Gelation mechanisms of gel polymer electrolytes for zinc-based batteries
-
* Corresponding authors.
E-mail addresses: sunmengjun@htu.edu.cn (M. Sun), wangxb@htu.edu.cn (X. Wang), cyu2020@hust.edu.cn (C. Yu).
Citation:
Mengjun Sun, Zhi Wang, Jvhui Jiang, Xiaobing Wang, Chuang Yu. Gelation mechanisms of gel polymer electrolytes for zinc-based batteries[J]. Chinese Chemical Letters,
;2024, 35(5): 109393.
doi:
10.1016/j.cclet.2023.109393
M. Armand, J.M. Tarascon, Nature 451 (2008) 652–657.
doi: 10.1038/451652a
S. Chu, A. Majumdar, Nature 488 (2012) 294–303.
doi: 10.1038/nature11475
B. Dunn, H. Kamath, J.M. Tarascon, Science 334 (2011) 928–935.
doi: 10.1126/science.1212741
S. Chen, C. Yu, S. Chen, et al., Chin. Chem. Lett. 33 (2022) 4635–4639.
doi: 10.1016/j.cclet.2021.12.048
S. Chen, C. Yu, C. Wei, et al., Chin. Chem. Lett. 34 (2023) 107544–107549.
doi: 10.1016/j.cclet.2022.05.058
Y. Du, X. Gao, S. Li, et al., Chin. Chem. Lett. 31 (2020) 609–616.
doi: 10.1016/j.cclet.2019.06.013
S. Yuan, K. Ding, X. Zeng, et al., Adv. Mater. (2022) 2206228.
doi: 10.1002/adma.202206228
Y. Jin, Y. Xu, Phung M.L. Le, et al., ACS Energy Lett. 5 (2020) 3212–3220.
doi: 10.1021/acsenergylett.0c01712
C. Wei, C. Yu, R. Wang, et al., J. Powe Source 559 (2023) 232659–232670.
doi: 10.1016/j.jpowsour.2023.232659
Z. Zhang, Z. Wang, L. Zhang, et al., Adv. Sci. 9 (2022) 2200744.
doi: 10.1002/advs.202200744
L. Ye, X. Li, Nature 593 (2021) 218–222.
doi: 10.1038/s41586-021-03486-3
F. Chen, X. Wang, M. Armand, et al., Nat. Mater. 21 (2022) 1175–1182.
doi: 10.1038/s41563-022-01319-w
A.D. Poletayev, J.A. Dawson, M.S. Islam, et al., Nat. Mater. 21 (2022) 1066–1073.
doi: 10.1038/s41563-022-01316-z
S. Chen, T. Wang, L. Ma, et al., Chemistry 9 (2022) 1–14.
Z. Chen, F. Mo, T. Wang, et al., Energy Environ. Sci. 14 (2021) 2441–2450.
doi: 10.1039/d0ee02999h
R. He, G. Tian, S. Li, et al., Nano Lett. 22 (2022) 2429–2436.
doi: 10.1021/acs.nanolett.2c00123
Z. Chen, H. Cui, Y. Hou, et al., Chemistry 8 (2022) 2204–2216.
doi: 10.1016/j.chempr.2022.05.001
G. Liang, J. Zhu, B. Yan, et al., Energy Environ. Sci. 15 (2022) 1086–1096.
doi: 10.1039/d1ee03749h
Z. Huo, T. Zhang, X. Liu, et al., Sci. Adv. 8 (2022) eabp8960.
doi: 10.1126/sciadv.abp8960
H. Li, C. Guo, T. Zhang, et al., Nano Lett. 22 (2022) 4223–4231.
doi: 10.1021/acs.nanolett.2c01235
Y. Zhang, X. Zheng, K. Wu, et al., Nano Lett. 22 (2022) 8574–8583.
doi: 10.1021/acs.nanolett.2c03114
Y. Zhao, R. Zhou, X. Zhang, et al., Angew. Chem. Int. Ed. 61 (2022) 202212231.
doi: 10.1002/anie.202212231
W.Y. Kim, H.I. Kim, K.M. Lee, et al., Energy Environ. Sci. 15 (2022) 5217–5228.
doi: 10.1039/d2ee03077b
H. Yan, S. Li, H. Xu, et al., Adv. Energy Mater. 12 (2022) 2201599.
doi: 10.1002/aenm.202201599
Y.G. Cho, C. Hwang, D.S. Cheong, et al., Adv. Mater. 31 (2019) 1804909.
doi: 10.1002/adma.201804909
R. Fang, B. Xu, N.S. Grundish, et al., Angew. Chem. Int. Ed. 60 (2021) 17701–17706.
doi: 10.1002/anie.202106039
C. Wang, H. Liu, Y. Liang, et al., Adv. Funct. Mater. 33 (2023) 2209828.
doi: 10.1002/adfm.202209828
H. Luo, B. Liu, Z. Yang, Y. Wan, C. Zhong, Energy Rev. 5 (2022) 187–210.
doi: 10.1007/s41918-021-00107-5
B. He, Q. Zhang, L. Li, et al., J. Mater. Chem. A 6 (2018) 14594–14601.
doi: 10.1039/c8ta05862h
Y. Huang, W. Shan, Y.Y. Lau, et al., ACS Nano 11 (2017) 8953–8961.
doi: 10.1021/acsnano.7b03322
Z. Zhao, C. Wang, H. Wang, et al., Nano Energy 97 (2022) 107162–107172.
doi: 10.1016/j.nanoen.2022.107162
H. Yang, W. Cui, Y. Han, B. Wang, Chin. Chem. Lett. 29 (2018) 842–844.
doi: 10.1016/j.cclet.2017.09.024
H. Li, J. Guo, Y. Mao, et al., Small (2023) 2206814.
doi: 10.1002/smll.202206814
K. Wu, J. Huang, J. Yi, et al., Adv. Energy Mater. 10 (2020) 1903977.
doi: 10.1002/aenm.201903977
Y. Lv, Y. Xiao, L. Ma, et al., Adv. Mater. 34 (2022) 2106409.
doi: 10.1002/adma.202106409
G. Cui, Matter 2 (2020) 805–815.
doi: 10.1016/j.matt.2020.02.003
N. Meng, F. Lian, G. Cui, Small 17 (2021) 2005762.
doi: 10.1002/smll.202005762
Z. Zhao, J. Wang, Z. Lv, et al., Chem. Eng. J. 417 (2021) 128096–128101.
doi: 10.1016/j.cej.2020.128096
H. Wu, B. Tang, X. Du, et al., Adv. Sci. 7 (2020) 2003370.
doi: 10.1002/advs.202003370
K.K. Sonigara, J. Zhao, H.K. Machhi, et al., Adv. Energy Mater. 10 (2020) 2001997.
doi: 10.1002/aenm.202001997
A. Du, H. Zhang, Z. Zhang, et al., Adv. Mater. 31 (2019) 1805930.
doi: 10.1002/adma.201805930
S. Huang, Z. Cui, L. Qiao, et al., Electrochim. Acta 299 (2019) 820–827.
doi: 10.1016/j.electacta.2019.01.039
J. Liang, X. Zhang, L. Huang, et al., J. Am. Chem. Soc. 143 (2021) 16768–16776.
doi: 10.1021/jacs.1c08425
S.J. Tan, J. Yue, Y.F. Tian, et al., Energy Storage Mater. 39 (2021) 186–193.
doi: 10.1016/j.ensm.2021.04.020
S. Jin, F. Duan, X. Wu, et al., Small 18 (2022) 2205462.
doi: 10.1002/smll.202205462
P. Chen, X. Yuan, Y. Xia, et al., Adv. Sci. 8 (2021) 2100309.
doi: 10.1002/advs.202100309
L. Cao, D. Li, F.A. Soto, et al., Angew. Chem. Int. Ed. 60 (2021) 18845–18851.
doi: 10.1002/anie.202107378
C.W. Bunn, Nature 161 (1948) 929–930.
doi: 10.1038/161929a0
H. Wu, W. Chi, Z. Chen, et al., Adv. Funct. Mater. 29 (2019) 1807243.
doi: 10.1002/adfm.201807243
S. Wu, M. Hua, Y. Alsaid, et al., Adv. Mater. 33 (2021) 2007829.
doi: 10.1002/adma.202007829
H. Tu, M. Zhu, B. Duan, et al., Adv. Mater. 33 (2021) 2000682.
doi: 10.1002/adma.202000682
O.M. Vanderfleet, E.D. Cranston, Nat. Rev. Mater. 6 (2021) 124–144.
T. Li, C. Chen, A.H. Brozana, et al., Nature 590 (2021) 47–56.
doi: 10.1038/s41586-020-03167-7
D.F. Vieira, C.O. Avellaneda, A. Pawlicka, Electrochim. Acta 53 (2007) 1404–1408.
doi: 10.1016/j.electacta.2007.04.034
X. Liu, P.X. Ma, Biomaterial 30 (2009) 4094–4103.
doi: 10.1016/j.biomaterials.2009.04.024
N.A. Choudhury, S. Sampath, A.K. Shukla, J. Electrochem. Soc. 155 (2008) A74–A81.
doi: 10.1149/1.2803501
B. Jeong, S.W. Kim, Y.H. Bae, Adv. Drug Deliv. Rev. 64 (2012) 154–162.
doi: 10.1016/j.addr.2012.09.012
J. Yang, P. Li, F. Zhong, et al., Adv. Energy Mater. 10 (2020) 1904264.
doi: 10.1002/aenm.201904264
S. Wang, Q. Duan, J. Lei, D.Y.W. Yu, J. Power Sources 468 (2020) 228365–228373.
doi: 10.1016/j.jpowsour.2020.228365
J. Liu, C. Guan, C. Zhou, J. Wang, et al., Adv. Mater. 28 (2016) 8732–8739.
doi: 10.1002/adma.201603038
Q. Zhang, W. Xu, J. Sun, et al., Nano Lett. 17 (2017) 7552–7560.
doi: 10.1021/acs.nanolett.7b03507
H. Cao, F. Wan, L. Zhang, et al., J. Mater. Chem. A 7 (2019) 11734–11741.
doi: 10.1039/c9ta02990g
B. He, Z. Zhou, P. Man, et al., J. Mater. Chem. A 7 (2019) 12979–12986.
doi: 10.1039/c9ta01164a
Y. Xu, Y. Zhang, Z. Guo, et al., Angew. Chem. Int. Ed. 54 (2015) 15390–15394.
doi: 10.1002/anie.201508848
H. Liu, Q. Liu, Y. Wang, et al., Chin. Chem. Lett. 33 (2022) 683–692.
doi: 10.1016/j.cclet.2021.07.038
J.M. Lee, C. Choi, J.H. Kim, et al., Sci. Rep. 8 (2018) 11150–11158.
doi: 10.1038/s41598-018-29266-0
X. Li, H. Li, X. Fan, X. Shi, J. Liang, Ad. Energy Mater. 10 (2020) 1903794.
doi: 10.1002/aenm.201903794
C. Wu, B. Unnikrishnan, I.W.P. Chen, et al., Energy Storage Mater. 25 (2020) 563–571.
doi: 10.1016/j.ensm.2019.09.026
Y. Zeng, X. Zhang, Y. Meng, et al., Adv. Mater. 29 (2017) 1700274.
doi: 10.1002/adma.201700274
W. Qiu, Y. Li, A. You, et al., J. Mater. Chem. A 5 (2017) 14838–14846.
doi: 10.1039/C7TA03274A
K. Wang, X. Zhang, J. Han, et al., ACS Appl. Mater. Interfaces 10 (2018) 24573–24582.
doi: 10.1021/acsami.8b07756
G. Zhang, X. Zhang, Solid State Ion. 160 (2003) 155–159.
doi: 10.1016/S0167-2738(03)00152-8
M. Chen, W. Zhou, A. Wang, et al., J. Mater. Chem. A 8 (2020) 6828–6841.
doi: 10.1039/d0ta01553a
C. Li, Q. Zhang, J. Sun, et al., ACS Energy Lett. 3 (2018) 2761–2768.
doi: 10.1021/acsenergylett.8b01675
C. Li, Q. Zhang, S E., et al., J. Mater. Chem. A 7 (2019) 2034–2040.
doi: 10.1039/C8TA10807B
X. Yan, Z. Chen, Y. Wang, H. Li, J. Zhang, J. Power Sources 407 (2018) 137–146.
doi: 10.1016/j.jpowsour.2018.10.071
P. Li, Z. Jin, D. Xiao, Energy Storage Mater. 12 (2018) 232–240.
doi: 10.1016/j.ensm.2017.11.017
X. Li, Y. Tang, J. Zhu, et al., Small 16 (2020) 2001935.
doi: 10.1002/smll.202001935
R. Wang, Y. Han, Z. Wang, et al., Adv. Funct. Mater. 28 (2018) 1802157.
doi: 10.1002/adfm.201802157
Y. Zeng, Y. Meng, Z. Lai, et al., Adv. Mater. 29 (2017) 1702698.
doi: 10.1002/adma.201702698
M. Gong, Y. Li, H. Zhang, et al., Energy Environ. Sci. 7 (2014) 2025–2032.
doi: 10.1039/c4ee00317a
P. Hu, T. Wang, J. Zhao, et al., ACS Appl. Mater. Interfaces 7 (2015) 26396–26399.
doi: 10.1021/acsami.5b09728
D.U. Lee, J. Fu, M.G. Park, et al., Nano Lett. 16 (2016) 1794–1802.
doi: 10.1021/acs.nanolett.5b04788
Z. Hao, L. Xu, Q. Liu, et al., Adv. Funct. Mater. 29 (2019) 1808470.
doi: 10.1002/adfm.201808470
M.S. Javed, H. Lei, Z. Wang, et al., Nano Energy 70 (2020) 104573–104582.
doi: 10.1016/j.nanoen.2020.104573
S. Li, Y. Liu, X. Zhao, et al., Adv. Mater. 33 (2021) 2007480.
doi: 10.1002/adma.202007480
X. He, H. Zhang, X. Zhao, et al., Adv. Sci. 6 (2019) 1900151.
doi: 10.1002/advs.201900151
X. Li, H. Cheng, H. Hu, et al., Chin. Chem. Lett. 32 (2021) 3753–3761.
doi: 10.1016/j.cclet.2021.04.045
F. Hu, Y. Gu, F. Cui, G. Song, K. Zhu, Chin. Chem. Lett. 32 (2021) 3793–3798.
doi: 10.1016/j.cclet.2021.04.032
J. Wang, J. Liu, M. Hu, et al., J. Mater. Chem. A 6 (2018) 11113–11118.
doi: 10.1039/c8ta03143f
F. Wan, L. Zhang, X. Wang, et al., Adv. Funct. Mater. 28 (2018) 1804975.
doi: 10.1002/adfm.201804975
G. Shim, M.X. Tran, G. Liu, D. Byun, J.K. Lee, Energy Storage Mater. 35 (2021) 739–749.
doi: 10.1016/j.ensm.2020.12.009
C. Lai, M. Li, Y. Shen, et al., Energy Environ. Mater. (2022) e12541.
doi: 10.1002/eem2.12541
C. Lai, H. Li, Y. Sheng, et al., Adv. Sci. 9 (2022) 2105925.
doi: 10.1002/advs.202105925
K. Wu, L. Zhang, Y. Yuan, et al., Adv. Mater. 32 (2020) 2002292.
doi: 10.1002/adma.202002292
L. Zhong, C. Jiang, M. Zheng, et al., ACS Energy Lett. 6 (2021) 3624–3633.
doi: 10.1021/acsenergylett.1c01678
T. Zhou, N. Zhang, C. Wu, Y. Xie, Energy Environ. Sci. 13 (2020) 1132–1153.
doi: 10.1039/c9ee03634b
N.K. Wagh, S.S. Shide, C.H. Lee, et al., Nano Micro Lett. 14 (2022) 190–210.
doi: 10.1007/s40820-022-00927-0
L. An, X. Zhao, T. Zhao, D. Wang, Energy Environ. Sci. 14 (2021) 2620–2638.
doi: 10.1039/d0ee03609a
M. Gong, D. Xiao, Z. Deng, et al., Appl. Catal. B Environ. 282 (2021) 119617–119625.
doi: 10.1016/j.apcatb.2020.119617
X. Liu, L. Wang, P. Yu, et al., Angew. Chemie Int. Ed. 57 (2018) 16166–16170.
doi: 10.1002/anie.201809009
X. Xiao, X. Xiao, Y. Zhou, et al., Sci. Adv. 7 (2021) l3742–13753.
doi: 10.1126/sciadv.abl3742
A.A. Mohamad, N.S. Mohamed, M.Z.A. Yahya, et al., Solid State Ion. 156 (2003) 171–177.
doi: 10.1016/S0167-2738(02)00617-3
Q. Zhang, C. Li, Q. Li, et al., Nano Lett. 19 (2019) 4035–4042.
doi: 10.1021/acs.nanolett.9b01403
Z. Pan, J. Yang, J. Yang, et al., ACS Nano 14 (2020) 842–853.
doi: 10.1021/acsnano.9b07956
B. Long, Q. Zhang, T. Duan, et al., Adv. Sci. 9 (2022) 2204087.
doi: 10.1002/advs.202204087
N. Zhang, M. Jia, Y. Dong, et al., Adv. Funct. Mater. 29 (2019) 1807331.
doi: 10.1002/adfm.201807331
J. Park, M. Park, G. Nam, J.S. Lee, J. Cho, Adv. Mater. 27 (2015) 1396–1401.
doi: 10.1002/adma.201404639
Z. Wang, Z. Ruan, Z. Liu, et al., J. Mater. Chem. A 6 (2018) 8549–8557.
doi: 10.1039/c8ta01172a
Q. Han, X. Chi, S. Zhang, et al., J. Mater. Chem. A 6 (2018) 23046–23054.
doi: 10.1039/c8ta08314b
S. Zhang, N. Yu, S. Zeng, et al., J. Mater. Chem. A 6 (2018) 12237–12243.
doi: 10.1039/c8ta04298e
T. Sun, Z. Li, Y. Zhi, et al., Adv. Funct. Mater. 31 (2021) 2010049.
doi: 10.1002/adfm.202010049
A.M. Gaikwad, A.M. Zamarayeva, J. Rousseau, et al., Adv. Mater. 24 (2012) 5071–5076.
doi: 10.1002/adma.201201329
A.M. Gaikwad, G.L. Whiting, D.A. Steingart, A.C. Arias, Adv. Mater. 23 (2011) 3251–3255.
doi: 10.1002/adma.201100894
Md.S. Rahman, Md.S. Hasan, A.S. Nitai, et al., Polymers 13 (2021) 1345–1393.
doi: 10.3390/polym13081345
M.H. Abu Elella, E.S. Goda, M.A. Gab-Allah, et al., J. Environ. Chem. Eng. 9 (2021) 104702–104733.
doi: 10.1016/j.jece.2020.104702
H. Mittal, A.Al Alili, P.P. Morajkar, S.M. Alhassan, J. Mol. Liq. 323 (2021) 115034.
doi: 10.1016/j.molliq.2020.115034
I. Osada, H.de Vries, B. Scrosati, S. Passerini, Angew. Chem. Int. Ed. 55 (2016) 500–513.
doi: 10.1002/anie.201504971
X. Zhang, Y. Sun, C. Ma, et al., J. Power Sources 542 (2022) 231797.
doi: 10.1016/j.jpowsour.2022.231797
Z. Cui, Y. Xu, L. Zhu, et al., J. Membr. Sci. 325 (2008) 957–963.
doi: 10.1016/j.memsci.2008.09.022
R. Zana, C. Marques, A. Johner, Adv. Colloid Interface Sci. 123-126 (2006) 345–351.
doi: 10.1016/j.cis.2006.05.011
J. Zhao, K.K. Sonigara, J. Li, et al., Angew. Chem. Int. Ed. 56 (2017) 7871–7875.
doi: 10.1002/anie.201704373
L. Ma, S. Chen, C. Long, et al., Adv. Energy Mater. 9 (2019) 1902446.
doi: 10.1002/aenm.201902446
F. Wang, O. Borodin, T. Gao, et al., Nat. Mater. 17 (2018) 543–549.
doi: 10.1038/s41563-018-0063-z
C. Zhang, J. Holoubek, X. Wu, et al., Chem. Commun. 54 (2018) 14097–14099.
doi: 10.1039/c8cc07730d
T. Nomoto, Y. Inoue, Y. Yao, et al., Sci. Adv. 6 (2020) 1722–1733.
doi: 10.1126/sciadv.aaz1722
Y. Huang, M. Zhong, Y. Huang, et al., Nat. Commun. 6 (2015) 10310.
doi: 10.1038/ncomms10310
Y. Huang, M. Zhong, F. Shi, et al., Angew Chem. Int. Ed. 56 (2017) 9141–9145.
doi: 10.1002/anie.201705212
X. Wang, F. Wang, L. Wang, et al., Adv. Mater. 28 (2016) 4904–4911.
doi: 10.1002/adma.201505370
M. Chen, J. Chen, W. Zhou, et al., Adv. Mater. 33 (2021) 2007559.
doi: 10.1002/adma.202007559
F. Mo, G. Liang, D. Wang, et al., EcoMat 1 (2019) 12008–12020.
doi: 10.1002/eom2.12008
L. Ma, Y. Zhao, X. Ji, et al., Adv. Energy Mater. 9 (2019) 1900509.
doi: 10.1002/aenm.201900509
X. Zhu, H. Yang, Y. Cao, X. Ai, Electrochim. Acta 49 (2004) 2533–2539.
doi: 10.1016/j.electacta.2004.02.008
W. Laoatiman, T. Julaphatachote, P. Boonmongkolras, S. Kheawhom, J. Electrochem. Soc. 164 (2017) A859–A865.
doi: 10.1149/2.1511704jes
L. Sartore, S. Pandini, F. Baldi, F. Bignotti, L.Di Landro, J. Appl. Polymer Sci. 134 (2017) 45655–45664.
doi: 10.1002/app.45655
M. Liu, T. Guo, J. Appl. Polymer Sci. 82 (2001) 1515–1520.
doi: 10.1002/app.1990
H. Wang, J. Liu, J. Wang, et al., ACS Appl. Mater. Interfaces 11 (2019) 49–55.
doi: 10.1021/acsami.8b18003
Y. Huang, Z. Li, Z. Pei, et al., Adv. Energy Mater. 8 (2018) 1802288.
doi: 10.1002/aenm.201802288
L. Ma, S. Chen, D. Wang, et al., Adv. Energy Mater. 9 (2019) 1803046.
doi: 10.1002/aenm.201803046
C. Guan, A. Sumboja, H. Wu, et al., Adv. Mater. 29 (2017) 1704117.
doi: 10.1002/adma.201704117
W. Zang, A. Sumboja, Y. Ma, et al., ACS Catal. 8 (2018) 8961–8969.
doi: 10.1021/acscatal.8b02556
K. Braam, V. Subramanian, Adv. Mater. 27 (2015) 689–694.
doi: 10.1002/adma.201404149
Z. Pei, Z. Yuan, C. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 4793–4799.
doi: 10.1002/anie.201915836
A. Narita, W. Shibayama, K. Sakamoto, et al., Chem. Commun. (2006) 1926–1928.
M. Yoshizawa, M. Hirao, K. Ito-Akita, H. Ohno, J. Mater. Chem. 11 (2001) 1057–1062.
doi: 10.1039/b101079o
C. Yuan, X. Zhong, P. Tian, et al., ACS Appl. Energy Mater. 5 (2022) 7530–7537.
doi: 10.1021/acsaem.2c01008
F. Mo, Z. Chen, G. Liang, et al., Adv. Energy Mater. 10 (2020) 2000035.
doi: 10.1002/aenm.202000035
T. Zhao, G. Zhang, F. Zhou, S. Zhang, C. Deng, Small 14 (2018) 1802320.
doi: 10.1002/smll.201802320
L. Ma, S. Chen, H. Li, et al., Energy Environ. Sci. 11 (2018) 2521–2530.
doi: 10.1039/c8ee01415a
H. Li, Q. Yang, F. Mo, et al., Energy Storage Mater. 19 (2019) 94–101.
doi: 10.1016/j.ensm.2018.10.005
L. Ma, S. Chen, Z. Pei, et al., ACS Nano 12 (2018) 8597–8605.
doi: 10.1021/acsnano.8b04317
Q. Tan, X. Li, B. Zhang, et al., Adv. Energy Mater. 10 (2020) 2001050.
doi: 10.1002/aenm.202001050
H. Li, C. Han, Y. Huang, et al., Energy Environ. Sci. 11 (2018) 941–951.
doi: 10.1039/c7ee03232c
Z. Liu, D. Wang, Z. Tang, et al., Energy Storage Mater. 23 (2019) 636–645.
doi: 10.1016/j.ensm.2019.03.007
D. Wang, L. Wang, G. Liang, et al., ACS Nano 13 (2019) 10643–10652.
doi: 10.1021/acsnano.9b04916
F. Mo, G. Liang, Q. Meng, et al., Energy Environ. Sci. 12 (2019) 706–715.
doi: 10.1039/c8ee02892c
M. Zhu, X. Wang, H. Tang, et al., Adv. Funct. Mater. 30 (2020) 1907218.
doi: 10.1002/adfm.201907218
Y. Zhao, L. Ma, Y. Zhu, et al., Adv. Mater. 34 (2022) 2207118.
doi: 10.1021/acsnano.9b02986
Y. Qin, H. Li, C. Han, F. Mo, X. Wang, Adv. Mater. 34 (2022) 2207118.
doi: 10.1002/adma.202207118
Z. Yang, B. Wang, Y. Chen, et al., Natl. Sci. Rev. 10 (2022) nwac268.
B. Wu, Y. Mu, Z. Li, et al., Chin. Chem. Lett. 34 (2023) 107629–107641.
doi: 10.1016/j.cclet.2022.06.052
G.G. Kumar, S. Sampath, Solid State Ionics 160 (2003) 289–300.
doi: 10.1016/S0167-2738(03)00209-1
H. Ye, J. Xu, J. Power Sources 165 (2007) 500–508.
doi: 10.1016/j.jpowsour.2006.10.042
J.P. Hoffknecht, A. Wettstein, J. Atik, et al., Adv. Energy Mater. 13 (2022) 2202789.
J.F. Fauvarque, S. Guinot, N. Bouzir, E. Salmon, J.F. Penneau, Electrochim. Acta 40 (1995) 2449–2453.
doi: 10.1016/0013-4686(95)00212-W
S. Karan, T.B. Sahu, M. Sahu, Y.K. Mahipal, R.C. Agrawal, Ionics 23 (2017) 2721–2726.
doi: 10.1007/s11581-017-2036-7
P. Hiralal, S. Imaizumi, H.E. Unalan, et al., ACS Nano 4 (2010) 2730–2734.
doi: 10.1021/nn901391q
M. Wang, A. Emree, S. Tung, et al., ACS Nano 13 (2019) 1107–1115.
J. Xu, H. Ye, J. Huang, Electrochem. Commun. 7 (2005) 1309–1317.
doi: 10.1016/j.elecom.2005.09.011
J.P. Tafur, J. Abad, E. Román, A.J.F. Romero, Electrochem. Commun. 60 (2015) 190–194.
doi: 10.1016/j.elecom.2015.09.011
L. Ma, S. Chen, N. Li, et al., Adv. Mater. 32 (2020) 1908121.
doi: 10.1002/adma.201908121
J. Feng, D. Ma, K. Ouyang, et al., Adv. Funct. Mater. 32 (2022) 2207909.
doi: 10.1002/adfm.202207909
M. Sun, Z. Zeng, W. Zhong, et al., Batteries & Supercaps 5 (2022) e202200338.
F. Mo, H. Li, Z. Pei, et al., Sci. Bull. 63 (2018) 1077–1086.
doi: 10.1016/j.scib.2018.06.019
G. Lu, H. Qiu, X. Du, et al., Chem. Mater. 34 (2022) 8975–8986.
doi: 10.1021/acs.chemmater.2c02417
Z. Han, S. Li, R. Xiong, et al., Adv. Funct. Mater. 32 (2022) 2108669.
doi: 10.1002/adfm.202108669
W. Zhang, F. Ma, Q. Wu, et al., Energy Environ. Mater. (2022) 1–8.
Z. Jiang, L. Liu, Z. Han, et al., Angew. Chem. Int. Ed. 58 (2019) 11374–11378.
doi: 10.1002/anie.201905712
H. Zhang, Z. Zeng, F. Ma, et al., Adv. Funct. Mater. 33 (2023) 2212000.
doi: 10.1002/adfm.202212000
F. Liu, W. Wang, Y. Yin, et al., Sci. Adv. 4 (2018) 5383–5392.
doi: 10.1109/bigdata.2018.8622198
Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Nat. Energy 4 (2019) 365–373.
doi: 10.1038/s41560-019-0349-7
L. Ma, S. Chen, X. Li, et al., Angew. Chem. Int. Ed. 132 (2020) 24044–24052.
doi: 10.1002/ange.202011788
Binhan Zhao , Zheng Li , Lan Zheng , Zhichao Ye , Yuyang Yuan , Shanshan Zhang , Bo Liang , Tianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810
Mengya Ge , Zijie Zhou , Huaiyang Zhu , Ying Wang , Chao Wang , Chao Lai , Qinghong Wang . Multifunctional gel electrolytes for high-performance zinc metal batteries. Chinese Chemical Letters, 2025, 36(7): 110121-. doi: 10.1016/j.cclet.2024.110121
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Yayun Shi , Congcong Liu , Zhijun Zuo , Xiaowei Yang . Self-assembled ultrathick MoS2 conductive hydrogel membrane via ionic gelation for superior capacitive energy storage. Chinese Chemical Letters, 2025, 36(6): 109772-. doi: 10.1016/j.cclet.2024.109772
Haotian Zhang , Shengfa Feng , Mufan Cao , Xiong Xiong Liu , Pengcheng Yuan , Yaping Wang , Min Gao , Long Pan , Zhengming Sun . Al2O3 coated polyimide porous films enable thin yet strong polymer-in-salt solid-state electrolytes for dendrite-free lithium metal batteries. Chinese Chemical Letters, 2025, 36(8): 111096-. doi: 10.1016/j.cclet.2025.111096
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
Zheyu Li , Huwei Li , Yao Li , Xinyu Fu , Hongxia Yue , Qingxing Yang , Jing Feng , Xinyu Wang , Hongjie Zhang . The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2025, 36(4): 109800-. doi: 10.1016/j.cclet.2024.109800
Hongfei Li , Hao Chen , Qi Kang , Lihe Guo , Xingyi Huang , Haiping Xu . Gel polymer electrolyte for flexible and stretchable lithium metal battery: Advances and prospects. Chinese Chemical Letters, 2025, 36(9): 110325-. doi: 10.1016/j.cclet.2024.110325
Hong-Yu Chu , Guang-Chi Liu , Fu-Xue Wang , Lian-Sheng Cui , Chong-Chen Wang . Microcystis aeruginosa removal over MOFs-based materials and the evaluation methods: State-of-the-art review. Chinese Chemical Letters, 2025, 36(10): 110745-. doi: 10.1016/j.cclet.2024.110745
Jun Guo , Zhenbang Zhuang , Wanqiang Liu , Gang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803
Lu Cheng , Jinghua Quan , Hongyan Li . Recent advances in antimony-based anode materials for potassium-ion batteries: Material selection, structural design and storage mechanisms. Chinese Chemical Letters, 2025, 36(9): 110685-. doi: 10.1016/j.cclet.2024.110685
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Mengxiao Yang , Haicheng Huang , Shiyi Shen , Xinxin Liu , Mengyu Liu , Jiahua Guo , Fenghui Yang , Baoli Zha , Jiansheng Wu , Sheng Li , Fengwei Huo . Flexible aqueous zinc-ion battery with low-temperature resistant leather gel electrolyte. Chinese Chemical Letters, 2025, 36(6): 109988-. doi: 10.1016/j.cclet.2024.109988
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
Shili Wang , Mamitiana Roger Razanajatovo , Xuedong Du , Shunli Wan , Xin He , Qiuming Peng , Qingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140