Photochemical reactions as synthetic tool for pharmaceutical industries
* Corresponding author.
E-mail address: nasirrasool@gcuf.edu.pk (N. Rasool).
Citation:
Shehla Khalid, Muhammad Bilal, Nasir Rasool, Muhammad Imran. Photochemical reactions as synthetic tool for pharmaceutical industries[J]. Chinese Chemical Letters,
;2024, 35(9): 109498.
doi:
10.1016/j.cclet.2024.109498
C.K. Prier, D.A. Rankic, D.W. MacMillan, Chem. Rev. 113 (2013) 5322–5363.
doi: 10.1021/cr300503r
K. Kalyanasundaram, Coord. Chem. Rev. 46 (1982) 159–244.
doi: 10.1016/0010-8545(82)85003-0
A. Juris, V. Balzani, F. Barigelletti, et al., Coordin. Chem. Rev. 84 (1988) 85–277.
doi: 10.1016/0010-8545(88)80032-8
K.L. Wang, H.T. Ji, L.J. Ou, W.M. He, Eur. J. Org. Chem. 26 (2023) e202300752.
G. Ciamician, P. Silber, Chem. Lichtwirkungen, Ber. Dtsch. Chem. Ges. 41 (1908) 1071–1080.
doi: 10.1002/cber.190804101211
A. Albini, M. Fagnoni, Green Chem. 6 (2004) 1–6.
doi: 10.1039/b309592d
M.H. Shaw, J. Twilton, D.W. MacMillan, J. Org. Chem. 81 (2016) 6898–6926.
doi: 10.1021/acs.joc.6b01449
V. Srivastava, P.K. Singh, S. Tivari, P.P. Singh, Org. Chem. Front. 9 (2022) 1485–1507.
doi: 10.1039/D1QO01602D
B. Dam, A.K. Sahoo, B.K. Patel, Green Chem. 24 (2022) 7122–7130.
doi: 10.1039/D2GC02254K
Y. Zhou, Y. Qin, Q. Wang, Z. Zhang, G. Zhu, Angew. Chem. 134 (2022) e202110864.
doi: 10.1002/ange.202110864
P.P. Singh, P.K. Singh, V. Srivastava, Org. Chem. Front. 10 (2023) 216–236.
doi: 10.1039/D2QO01582J
M.P. Wiesenfeldt, J.A. Rossi-Ashton, I.B. Perry, et al., Nature 618 (2023) 513–518.
doi: 10.1038/s41586-023-06021-8
D. Yang, Q. Yan, E. Zhu, J. Lv, W.M. He, Chin. Chem. Lett. 33 (2022) 1798–1816.
doi: 10.1016/j.cclet.2021.09.068
L. Wang, P. Bao, W. Liu, et al., Chin. J. Org. Chem. 38 (2018) 3189.
doi: 10.6023/cjoc201807014
L. Zheng, X. Zhuo, Y. Wang, et al., Org. Chem. Front. 9 (2022) 3012–3021.
doi: 10.1039/D2QO00253A
W.B. He, L.Q. Gao, X.J. Chen, Chin. Chem. Lett. 31 (2020) 1895–1898.
doi: 10.1016/j.cclet.2020.02.011
Z. Guo, X. Liu, R. Bai, et al., Inorg. Chem. 60 (2021) 8672–8681.
doi: 10.1021/acs.inorgchem.1c00642
K. Sun, G. Li, Y. Li, et al., Adv. Synth. Catal. 362 (2020) 1947–1954.
doi: 10.1002/adsc.202000040
M.T. Pirnot, D.A. Rankic, D.B. Martin, D.W. MacMillan, Science 339 (2013) 1593–1596.
doi: 10.1126/science.1232993
M. González-Esguevillas, J. Miró, J.L. Jeffrey, D.W. MacMillan, Tetrahedron 141 (2023) 133494.
doi: 10.1016/j.tet.2023.133494
J.H. Shen, M. Shi, Y. Wei, Chem. Eur. J. 29 (2023) e202301157.
doi: 10.1002/chem.202301157
P. Chuentragool, D. Yadagiri, T. Morita, et al., Angew. Chem. 131 (2019) 1808–1812.
doi: 10.1002/ange.201812398
N. Kvasovs, V. Gevorgyan, Chem. Soc. Rev. 50 (2021) 2244–2259.
doi: 10.1039/D0CS00589D
M. Rivas, V. Palchykov, X. Jia, V. Gevorgyan, Nat. Rev. Chem. 6 (2022) 544–561.
doi: 10.1038/s41570-022-00403-8
D.A. Nicewicz, D.W. MacMillan, Science 322 (2008) 77–80.
doi: 10.1126/science.1161976
L. Shi, W. Xia, Chem. Soc. Rev. 41 (2012) 7687–7697.
doi: 10.1039/c2cs35203f
J.M. Narayanam, C.R. Stephenson, Chem. Soc. Rev. 40 (2011) 102–113.
doi: 10.1039/B913880N
T.P. Yoon, M.A. Ischay, J. Du, Nat. Chem. 2 (2010) 527–532.
doi: 10.1038/nchem.687
D.M. Schultz, T.P. Yoon, Science 343 (2014) 1239176.
doi: 10.1126/science.1239176
M.W. Johnson, K.I. Hannoun, Y. Tan, G.C. Fu, J.C. Peters, Chem. Sci. 7 (2016) 4091–4100.
doi: 10.1039/C5SC04709A
P. Marquetand, Chem. Rev. 122 (2022) 15996–15997.
doi: 10.1021/acs.chemrev.2c00703
Y.M. Tian, X.N. Guo, H. Braunschweig, U. Radius, T.B. Marder, Chem. Rev. 121 (2021) 3561–3597.
doi: 10.1021/acs.chemrev.0c01236
M. Fagnoni, D. Dondi, D. Ravelli, Chem. Rev. 107 (2007) 2725–2756.
doi: 10.1021/cr068352x
M.J. Genzink, J.B. Kidd, W.B. Swords, T.P. Yoon, Chem. Rev. 122 (2021) 1654–1716.
K.L. Skubi, T.R. Blum, T.P. Yoon, Chem. Rev. 116 (2016) 10035–10074.
doi: 10.1021/acs.chemrev.6b00018
T. Nevesely, M. Wienhold, J.J. Molloy, R. Gilmour, Chem. Rev. 122 (2021) 2650–2694.
D.C. Blakemore, L. Castro, I. Churcher, et al., Nat. Chem. 10 (2018) 383–394.
doi: 10.1038/s41557-018-0021-z
K.R. Campos, P.J. Coleman, J.C. Alvarez, et al., Science 363 (2019) eaat0805.
doi: 10.1126/science.aat0805
K.D.C. Lisa Candish, G.C. Cook, J.J. Douglas, et al., Chem. Rev. 122 (2022) 2907–2980.
doi: 10.1021/acs.chemrev.1c00416
T. Cernak, K.D. Dykstra, S. Tyagarajan, P. Vachal, S.W. Krska, Chem. Soc. Rev. 45 (2016) 546–576.
doi: 10.1039/C5CS00628G
M. Moir, J.J. Danon, T.A. Reekie, M. Kassiou, Expert Opin. Drug Discov. 14 (2019) 1137–1149.
doi: 10.1080/17460441.2019.1653850
L. Capaldo, L.L. Quadri, D. Ravelli, Green Chem. 22 (2020) 3376–3396.
doi: 10.1039/D0GC01035A
R. Cannalire, S. Pelliccia, L. Sancineto, et al., Chem. Soc. Rev. 50 (2021) 766–897.
doi: 10.1039/D0CS00493F
P. Bellotti, H.M. Huang, T. Faber, F. Glorius, Chem. Rev. 123 (2023) 4237–4352.
doi: 10.1021/acs.chemrev.2c00478
A. Trowbridge, D. Reich, M.J. Gaunt, Nature 561 (2018) 522–527.
doi: 10.1038/s41586-018-0537-9
M.D. Eastgate, M.A. Schmidt, K.R. Fandrick, Nat. Rev. Chem. 1 (2017) 0016.
doi: 10.1038/s41570-017-0016
R.W. Hoffmann, Chem. Soc. Rev. 45 (2016) 577–583.
doi: 10.1039/C5CS00423C
A.G. Csákÿ, G. de la Herrán, M.C. Murcia, Chem. Soc. Rev. 39 (2010) 4080–4102.
doi: 10.1039/b924486g
J. Zhao, J.L. Brosmer, Q. Tang, et al., J. Am. Chem. Soc. 139 (2017) 9807–9810.
doi: 10.1021/jacs.7b05277
M. Ikeda, K. Ohno, S.I. Mohri, M. Takahashi, Y. Tamura, J. Chem. Soc., Perkin Trans. 1 (1984) 405–412.
M. Teders, C. Henkel, L. Anhäuser, et al., Nat. Chem. 10 (2018) 981–988.
doi: 10.1038/s41557-018-0102-z
C. Palomo, M. Oiarbide, J.M. García, Chem. Soc. Rev. 33 (2004) 65–75.
doi: 10.1039/B202901D
J. Xu, C. Boyer, Macromolecules 48 (2015) 520–529.
doi: 10.1021/ma502460t
T. Rossolini, J.A. Leitch, R. Grainger, D.J. Dixon, Org. Lett. 20 (2018) 6794–6798.
doi: 10.1021/acs.orglett.8b02923
J.S. Wang, K. Wu, C. Yin, et al., Nat. Commun. 11 (2020) 4675.
doi: 10.1038/s41467-020-18487-5
S. Vijayakrishnan, J.W. Ward, A.I. Cooper, ACS Catal. 12 (2022) 10057–10064.
doi: 10.1021/acscatal.2c02743
F. Denes, M. Pichowicz, G. Povie, P. Renaud, Chem. Rev. 114 (2014) 2587–2693.
doi: 10.1021/cr400441m
G. Ciamician, Science 36 (1912) 385–394.
doi: 10.1126/science.36.926.385
J. Metternich, R. Gilmour, Synlett 27 (2016) 2541–2552.
doi: 10.1055/s-0036-1588621
Z. Lu, T.P. Yoon, Angew. Chem. 124 (2012) 10475–10478.
doi: 10.1002/ange.201204835
T.R. Blum, Z.D. Miller, D.M. Bates, I.A. Guzei, T.P. Yoon, Science 354 (2016) 1391–1395.
doi: 10.1126/science.aai8228
E.R. Welin, C. Le, D.M. Arias-Rotondo, J.K. McCusker, D.W. MacMillan, Science 355 (2017) 380–385.
doi: 10.1126/science.aal2490
J. Mayol-Llinas, A. Nelson, W. Farnaby, A. Ayscough, Drug Discov. Today 22 (2017) 965–969.
doi: 10.1016/j.drudis.2017.01.008
V. Lahmy, R. Long, D. Morin, V. Villard, T. Maurice, Front. Cell. Neurosci. 8 (2015) 463.
D.P. Marciano, M.R. Chang, C.A. Corzo, et al., Cell Metab. 19 (2014) 193–208.
doi: 10.1016/j.cmet.2013.12.009
P. Ruiz-Castillo, S.L. Buchwald, Chem. Rev. 116 (2016) 12564–12649.
doi: 10.1021/acs.chemrev.6b00512
S.B. Herzon, J.F. Hartwig, J. Am. Chem. Soc. 130 (2008) 14940–14941.
doi: 10.1021/ja806367e
L. Huang, M. Arndt, K. t. Gooßen, H. Heydt, L.J. Goossen, Chem. Rev. 115 (2015) 2596–2697.
doi: 10.1021/cr300389u
P. Kalck, M. Urrutigoity, Chem. Rev. 118 (2018) 3833–3861.
doi: 10.1021/acs.chemrev.7b00667
F. Perez, S. Oda, L.M. Geary, M.J. Krische, Top. Curr. Chem. 374 (2016) 365–387.
M. Chilamari, J.R. Immel, S. Bloom, ACS Catal. 10 (2020) 12727–12737.
doi: 10.1021/acscatal.0c03422
G. Wuitschik, E.M. Carreira, B. r. Wagner, et al., J. Med. Chem. 53 (2010) 3227–3246.
doi: 10.1021/jm9018788
D. Ravelli, M. Zoccolillo, M. Mella, M. Fagnoni, Adv. Synth. Catal. 356 (2014) 2781–2786.
doi: 10.1002/adsc.201400027
S.H. Oh, Y.R. Malpani, N. Ha, Y.S. Jung, S.B. Han, Org. Lett. 16 (2014) 1310–1313.
doi: 10.1021/ol403716t
J. Yang, Z. Sun, K. Yan, et al., Green Chem. 23 (2021) 2756–2762.
doi: 10.1039/D1GC00379H
Y.H. Lu, C. Wu, J.C. Hou, et al., ACS Catal. 13 (2023) 13071–13076.
doi: 10.1021/acscatal.3c02268
H.T. Ji, K.L. Wang, W.T. Ouyang, et al., Green Chem. 25 (2023) 7983–7987.
doi: 10.1039/D3GC02575F
P.V. Fish, A.D. Brown, E. Evrard, L.R. Roberts, Bioorg. Med. Chem. Lett. 19 (2009) 1871–1875.
doi: 10.1016/j.bmcl.2009.02.071
A. Brown, T.B. Brown, A. Calabrese, et al., Bioorg. Med. Chem. Lett. 20 (2010) 516–520.
doi: 10.1016/j.bmcl.2009.11.097
M. Maetani, J. Zoller, B. Melillo, et al., J. Am. Chem. Soc. 139 (2017) 11300–11306.
doi: 10.1021/jacs.7b06994
M.R. Becker, E.R. Wearing, C.S. Schindler, Nat. Chem. 12 (2020) 898–905.
doi: 10.1038/s41557-020-0541-1
F. Wang, C. Chen, G. Deng, C. Xi, J. Org. Chem. 77 (2012) 4148–4151.
doi: 10.1021/jo300250x
F. Ke, Y. Qu, Z. Jiang, et al., Org. Lett. 13 (2011) 454–457.
doi: 10.1021/ol102784c
Z. Chen, Q. Yan, Z. Liu, Y. Zhang, Chem. Eur. J. 20 (2014) 17635–17639.
doi: 10.1002/chem.201405057
M.E. Daub, M. Ehrenshaft, Annu. Rev. Phytopathol. 38 (2000) 461–490.
doi: 10.1146/annurev.phyto.38.1.461
Y. Zhang, Y. Cao, L. Lu, et al., J. Org. Chem. 84 (2019) 7711–7721.
doi: 10.1021/acs.joc.9b00545
J.B. Metternich, R. Gilmour, J. Org. Chem. 138 (2016) 1040–1045.
G.K. Jana, S. Paul, S. Sinha, Org. Prep. Proc. Int. 43 (2011) 541–573.
doi: 10.1080/00304948.2011.629563
X.Y. Liu, Y. Qin, Acc. Chem. Res. 52 (2019) 1877–1891.
doi: 10.1021/acs.accounts.9b00246
Z. Zhang, D. Yi, M. Zhang, et al., ACS Catal. 10 (2020) 10149–10156.
doi: 10.1021/acscatal.0c01841
M.S. Oderinde, J. Kempson, D. Smith, et al., Eur. J. Org. Chem. 2020 (2020) 41–46.
doi: 10.1002/ejoc.201901482
Y. Bansal, O.J.B. Silakari, Bioorg. Med. Chem. 20 (2012) 6208–6236.
doi: 10.1016/j.bmc.2012.09.013
P.A. Renhowe, S. Pecchi, C.M. Shafer, et al., J. Med. Chem. 52 (2009) 278–292.
doi: 10.1021/jm800790t
C. Zhang, B. Zhong, S. Yang, et al., Bioorg. Med. Chem. 23 (2015) 3774–3780.
doi: 10.1016/j.bmc.2015.03.085
P.D. Verdouw, J.M. Hartog, D.J. Duncker, W. Roth, P.R. Saxena, Eur. J. Pharmacol. 126 (1986) 21–30.
doi: 10.1016/0014-2999(86)90733-8
R. Mocharla, H. Mocharla, M.E. Hodes, Nucleic Acids Res. 15 (1987) 10589.
doi: 10.1093/nar/15.24.10589
Y. Kim, M.R. Kumar, N. Park, Y. Heo, S. Lee, J. Org. Chem. 76 (2011) 9577–9583.
doi: 10.1021/jo2019416
K. Bahrami, M.M. Khodaei, F. Naali, J. Org. Chem. 73 (2008) 6835–6837.
doi: 10.1021/jo8010232
J. Kovvuri, B. Nagaraju, A. Kamal, A.K. Srivastava, ACS Comb. Sci. 18 (2016) 644–650.
doi: 10.1021/acscombsci.6b00107
J.W. Tucker, J.M. Narayanam, S.W. Krabbe, C.R. Stephenson, Org. Lett. 12 (2010) 368–371.
doi: 10.1021/ol902703k
H. Huang, M. Yu, X. Su, et al., J. Org. Chem. 83 (2018) 2425–2437.
doi: 10.1021/acs.joc.7b03017
P.D. Bass, D.A. Gubler, T.C. Judd, R.M. Williams, Chem. Rev. 113 (2013) 6816–6863.
doi: 10.1021/cr3001059
T. Sasase, H. Morinaga, T. Abe, et al., Diabet. Obes. Metab. 11 (2009) 1084–1087.
doi: 10.1111/j.1463-1326.2009.01082.x
V.M. Dembitsky, J. Nat. Med. 62 (2008) 1–33.
S. Ren, F. Pan, W. Zhang, G.W. Rao, Curr. Med. Chem. 29 (2022) 4113–4135.
doi: 10.2174/0929867329666220105120722
E. Lee-Ruff, G. Mladenova, Chem. Rev. 103 (2003) 1449–1484.
doi: 10.1021/cr010013a
Y. Xu, M.L. Conner, M.K. Brown, Angew. Chem. Int. Ed. 54 (2015) 11918–11928.
doi: 10.1002/anie.201502815
T. Sravanthi, S. Manju, Eur. J. Pharm. Sci. 91 (2016) 1–10.
doi: 10.1016/j.ejps.2016.05.025
N. Chadha, O. Silakari, Eur. J. Med. Chem. 134 (2017) 159–184.
doi: 10.1016/j.ejmech.2017.04.003
M.S. Oderinde, A. Ramirez, T.M. Dhar, et al., J. Org. Chem. 86 (2020) 1730–1747.
L.R. Orgren, E.E. Maverick, C.C. Marvin, J. Org. Chem. 80 (2015) 12635–12640.
doi: 10.1021/acs.joc.5b02199
A. Brossi, L. Chopard-dit-Jean, O. Schnider, Helv. Chim. Acta 41 (1958) 1793–1806.
doi: 10.1002/hlca.19580410634
B. Giese, B. Kopping, T. Göbel, et al., Org. React. 48 (2004) 301–856.
Y. Liu, M. Zhang, C.H. Tung, Y. Wang, ACS Catal. 6 (2016) 8389–8394.
doi: 10.1021/acscatal.6b03076
Z. Li, H. Song, R. Guo, et al., Green Chem. 21 (2019) 3602–3605.
doi: 10.1039/C9GC01359H
X. Zhuang, X. Shi, R. Zhu, et al., Org. Chem. Front. 8 (2021) 736–742.
doi: 10.1039/D0QO01188F
S. Özden, D. Atabey, S. Yıldız, H. Göker, Bioorg. Med. Chem. 13 (2005) 1587–1597.
doi: 10.1016/j.bmc.2004.12.025
J.Y. Chai, B.K. Jung, S.J. Hong, Korean J. Parasitol. 59 (2021) 189.
doi: 10.3347/kjp.2021.59.3.189
S.M. Sondhi, S. Rajvanshi, M. Johar, et al., Eur. J. Med. Chem. 37 (2002) 835–843.
doi: 10.1016/S0223-5234(02)01403-4
X.Z. Guo, L. Shi, R. Wang, et al., Bioorg. Med. Chem. 16 (2008) 10301–10310.
doi: 10.1016/j.bmc.2008.10.040
A. Chimirri, A. De Sarro, G. De Sarro, R. Gitto, M. Zappala, Farmaco 56 (2001) 821–826.
doi: 10.1016/S0014-827X(01)01147-8
A. Lee-Dutra, K.L. Arienti, D.J. Buzard, et al., Bioorg. Med. Chem. Lett. 16 (2006) 6043–6048.
doi: 10.1016/j.bmcl.2006.08.117
M.J. O'Neil, M. Smith, P. Heckelman, The Merck Index, 13th Edition, Merck and Co, Inc NJ, 2001, p. 1785.
I. Siddiqui, F. Ibad, A. Ibad, M.A. Waseem, G. Watal, Tetrahedron Lett. 57 (2016) 5–10.
doi: 10.1016/j.tetlet.2015.10.042
A. Armstrong, J.C. Collins, Angew. Chem. Int. Ed. 49 (2010) 2282–2285.
doi: 10.1002/anie.200906750
A. Gauld, STEPS: suvorexant (Belsomra) for insomnia, Am. Fam. Phys. 93 (2016) 1016.
V.S. Patil, D.V. Patil, S.S. Potdar, Org. Commun. 15 (2022) 71–80.
V.K. Yadav, V.P. Srivastava, L.D.S. Yadav, Tetrahedron Lett. 57 (2016) 155–158.
doi: 10.1016/j.tetlet.2015.11.089
S. Zykova, S. Shurov, V. Talismanov, et al., J. Pharm. Sci. Res. 10 (2018) 947–949.
Z.P. Ye, Y.Z. Hu, J.P. Guan, et al., Org. Lett. 23 (2021) 4754–4758.
doi: 10.1021/acs.orglett.1c01477
G. Zhou, X. Deng, C. Pan, et al., Chem. Comm. 56 (2020) 12546–12549.
doi: 10.1039/D0CC04471G
C. Russo, R. Cannalire, P. Luciano, et al., Synthesis 53 (2021) 4419–4427.
doi: 10.1055/a-1543-3924
G.E. Crisenza, P. Melchiorre, Nat. Commun. 11 (2020) 1–4.
doi: 10.1038/s41467-019-13993-7
V.R. Solomon, H. Lee, Curr. Med. Chem. 18 (2011) 1488–1508.
doi: 10.2174/092986711795328382
J.X. Xu, N.L. Pan, J.X. Chen, J.W. Zhao, J. Org. Chem. 86 (2021) 10747–10754.
doi: 10.1021/acs.joc.1c01386
J. Ma, F. Schäfers, C. Daniliuc, et al., Angew. Chem. 132 (2020) 9726–9732.
doi: 10.1002/ange.202001200
C.E. Knappke, S. Grupe, D. Gärtner, et al., Chem. Eur. J. 20 (2014) 6828–6842.
doi: 10.1002/chem.201402302
D.A. Everson, D.J. Weix, J. Org. Chem. 79 (2014) 4793–4798.
doi: 10.1021/jo500507s
P.J. Xia, Z.P. Ye, D. Song, et al., Chem. Comm. 55 (2019) 2712–2715.
doi: 10.1039/C8CC09385G
X. Tian, Y. Guo, W. An, et al., Nat. Commun. 13 (2022) 6186.
doi: 10.1038/s41467-022-33778-9
S. Tripathi, L.D.S. Yadav, New J. Chem. 42 (2018) 3765–3769.
doi: 10.1039/C7NJ04578F
R.W. Gantt, P. Peltier-Pain, J.S. Thorson, Nat. Prod. Rep. 28 (2011) 1811–1853.
doi: 10.1039/c1np00045d
Y. Yang, B. Yu, Chem. Rev. 117 (2017) 12281–12356.
doi: 10.1021/acs.chemrev.7b00234
Q. Wu, J.G. Cho, D.S. Lee, et al., Carbohydr. Res. 372 (2013) 9–14.
doi: 10.1016/j.carres.2012.09.015
W. Disadee, C. Mahidol, P. Sahakitpichan, et al., Phytochemistry 74 (2012) 115–122.
doi: 10.1016/j.phytochem.2011.11.001
T. Kawamata, M. Nagatomo, M. Inoue, J. Am. Chem. Soc. 139 (2017) 1814–1817.
doi: 10.1021/jacs.6b13263
S.O. Badir, A. Dumoulin, J.K. Matsui, G.A. Molander, Angew. Chem. Int. Ed. 57 (2018) 6610–6613.
doi: 10.1002/anie.201800701
X. Wang, J. Dong, Y. Liu, H. Song, Q. Wang, Chin. Chem. Lett. 32 (2021) 3027–3030.
doi: 10.1016/j.cclet.2021.03.070
M.P. DeMartino, K. Chen, P.S. Baran, J. Am. Chem. Soc. 130 (2008) 11546–11560.
doi: 10.1021/ja804159y
Y. Kuang, K. Wang, X. Shi, et al., Angew. Chem. 131 (2019) 17015–17019.
doi: 10.1002/ange.201910414
S. Li, P.W. Davies, W. Shu, Chem. Sci. 13 (2022) 6636–6641.
doi: 10.1039/D2SC01905A
N.A. Romero, K.A. Margrey, N.E. Tay, D.A. Nicewicz, Science 349 (2015) 1326–1330.
doi: 10.1126/science.aac9895
J.K. Matsui, D.N. Primer, G.A. Molander, Chem. Sci. 8 (2017) 3512–3522.
doi: 10.1039/C7SC00283A
H. Liu, L. Ge, D.X. Wang, N. Chen, C. Feng, Angew. Chem. 131 (2019) 3958–3962.
doi: 10.1002/ange.201814308
M.A. Miranda, M.L. Marin, Curr. Opin. Green Sustain. Chem. 6 (2017) 139–149.
doi: 10.1016/j.cogsc.2017.05.001
L. Guillemard, N. Kaplaneris, L. Ackermann, M.J. Johansson, Nat. Rev. Chem. 5 (2021) 522–545.
doi: 10.1038/s41570-021-00300-6
B. Liu, L. Yang, P. Li, F. Wang, X. Li, Org. Chem. Front. 8 (2021) 1085–1101.
doi: 10.1039/D0QO01159B
K.J. Jiao, Y.K. Xing, Q.L. Yang, H. Qiu, T.S. Mei, Acc. Chem. Res. 53 (2020) 300–310.
doi: 10.1021/acs.accounts.9b00603
S. Vidyacharan, B.T. Ramanjaneyulu, S. Jang, D.P. Kim, ChemSusChem 12 (2019) 2581–2586.
doi: 10.1002/cssc.201900736
C. Hou, S. Sun, Z. Liu, et al., Adv. Synth. Catal. 363 (2021) 2806–2812.
doi: 10.1002/adsc.202100168
H.Y. Song, F. Xiao, J. Jiang, et al., Chin. Chem. Lett. (2023) 108509.
H. Xu, X. Li, J. Ma, et al., Chin. Chem. Lett. (2023) 108403.
H. Cerecetto, A. Gerpe, M. Gonzalez, V.J. Aran, C.O. de Ocariz, Mini-Rev. Med. Chem. 5 (2005) 869–878.
doi: 10.2174/138955705774329564
X. Li, S. Chu, V.A. Feher, et al., J. Med. Chem. 46 (2003) 5663–5673.
doi: 10.1021/jm0302039
G. Picciola, F. Ravenna, G. Carenini, P. Gentili, M. Riva, Il Farmaco, Edizione Sci. 36 (1981) 1037–1056.
W. Han, J.C. Pelletier, C.N. Hodge, Bioorg. Med. Chem. Lett. 8 (1998) 3615–3620.
doi: 10.1016/S0960-894X(98)00659-3
J. Liu, C. Qian, Y. Zhu, et al., Bioorg. Med. Chem. 26 (2018) 747–757.
doi: 10.1016/j.bmc.2017.12.041
S.V. Keisner, S.R. Shah, Drugs 71 (2011) 443–454.
A. Unsinn, P. Knochel, Chem. Comm. 48 (2012) 2680–2682.
doi: 10.1039/c2cc17804d
S.A. Ohnmacht, A.J. Culshaw, M.F. Greaney, Org. Lett. 12 (2010) 224–226.
doi: 10.1021/ol902537d
X. Ding, J. Bai, H. Wang, et al., Tetrahedron 73 (2017) 172–178.
doi: 10.1016/j.tet.2016.11.066
G. Bogonda, H.Y. Kim, K. Oh, Org. Lett. 20 (2018) 2711–2715.
doi: 10.1021/acs.orglett.8b00920
W. Zhang, X.X. Xiang, J. Chen, et al., Nat. Commun. 11 (2020) 1–10.
doi: 10.1038/s41467-019-13993-7
P. Nuhant, M.S. Oderinde, J. Genovino, et al., Angew. Chem. Int. Ed. 56 (2017) 15309–15313.
doi: 10.1002/anie.201707958
Q.Q. Han, D.M. Chen, Z.L. Wang, et al., Chin. Chem. Lett. 32 (2021) 2559–2561.
doi: 10.1016/j.cclet.2021.02.018
M.D. Tzirakis, I.N. Lykakis, M. Orfanopoulos, Chem. Soc. Rev. 38 (2009) 2609–2621.
doi: 10.1039/b812100c
D. Mazzarella, A. Pulcinella, L. Bovy, R. Broersma, T. Noël, Angew. Chem. Int. Ed. 60 (2021) 21277–21282.
doi: 10.1002/anie.202108987
Y.W. Zheng, R. Narobe, K. Donabauer, S. Yakubov, B. König, ACS Catal. 10 (2020) 8582–8589.
doi: 10.1021/acscatal.0c01924
J.Y. Dong, H.P. He, Y.M. Shen, K.Q. Zhang, J. Nat. Prod. 68 (2005) 1510–1513.
doi: 10.1021/np0502241
C. Takahashi, A. Numata, E. Matsumura, et al., J. Antibiot. 47 (1994) 1242–1249.
doi: 10.7164/antibiotics.47.1242
C.J. Zheng, C.J. Kim, K.S. Bae, Y.H. Kim, W.G. Kim, J. Nat. Prod. 69 (2006) 1816–1819.
doi: 10.1021/np060348t
L. Furst, J.M. Narayanam, C.R. Stephenson, Angew. Chem. Int. Ed. 50 (2011) 9655.
doi: 10.1002/anie.201103145
D.A. Nagib, D.W. MacMillan, Nature 480 (2011) 224–228.
doi: 10.1038/nature10647
I.B. Seiple, S. Su, R.A. Rodriguez, et al., J. Am. Chem. Soc. 132 (2010) 13194–13196.
doi: 10.1021/ja1066459
R. Pschorr, Ber. Dtsch. Chem. Ges. 29 (1896) 496–501.
doi: 10.1002/cber.18960290198
D. Xue, Z.H. Jia, C.J. Zhao, et al., Chem. Eur. J. 20 (2014) 2960–2965.
doi: 10.1002/chem.201304120
E.R. Welin, A.A. Warkentin, J.C. Conrad, D.W. MacMillan, Angew. Chem. Int. Ed. 54 (2015) 9668–9672.
doi: 10.1002/anie.201503789
A. Singh, A. Arora, J.D. Weaver, Org. Lett. 15 (2013) 5390–5393.
doi: 10.1021/ol402751j
D.A. DiRocco, K. Dykstra, S. Krska, et al., Angew. Chem. Int. Ed. 53 (2014) 4802–4806.
doi: 10.1002/anie.201402023
G. Lei, M. Xu, R. Chang, I. Funes-Ardoiz, J. Ye, J. Am. Chem. Soc. 143 (2021) 11251–11261.
doi: 10.1021/jacs.1c05852
J.M. Mayer, Acc. Chem. Res. 44 (2011) 36–46.
doi: 10.1021/ar100093z
M. Costas, M. Bietti, Acc. Chem. Res. 51 (2018) 2601–2602.
doi: 10.1021/acs.accounts.8b00525
C.R. Stephenson, T.P. Yoon, D.W. MacMillan, Visible Light Photocatalysis In Organic Chemistry, John Wiley & Sons, 2018.
D. Staveness, I. Bosque, C.R. Stephenson, Acc. Chem. Res. 49 (2016) 2295–2306.
doi: 10.1021/acs.accounts.6b00270
B.P. Roberts, Chem. Soc. Rev. 28 (1999) 25–35.
doi: 10.1039/a804291h
S. Cao, W. Hong, Z. Ye, L. Gong, Nat. Commun. 12 (2021) 2377.
doi: 10.1038/s41467-021-22690-3
H. Du, C. Fairbridge, H. Yang, Z. Ring, Appl. Catal. A: Gen. 294 (2005) 1–21.
doi: 10.1016/j.apcata.2005.06.033
W. Zhang, Y.L. Pan, C. Yang, X. Li, B. Wang, Org. Chem. Front. 6 (2019) 2765–2770.
doi: 10.1039/C9QO00625G
X. Zhu, X. Song, X. Li, et al., Adv. Synth. Catal. 364 (2022) 4384–4391.
doi: 10.1002/adsc.202201143
W. Ou, G. Zhang, J. Wu, C. Su, ACS Catal. 9 (2019) 5178–5183.
doi: 10.1021/acscatal.9b00693
X.Z. Fan, J.W. Rong, H.L. Wu, et al., Angew. Chem. 130 (2018) 8650–8654.
doi: 10.1002/ange.201803220
I. Funes-Ardoiz, F. Maseras, ACS Catal. 8 (2018) 1161–1172.
doi: 10.1021/acscatal.7b02974
H.Y. Song, J. Jiang, C. Wu, et al., Green Chem. 25 (2023) 3292–3296.
doi: 10.1039/D2GC04843D
J. Li, J. Chen, R. Sang, et al., Nat. Chem. 12 (2020) 56–62.
doi: 10.1038/s41557-019-0353-3
X. Sun, J. Chen, T. Ritter, Nat. Chem. 10 (2018) 1229–1233.
doi: 10.1038/s41557-018-0142-4
H.G. Yayla, F. Peng, I.K. Mangion, et al., Chem. Sci. 7 (2016) 2066–2073.
doi: 10.1039/C5SC03350K
J.J. Douglas, H. Albright, M.J. Sevrin, K.P. Cole, C.R. Stephenson, Angew. Chem. Int. Ed. 54 (2015) 14898–14902.
doi: 10.1002/anie.201507369
Y.F. Liang, M. Bilal, L.Y. Tang, et al., Chem. Rev. 123 (2023) 12313–12370.
doi: 10.1021/acs.chemrev.3c00219
C.C. Le, D.W. MacMillan, J. Am. Chem. Soc. 137 (2015) 11938–11941.
doi: 10.1021/jacs.5b08304
V.K. Soni, S. Lee, J. Kang, et al., ACS Catal. 9 (2019) 10454–10463.
doi: 10.1021/acscatal.9b03435
C. Ma, Z. Feng, J. Li, et al., Org. Chem. Front. 8 (2021) 3286–3291.
doi: 10.1039/D1QO00064K
X. Shu, R. Xu, S. Liao, Sci. China Chem. 64 (2021) 1756–1762.
doi: 10.1007/s11426-021-1048-4
R. Xu, T. Xu, M. Yang, T. Cao, S. Liao, Nat. Commun. 10 (2019) 3752.
doi: 10.1038/s41467-019-11805-6
K. Okada, K. Okamoto, M. Oda, J. Am. Chem. Soc. 110 (1988) 8736–8738.
doi: 10.1021/ja00234a047
D.M. Gale, W.J. Middleton, C.G. Krespan, J. Am. Chem. Soc. 88 (1966) 3617–3623.
doi: 10.1021/ja00967a026
D.H. Barton, J.C. Jaszberenyi, E.A. Theodorakis, J. Reibenspies, J. Am. Chem. Soc. 115 (1993) 8050–8059.
doi: 10.1021/ja00071a017
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Peng Chen , Lijuan Liang , Yufei Zhu , Zhimin Xing , Zhenhua Jia , Teck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Jing-Jing Zhang , Lujun Lou , Rui Lv , Jiahui Chen , Yinlong Li , Guangwei Wu , Lingchao Cai , Steven H. Liang , Zhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342
Yue Sun , Liming Yang , Yaohang Cheng , Guanghui An , Guangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250
Gangsheng Li , Xiang Yuan , Fu Liu , Zhihua Liu , Xujie Wang , Yuanyuan Liu , Yanmin Chen , Tingting Wang , Yanan Yang , Peicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880
Quan Xu , Ye-Qing Du , Pan-Pan Chen , Yili Sun , Ze-Nan Yang , Hui Zhang , Bencan Tang , Hong Wang , Jia Li , Yue-Wei Guo , Xu-Wen Li . Computation assisted chemical study of photo-induced late-stage skeleton transformation of marine natural products towards new scaffolds with biological functions. Chinese Chemical Letters, 2025, 36(5): 110141-. doi: 10.1016/j.cclet.2024.110141
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
Yingjie Wang , Peng Tang , Wenchao Tu , Qi Gao , Cuizhu Wang , Luying Tan , Lixin Zhao , Hongye Han , Liefeng Ma , Kouharu Otsuki , Weilie Xiao , Wenli Wang , Jinping Liu , Yong Li , Zhajun Zhan , Wei Li , Xianli Zhou , Ning Li . Highly anticipated natural diterpenoids as an important source of new drugs in 2013–2023. Chinese Chemical Letters, 2025, 36(1): 109955-. doi: 10.1016/j.cclet.2024.109955
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
Shulei Hu , Yu Zhang , Xiong Xie , Luhan Li , Kaixian Chen , Hong Liu , Jiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408
Tao Yang , Kaijiao Duan , Siyu Li , Jing Wei , Qingdi Yang , Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040
Deli Chen , Jiawen Li , Xudong Xu , Zhaocui Sun , Yun Yang , Minghui Xu , Hanqiao Liang , Junshan Yang , Hui Meng , Guoxu Ma , Jianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451
Jinqi Yang , Xiaoxiang Hu , Yuanyuan Zhang , Lingyu Zhao , Chunlin Yue , Yuan Cao , Yangyang Zhang , Zhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
Qian Wang , Yeping Bian , Gagan Dhawan , Wei Zhang , Alexander E. Sorochinsky , Ata Makarem , Vadim A. Soloshonok , Jianlin Han . FDA approved fluorine-containing drugs in 2023. Chinese Chemical Letters, 2024, 35(11): 109780-. doi: 10.1016/j.cclet.2024.109780