. Liu, Q. Cai, J. Zhao, New J. Chem. 44 (2020) 16135–16143.
doi: 10.1039/D0NJ03645E
A. Mahmood, G. Lu, X. Wang, J. Power Sources 551 (2022) 232208.
doi: 10.1016/j.jpowsour.2022.232208
Q. Fu, J. Han, X. Wang, et al., Adv. Mater. 33 (2021) 1907818.
doi: 10.1002/adma.201907818
S. Ramaraj, D. Alves, C. Breslin, J. Electrochem. Soc. 169 (2022) 10402–10409.
L. Wang, L. Xie, W. Zhao, et al., Chem. Eng. J. 405 (2021) 127028.
doi: 10.1016/j.cej.2020.127028
L. Wang, G. Zhou, H. Luo, et al., Appl. Catal. B 256 (2019) 117802.
doi: 10.1016/j.apcatb.2019.117802
Y. Fu, Y. Shan, G. Zhou, et al., Joule 3 (2019) 2955–2967.
doi: 10.1016/j.joule.2019.09.006
Q.Y. He, L. Wang, K. Yin, et al., Nanoscale Res. Lett. 13 (2018) 167.
doi: 10.1186/s11671-018-2570-x
Y. Li, L. Wang, S. Zhang, et al., Catal. Sci. Technol. 7 (2017) 718–724.
doi: 10.1039/C6CY02649D
C. Sun, M. Liu, L. Wang, et al., Chin. Chem. Lett. 33 (2022) 1779–1797.
doi: 10.1016/j.cclet.2021.08.052
Q. Xiong, Y. Wang, P.F. Liu, Adv. Mater. (2018) e1801450.
K. Sathiyan, T. Mondal, P. Mukherjee, Nanoscale 14 (2022) 16148–16155.
doi: 10.1039/D2NR03816A
X. Mu, Y. Zhu, X. Gu, J. Eng. Chem. 62 (2021) 546–551.
D.C. Nguyen, T.L. Luyen Doan, S. Prabhakaran, Nano Energy 82 (2021) 105750.
doi: 10.1016/j.nanoen.2021.105750
M. Tang, W. Yin, S. Liu, et al., Crystals 12 (2022) 1218.
doi: 10.3390/cryst12091218
Z. Sadighi, J. Liu, L. Zhao, Nanoscale 10 (2018) 22549–22559.
doi: 10.1039/C8NR07106C
C. Feng, Z.P. Wu, K.W. Huang, et al., Adv. Mater. 34 (2022) 2200180.
doi: 10.1002/adma.202200180
M. Mao, Z. Lin, Y. Tong, et al., ACS Nano 14 (2020) 1102–1110.
doi: 10.1021/acsnano.9b08848
F. Xia, B. Li, Y. Liu, et al., Adv. Funct. Mater. 31 (2021) 2104716.
doi: 10.1002/adfm.202104716
C. Liu, L. Wang, Y. Tang, et al., Appl. Catal. B 164 (2015) 1–9.
doi: 10.1016/j.apcatb.2014.08.046
L. Wang, X. Duan, G. Wang, et al., Appl. Catal. B 186 (2016) 88–96.
doi: 10.1016/j.apcatb.2015.12.056
J. Li, W. Yin, J. Pan, et al., Nano Res. 16 (2023) 8638–8654.
doi: 10.1007/s12274-023-5610-5
K. Chen, L. Wang, Z. Luo, et al., Adv. Mater. Technol. 8 (2023) 2300189.
doi: 10.1002/admt.202300189
J. Liu, J. Wang, B. Zhang, J. Mater. Chem. A 6 (2018) 2067–2072.
doi: 10.1039/C7TA10048E
Y. Zhang, H. Guo, M. Song, Appl. Surf. Sci. 617 (2023) 156621.
doi: 10.1016/j.apsusc.2023.156621
Y. Liu, Y. Chen, Y. Tian, Adv. Mater. 34 (2022) e2203615.
doi: 10.1002/adma.202203615
Y. Li, Y. Hua, N. Sun, et al., Nano Res. 16 (2023) 8712–8728.
doi: 10.1007/s12274-023-5716-9
W. Chen, J. Du, H. Zhang, et al., Chin. Chem. Lett. (2023) 109168.
A. Pandey, A. Mukherjee, S. Chakrabarty, ACS Appl. Mater. Interfaces 11 (2019) 42094–42103.
doi: 10.1021/acsami.9b13358
Y. Yang, K. Zhang, H. Lin, ACS Catal. 7 (2017) 2357–2366.
doi: 10.1021/acscatal.6b03192
C. Zhao, X. Zhang, S. Xu, Inter. J. Hydrogen Energy 47 (2022) 28859–28868.
doi: 10.1016/j.ijhydene.2022.06.206
M. Zhao, G. Zhou, X. Liu, Inter. J. Electrochem. Sci. 16 (2021) 210323.
doi: 10.20964/2021.03.46
W. Bao, Y. Li, J. Zhang, Int. J. Hydrogen Energy 48 (2023) 12176–12184.
doi: 10.1016/j.ijhydene.2022.12.184
W.H. Huang, X.M. Li, X.F. Yang, Chem. Eng. J. 420 (2021) 127595.
doi: 10.1016/j.cej.2020.127595
L. Wang, X. Liu, J. Luo, et al., Angew. Chem. Int. Ed. 56 (2017) 7610–7614.
doi: 10.1002/anie.201703066
Y. Li, L. Wang, T. Cai, et al., Chem. Eng. J. 321 (2017) 366–374.
doi: 10.1016/j.cej.2017.03.139
L. Wang, Q. Zhang, J. Zhu, et al., Energy Storage Mater. 16 (2019) 37–45.
doi: 10.1016/j.ensm.2018.04.025
L.L. Wang, G. Zhou, H. Luo, et al., Appl. Catal. B 256 (2019) 117802.
doi: 10.1016/j.apcatb.2019.117802
Y. Xu, L. Wang, X. Liu, et al., J. Mater. Chem. A 4 (2016) 16524–16530.
doi: 10.1039/C6TA06534A
Q. Zhang, L. Wang, J. Wang, et al., J. Mater. Chem. A 6 (2018) 9411–9419.
doi: 10.1039/C8TA00995C
Y. Tu, L. Xie, M. Zhang, et al., Nano Res. 17 (2024) 2088–2110.
doi: 10.1007/s12274-023-5946-x
F. Wang, L. Xie, N. Sun, et al., Nano-Micro Lett. 16 (2024) 1–25.
doi: 10.1007/s40820-023-01222-2
C. Wang, X. Shao, J. Pan, Appl. Catal. B: Environ. 268 (2020) 118435.
doi: 10.1016/j.apcatb.2019.118435
C. Wei, C. Liu, L. Gao, J. Alloy. Compd. 796 (2019) 86–92.
doi: 10.1016/j.jallcom.2019.05.071
Z.Y. Zhao, F.L. Li, Q. Shao, Adv. Mater. Interfaces 6 (2019) 1900372.
doi: 10.1002/admi.201900372
M.A.R. Anjum, H.Y. Jeong, M.H. Lee, et al., Adv. Mater. 30 (2018) 1707105.
doi: 10.1002/adma.201707105
J.Z. Chen, G.G. Liu, Y.Z. Zhu, et al., J. Am. Chem. Soc. 142 (2020) 7161–7167.
doi: 10.1021/jacs.0c01649
Y.Q. Li, Z.H. Yin, M. Cui, et al., J. Mater. Chem. A 9 (2021) 2070–2092.
doi: 10.1039/D0TA10815D
Z. Liang, Y. Xue, X. Wang, et al., Chem. Eng. J. 421 (2021) 130016.
doi: 10.1016/j.cej.2021.130016
S. Geng, F. Tian, M. Li, et al., Nano Res. 15 (2022) 1809–1816.
doi: 10.1007/s12274-021-3755-7
T. Sun, Z. Tang, W. Zang, Nat. Nanotechnol. 18 (2023) 763–771.
doi: 10.1038/s41565-023-01407-1
X. Liu, J. Pan, H. Huang, et al., Chem. Eng. J. 476 (2023) 146868.
doi: 10.1016/j.cej.2023.146868
J. Zhou, M. Guo, L. Wang, et al., Chem. Eng. J. 366 (2019) 163–171.
doi: 10.1016/j.cej.2019.02.079
W. Yin, Y. Cai, L. Wang, et al., Nano Res. 16 (2023) 4381–4398.
doi: 10.1007/s12274-022-5133-5
Y. Li, B. Yu, B. Liu, et al., Chem. Eng. J. 452 (2023) 139542.
doi: 10.1016/j.cej.2022.139542
M. Li, W. Yin, J. Pan, et al., Chem. Eng. J. 471 (2023) 144691.
doi: 10.1016/j.cej.2023.144691
L. Xie, L. Wang, X. Liu, et al., Angew. Chem. Int. Ed. 63 (2024) e202316306.
doi: 10.1002/anie.202316306
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Bin Zhao , Heping Luo , Jiaqing Liu , Sha Chen , Han Xu , Yu Liao , Xue Feng Lu , Yan Qing , Yiqiang Wu . S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution. Chinese Chemical Letters, 2025, 36(5): 109919-. doi: 10.1016/j.cclet.2024.109919
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Fenglin Wang , Chengwei Kuang , Zhicheng Zheng , Dan Wu , Hao Wan , Gen Chen , Ning Zhang , Xiaohe Liu , Renzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Jiawei Ge , Xian Wang , Heyuan Tian , Hao Wan , Wei Ma , Jiangying Qu , Junjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906
Chupeng Luo , Keying Su , Shan Yang , Yujia Liang , Yawen Tang , Xiaoyu Qiu . Ultrathin NiS2 nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(5): 109940-. doi: 10.1016/j.cclet.2024.109940
Weibin Shen , Jie Liu , Gongyu Wen , Shuai Li , Binhui Yu , Shuangyu Song , Bojie Gong , Rongyang Zhang , Shibao Liu , Hongpeng Wang , Yao Wang , Yujing Liu , Huadong Yuan , Jianming Luo , Shihui Zou , Xinyong Tao , Jianwei Nai . Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(7): 110184-. doi: 10.1016/j.cclet.2024.110184
Tao Tang , Chen Li , Sipu Li , Zhong Qiu , Tianqi Yang , Beirong Ye , Shaojun Shi , Chunyang Wu , Feng Cao , Xinhui Xia , Minghua Chen , Xinqi Liang , Xinping He , Xin Liu , Yongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306