Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds
-
* Corresponding authors.
E-mail addresses: luxi@mail.ustc.edu.cn (X. Lu), fuyao@ustc.edu.cn (Y. Fu).
Citation:
Lei Wan, Yizhou Tong, Xi Lu, Yao Fu. Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds[J]. Chinese Chemical Letters,
;2024, 35(7): 109283.
doi:
10.1016/j.cclet.2023.109283
S. Chen, Y. Zhao, Chin. J. Chem. 38 (2020) 952–958.
doi: 10.1002/cjoc.202000084
C.W. Cheung, F.E. Zhurkin, X. Hu, J. Am. Chem. Soc. 137 (2015) 4932–4935.
doi: 10.1021/jacs.5b01784
W.D. Chu, F. Guo, L. Yu, et al., Chin. J. Chem. 36 (2018) 217–222.
doi: 10.1002/cjoc.201700633
S. Fan, C. Zheng, K. Zheng, et al., Org. Lett. 23 (2021) 3190–3194.
doi: 10.1021/acs.orglett.1c00906
V.J. Geiger, G. Lefèvre, I. Fleischer, Chem. Eur. J. 28 (2022) e202202212.
doi: 10.1002/chem.202202212
S. Mondal, T. Pinkert, C.G. Daniliuc, et al., Angew. Chem. Int. Ed. 60 (2021) 5688–5692.
doi: 10.1002/anie.202015249
L. Qi, X. Pang, K. Yin, et al., Chin. Chem. Lett. 33 (2022) 5061–5064.
doi: 10.1016/j.cclet.2022.03.070
R. Sakamoto, T. Kato, S. Sakurai, et al., Org. Lett. 20 (2018) 1400–1403.
doi: 10.1021/acs.orglett.8b00173
X. Tian, J. Kaur, S. Yakubov, et al., ChemSusChem 15 (2022) e202200906.
doi: 10.1002/cssc.202200906
Q. Yang, N.R. Babij, S. Good, Org. Process Res. Dev. 23 (2019) 2608–2626.
doi: 10.1021/acs.oprd.9b00377
Y. Zhao, J.T. Merrett, J. Jin, et al., Org. Chem. Front. 10 (2023) 759–766.
doi: 10.1039/d2qo01581a
M. Amatore, C. Gosmini, Chem. Eur. J. 16 (2010) 5848–5852.
doi: 10.1002/chem.201000178
M. Corpet, X.Z. Bai, C. Gosmini, Adv. Synth. Catal. 356 (2014) 2937–2942.
doi: 10.1002/adsc.201400369
C. Dorval, E. Dubois, Y. Bourne-Branchu, et al., Adv. Synth. Catal. 361 (2019) 1777–1780.
doi: 10.1002/adsc.201801577
C. Dorval, M. Tricoire, J.M. Begouin, et al., ACS Catal. 10 (2020) 12819–12827.
doi: 10.1021/acscatal.0c03903
C. Gosmini, J.M. Bégouin, A. Moncomble, Chem. Commun. (2008) 3221–3233.
doi: 10.1039/b805142a
X. Qian, A. Auffrant, A. Felouat, et al., Angew. Chem. Int. Ed. 50 (2011) 10402–10405.
doi: 10.1002/anie.201104390
L. Huang, A.M. Olivares, D.J. Weix, Angew. Chem. Int. Ed. 56 (2017) 11901–11905.
doi: 10.1002/anie.201706781
K. Kang, N.L. Loud, T.A. DiBenedetto, et al., J. Am. Chem. Soc. 143 (2021) 21484–21491.
doi: 10.1021/jacs.1c10907
J.M. Mouat, J.K. Widness, D.G. Enny, et al., ACS Catal. 13 (2023) 9018–9024.
doi: 10.1021/acscatal.3c01984
D.C. Salgueiro, B.K. Chi, I.A. Guzei, et al., Angew. Chem. Int. Ed. 61 (2022) e202205673.
doi: 10.1002/anie.202205673
Q. Lin, H. Gong, F. Wu, Org. Lett. 24 (2022) 8996–9000.
doi: 10.1021/acs.orglett.2c03598
Q. Lin, G. Ma, H. Gong, ACS Catal. 11 (2021) 14102–14109.
doi: 10.1021/acscatal.1c04239
D. Sun, G. Ma, X. Zhao, et al., Chem. Sci. 12 (2021) 5253–5258.
doi: 10.1039/d1sc00283j
C. Hu, J. Mena, I.V. Alabugin, Nat. Rev. Chem. 7 (2023) 405–423.
doi: 10.1038/s41570-023-00479-w
S. Kolle, S. Batra, Org. Biomol. Chem. 14 (2016) 11048–11060.
doi: 10.1039/C6OB01912A
Z. Zhao, F. Zhang, D. Wang, et al., Chin. J. Chem. 41 (2023) 3063–3081.
doi: 10.1002/cjoc.202300276
D.B. Biradar, H.M. Gau, Chem. Commun. 47 (2011) 10467–10469.
doi: 10.1039/c1cc14206b
J.M. Hammann, D. Haas, C.P. Tüllmann, et al., Org. Lett. 18 (2016) 4778–4781.
doi: 10.1021/acs.orglett.6b02119
J.L. Kneebone, W.W. Brennessel, M.L. Neidig, J. Am. Chem. Soc. 139 (2017) 6988–7003.
doi: 10.1021/jacs.7b02363
K. Mashima, H. Tsurugi, Y. Ueda, Synlett 34 (2022) 990–1000.
X. Mo, R. Guo, G. Zhang, Chin. J. Chem. 41 (2022) 481–489.
E. Negishi, L. Anastasia, Chem. Rev. 103 (2003) 1979–2017.
doi: 10.1021/cr020377i
J. Skotnitzki, V. Morozova, P. Knochel, Org. Lett. 20 (2018) 2365–2368.
doi: 10.1021/acs.orglett.8b00699
C. Wu, Q.H. Li, Tetrahedron 96 (2021) 132370.
doi: 10.1016/j.tet.2021.132370
Z. Cao, J. Li, Y. Sun, et al., Chem. Sci. 12 (2021) 4836–4840.
doi: 10.1039/d0sc05883a
R. Chinchilla, C. Nájera, Chem. Soc. Rev. 40 (2011) 5084–5121.
doi: 10.1039/c1cs15071e
M. Eckhardt, G.C. Fu, J. Am. Chem. Soc. 125 (2003) 13642–13643.
doi: 10.1021/ja038177r
Y. Gao, C. Feng, T. Seo, et al., Chem. Sci. 13 (2022) 430–438.
doi: 10.1039/D1SC05257H
M. Karak, L.C.A. Barbosa, G.C. Hargaden, RSC Adv. 4 (2014) 53442–53466.
doi: 10.1039/C4RA09105A
X. Mo, B. Chen, G. Zhang, Angew. Chem. Int. Ed. 59 (2020) 13998–14002.
doi: 10.1002/anie.202000860
P.P. Nair, R.M. Philip, G. Anilkumar, Org. Biomol. Chem. 19 (2021) 4228–4242.
doi: 10.1039/d1ob00280e
X. Zeng, C. Wang, W. Yan, et al., ACS Catal. 13 (2023) 2761–2770.
doi: 10.1021/acscatal.2c05901
X.Y. Dong, Y.F. Zhang, C.L. Ma, et al., Nat. Chem. 11 (2019) 1158–1166.
doi: 10.1038/s41557-019-0346-2
X. Li, M. Jiang, X. Zhu, et al., Org. Chem. Front. 9 (2022) 386–393.
doi: 10.1039/d1qo01548f
J. Yi, X. Lu, Y.Y. Sun, et al., Angew. Chem. Int. Ed. 52 (2013) 12409–12413.
doi: 10.1002/anie.201307069
W. Chen, Y. Cheng, T. Zhang, et al., J. Org. Chem. 86 (2021) 5166–5182.
doi: 10.1021/acs.joc.1c00079
Y. Dai, F. Wang, S. Zhu, et al., Chin. Chem. Lett. 33 (2022) 4074–4078.
doi: 10.1016/j.cclet.2021.12.050
M. Duan, Y. Wang, S. Zhu, Tetrahedron Lett. 114 (2023) 154247.
doi: 10.1016/j.tetlet.2022.154247
X. Jiang, B. Han, Y. Xue, et al., Nat. Commun. 12 (2021) 3792.
doi: 10.1038/s41467-021-24094-9
H. Wang, X. Wu, T. Xu, Angew. Chem. Int. Ed. 62 (2023) e202218299.
doi: 10.1002/anie.202218299
J. Yang, J. Zhang, L. Qi, et al., Chem. Commun. 51 (2015) 5275–5278.
doi: 10.1039/C4CC06344A
Y.L. Zheng, M. Ye, Chin. J. Chem. 38 (2020) 489–493.
doi: 10.1002/cjoc.201900543
C. Zhu, S.C. Lee, H. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202204212.
doi: 10.1002/anie.202204212
J. Guo, Y. Wang, Y. Li, et al., Adv. Synth. Catal. 362 (2020) 3898–3904.
doi: 10.1002/adsc.202000777
E. Le Du, J. Waser, Chem. Commun. 59 (2023) 1589–1604.
doi: 10.1039/D2CC06168F
Q.Q. Zhou, W. Guo, W. Ding, et al., Angew. Chem. Int. Ed. 54 (2015) 11196–11199.
doi: 10.1002/anie.201504559
A.R. Tripathy, A. Kumar, R. Rahmathulla A, et al., Org. Lett. 24 (2022) 5186–5191.
doi: 10.1021/acs.orglett.2c02018
L. Xia, M. Jin, Y. Jiao, et al., Org. Lett. 24 (2021) 364–368.
Y. Yamamoto, E. Kuroyanagi, H. Suzuki, et al., Adv. Synth. Catal. 363 (2021) 4932–4940.
doi: 10.1002/adsc.202100846
A. Guérinot, J. Cossy, Acc. Chem. Res. 53 (2020) 1351–1363.
doi: 10.1021/acs.accounts.0c00238
J.A. Killion, W.T. Darrow, M.R. Brennan, et al., Organometallics 41 (2021) 1769–1776.
X.G. Liu, C.J. Zhou, E. Lin, et al., Angew. Chem. Int. Ed. 57 (2018) 13096–13100.
doi: 10.1002/anie.201806799
Y. Li, D. Liu, L. Wan, et al., J. Am. Chem. Soc. 144 (2022) 13961–13972.
doi: 10.1021/jacs.2c06279
Y. Li, W. Nie, Z. Chang, et al., Nat. Catal. 4 (2021) 901–911.
doi: 10.1038/s41929-021-00688-w
B. Liu, D. Liu, X. Rong, et al., Angew. Chem. Int. Ed. 62 (2023) e202218544.
doi: 10.1002/anie.202218544
Z.L. Zhang, Z. Li, Y.T. Xu, et al., Angew. Chem. Int. Ed. 62 (2023) e202306381.
doi: 10.1002/anie.202306381
X. Ying, Y. Li, L. Li, et al., Angew. Chem. Int. Ed. 62 (2023) e202304177.
doi: 10.1002/anie.202304177
H.Y. Lu, Z.T. He, Chin. Chem. Lett. 34 (2023) 108105.
doi: 10.1016/j.cclet.2022.108105
L. Zhu, Z. Wang, S. Liu, et al., Chin. Chem. Lett. 30 (2019) 889–894.
doi: 10.1016/j.cclet.2019.03.024
W. Wu, J. Wang, Y. Wang, et al., Angew. Chem. Int. Ed. 56 (2017) 10476–10480.
doi: 10.1002/anie.201705620
H.P.R. Mangunuru, J.R. Yerabolu, G. Wang, Tetrahedron Lett. 56 (2015) 3361–3364.
doi: 10.1016/j.tetlet.2015.02.123
F. Jiang, Q. Ren, J. Organomet. Chem. 757 (2014) 72–78.
doi: 10.1016/j.jorganchem.2013.12.047
R.F. Turro, J.L.H. Wahlman, Z.J. Tong, et al., J. Am. Chem. Soc. 145 (2023) 14705–14715.
doi: 10.1021/jacs.3c02649
X. Zhang, J. Wang, S. -D. Yang, ACS Catal. 11 (2021) 14008–14015.
doi: 10.1021/acscatal.1c04128
H. Wang, X. Li, T. Xu, Sci. China Chem. 66 (2023) 2621–2625.
doi: 10.1007/s11426-023-1726-1
L. Xi, L. Du, Z. Shi, Chin. Chem. Lett. 33 (2022) 4287–4292.
doi: 10.1016/j.cclet.2022.01.077
Y. Xiao, W. Huang, Q. Shen, Chin. Chem. Lett. 33 (2022) 4277–4280.
doi: 10.1016/j.cclet.2022.01.020
Tian-Zhang Wang , Le-Yu Tang , Yu-Qiu Guan , Lingfei Hu , Gang Lu , Yu-Feng Liang . Nickel-catalyzed reductive alkynylation of ketoimines via unstrained C–C bond activation. Chinese Chemical Letters, 2025, 36(11): 111050-. doi: 10.1016/j.cclet.2025.111050
Jiyang Liu , Xiangzhang Tao , Zhenlei Zou , Jia Xu , Hui Shu , Yi Pan , Weigang Zhang , Shengyang Ni , Yi Wang . Modular and practical synthesis of gem-difluoroalkenes via consecutive Ni-catalyzed reductive cross-coupling. Chinese Chemical Letters, 2025, 36(7): 110461-. doi: 10.1016/j.cclet.2024.110461
Peng Guo , Shicheng Dong , Xiang-Gui Zhang , Bing-Bin Yang , Jun Zhu , Ke-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Fuyang Yue , Mingxing Li , Fei Yuan , Hongjian Song , Yuxiu Liu , Qingmin Wang . Deboronative cross-coupling enabled by nickel metallaphotoredox catalysis. Chinese Chemical Letters, 2025, 36(12): 111053-. doi: 10.1016/j.cclet.2025.111053
Long Jin , Jian Han , Dongmei Fang , Min Wang , Jian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
Jialin Huang , Liying Fu , Zhanyong Tang , Xiaoqiang Ma , Xingda Zhao , Depeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
Ping Wang , Chunmao Chen , Hongwei Ren , Erhong Duan . A review of carbon dots in synthesis strategies, photoluminescence mechanisms, and applications in wastewater treatment. Chinese Chemical Letters, 2025, 36(9): 110725-. doi: 10.1016/j.cclet.2024.110725
Zhi-Peng Bao , Hefei Yang , Ru-Han A , Yuanrui Wang , Xiao-Feng Wu . Carbonylative five-component synthesis of amides and esters with α-quaternary carbon center. Chinese Chemical Letters, 2025, 36(11): 111150-. doi: 10.1016/j.cclet.2025.111150
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Bohan Zhang , Bingzhe Wang , Guichuan Xing , Zikang Tang , Songnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358
Yuetong Gao , Tong Mu , Xinyue Hu , Yang Pang , Chengji Zhao . Facile synthesis of all-carbon fluorinated backbone polymers containing sulfide linkage as proton exchange membranes for fuel cells. Chinese Chemical Letters, 2025, 36(6): 110763-. doi: 10.1016/j.cclet.2024.110763
Jin ZHANG , Yuting WANG , Bin YU , Yuxin ZHONG , Yufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028
Xinyuan Li , Zhuozhu Li , Wenzhong Huang , Jiantao Li , Wei Zhang , Shihao Feng , Hao Fan , Zhuo Chen , Sungsik Lee , Congcong Cai , Liang Zhou . Solvent-free synthesis of Co single atom and nanocluster decorated N-doped carbon for efficient oxygen reduction. Chinese Chemical Letters, 2025, 36(9): 110716-. doi: 10.1016/j.cclet.2024.110716
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199