Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles
-
* Corresponding authors.
E-mail addresses: drfwang@ustc.edu.cn (F. Wang), neurosurgeonwf1@ustc.edu.cn (F. Wang)
Citation:
Yifei Zhang, Yuncong Xue, Laiwei Gao, Rui Liao, Feng Wang, Fei Wang. Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles[J]. Chinese Chemical Letters,
;2024, 35(6): 109217.
doi:
10.1016/j.cclet.2023.109217
C.B. Anfinsen, Science 181 (1973) 223–230.
doi: 10.1126/science.181.4096.223
H. Zhang, L. Zhang, J. You, et al., CCS Chem. 3 (2020) 2143–2154.
M.A.J. Gillissen, I.K. Voets, E.W. Meijer, A.R.A. Palmans, Polym. Chem. 3 (2012) 3166–3174.
doi: 10.1039/c2py20350b
Y. Liu, S. Pujals, P.J.M. Stals, et al., J. Am. Chem. Soc. 140 (2018) 3423–3433.
doi: 10.1021/jacs.8b00122
T. Terashima, T. Mes, T.F. De Greef, et al., J. Am. Chem. Soc. 133 (2011) 4742–4745.
doi: 10.1021/ja2004494
I. Perez-Baena, F. Barroso-Bujans, U. Gasser, et al., ACS Macro Lett. 2 (2013) 775–779.
doi: 10.1021/mz4003744
Y. Chen, S. Sun, D. Lu, Y. Shi, Y. Yao, Chin. Chem. Lett. 30 (2019) 37–43.
doi: 10.1080/09593330.2017.1377769
J. Yang, H. Wang, Z. Yin, et al., Sci. China Chem. 65 (2022) 2252–2259.
doi: 10.1007/s11426-022-1311-3
J. Zhang, G. Gody, M. Hartlieb, et al., Macromolecules 49 (2016) 8933–8942.
doi: 10.1021/acs.macromol.6b01962
J.F. Hoffmann, A.H. Roos, F.J. Schmitt, D. Hinderberger, W.H. Binder, Angew. Chem. Int. Ed. 60 (2021) 7820–7827.
doi: 10.1002/anie.202015179
D. Xiang, X. Chen, L. Tang, B. Jiang, Z. Yang, CCS Chem. 1 (2019) 407–430.
doi: 10.31635/ccschem.019.20190035
Y. Zhou, Y. Qu, Q. Yu, et al., Polym. Chem. 9 (2018) 3238–3247.
doi: 10.1039/c8py00481a
G.M.T. Huurne, A.R.A. Palmans, E.W. Meijer, CCS Chem. 1 (2019) 64–82.
doi: 10.31635/ccschem.019.20180036
H. Frisch, J.P. Menzel, F.R. Bloesser, et al., J. Am. Chem. Soc. 140 (2018) 9551–9557.
doi: 10.1021/jacs.8b04531
F. Xu, Z. Fang, D. Yang, et al., ACS Appl. Mater. Interfaces 6 (2014) 6717–6723.
doi: 10.1021/am500427e
F. Zhou, M. Xie, D. Chen, Macromolecules 47 (2014) 365–372.
doi: 10.1021/ma401589z
D. Xiang, B. Jiang, F. Liang, L. Yan, Z. Yang, Macromolecules 53 (2020) 1063–1069.
doi: 10.1021/acs.macromol.9b02388
Z. Ji, J. Li, G. Chen, M. Jiang, ACS Macro Lett. 5 (2016) 588–592.
doi: 10.1021/acsmacrolett.6b00220
G. Yang, X. Zhang, Z. Kochovski, et al., J. Am. Chem. Soc. 138 (2016) 1932–1937.
doi: 10.1021/jacs.5b11733
C.M. Dobson, Nature 426 (2003) 884–890.
doi: 10.1038/nature02261
L. Yin, L. Han, F. Ge, et al., Angew. Chem. Int. Ed. 59 (2020) 15129–15134.
doi: 10.1002/anie.202003904
X. Cheng, T. Miao, Y. Ma, et al., Angew. Chem. Int. Ed. 60 (2021) 24430–24436.
doi: 10.1002/anie.202109084
T. Mes, R. van der Weegen, A.R. Palmans, E.W. Meijer, Angew. Chem. Int. Ed. 50 (2011) 5085–5089.
doi: 10.1002/anie.201100104
D. Jia, H. Zhong, S. Jiang, R. Yao, F. Wang, Chin. Chem. Lett. 33 (2022) 4900–4903.
doi: 10.1016/j.cclet.2022.02.081
L.Y. Guang, Z.F. Zhou, Y.F. Zhang, et al., Chin. J. Polym. Sci. 41 (2023) 585–592.
doi: 10.1007/s10118-023-2917-3
M. Gonzalez-Burgos, A. Latorre-Sanchez, J.A. Pomposo, Chem. Soc. Rev. 44 (2015) 6122–6142.
doi: 10.1039/C5CS00209E
P. Chen, H. Zhou, H. Cao, et al., Chin. Chem. Lett. 34 (2023) 108630.
doi: 10.1016/j.cclet.2023.108630
X. Zhang, L. Wang, J. Xu, et al., Acta Polym. Sin. 50 (2019) 973–987.
B. Qin, Z. Yin, X. Tang, et al., Prog. Polym. Sci. 100 (2020) 101167.
doi: 10.1016/j.progpolymsci.2019.101167
X. Zhang, Chin. J. Polym. Sci. 40 (2022) 541–542.
doi: 10.1007/s10118-022-2748-7
X. Zheng, Q. Miao, W. Wang, D.H. Qu, Chin. Chem. Lett. 29 (2018) 1621–1624.
doi: 10.1016/j.cclet.2018.04.002
Y. Wang, H. Zhang, Z. Zhang, et al., Aggregate 3 (2022) e206.
doi: 10.1002/agt2.206
Y. Xue, S. Jiang, H. Zhong, Z. Chen, F. Wang, Angew. Chem. Int. Ed. 61 (2022) e202110766.
doi: 10.1002/anie.202110766
Z. Chen, A. Lohr, C.R. Saha-Moller, F. Wurthner, Chem. Soc. Rev. 38 (2009) 564–584.
doi: 10.1039/B809359H
Y.K. Zhao, Z.Z. Gao, H. Wang, D.W. Zhang, Z.T. Li, Chin. Chem. Lett. 30 (2019) 127–130.
doi: 10.1016/j.cclet.2018.10.016
M. Martínez-Abadía, R. Giménez, M.B. Ros, Adv. Mater. 30 (2018) 1704161.
doi: 10.1002/adma.201704161
J. Mei, N.L.C. Leung, R.T.K. Kwok, J.W.Y. Lam, B.Z. Tang, Chem. Rev. 115 (2015) 11718–11940.
doi: 10.1021/acs.chemrev.5b00263
Q. Li, Z. Hu, X. Ji, Chin. Chem. Lett. 35 (2024) 108741.
doi: 10.1016/j.cclet.2023.108741
M. Zuo, W. Qian, M. Hao, et al., Chin. Chem. Lett. 32 (2021) 1381–1384.
doi: 10.1016/j.cclet.2020.09.033
Z. Guo, G. Li, H. Wang, et al., J. Am. Chem. Soc. 143 (2021) 9215–9221.
doi: 10.1021/jacs.1c04288
Q. Feng, N. Li, Z. Zhang, et al., Chin. Chem. Lett. 34 (2023) 108439.
doi: 10.1016/j.cclet.2023.108439
C.C. Lee, C. Grenier, E.W. Meijer, A.P.H.J. Schenning, Chem. Soc. Rev. 38 (2009) 671–683.
R. Liao, F. Wang, Y. Guo, Y. Han, F. Wang, J. Am. Chem. Soc. 144 (2022) 9775–9784.
doi: 10.1021/jacs.2c02270
F. Wang, R. Liao, F. Wang, Angew. Chem. Int. Ed. 62 (2023) e202305827.
P.L. Privalov, Temperature-induced changes in protein, in: C.B. Anfinsen, J.T. Edsall, F.M. Richards (Eds.), Advances in Protein Chemistry, Academic Press, New York, 1979, pp. 167–241.
E.B. Berda, E.J. Foster, E.W. Meijer, Macromolecules 43 (2010) 1430–1437.
doi: 10.1021/ma902393h
T. Dünnebacke, K.K. Kartha, J.M. Wahl, R.Q. Albuquerque, G. Fernández, Chem. Sci. 11 (2020) 10405–10413.
doi: 10.1039/d0sc03442h
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Bingbing Shi , Yuchun Wang , Yi Zhou , Xing-Xing Zhao , Yizhou Li , Nuoqian Yan , Wen-Juan Qu , Qi Lin , Tai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540
Jun Dong , Senyuan Tan , Sunbin Yang , Yalong Jiang , Ruxing Wang , Jian Ao , Zilun Chen , Chaohai Zhang , Qinyou An , Xiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
Chang LIU , Chao ZHANG , Tongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305
Qianyun Ye , Yuanyuan Liang , Yuhe Yuan , Xiaohuan Sun , Liqi Zhu , Xuan Wu , Jie Han , Rong Guo . pH-responsive chiral supramolecular cysteine-Zn2+-indocyanine green assemblies for triple-level chirality-specific anti-tumor efficacy. Chinese Chemical Letters, 2025, 36(5): 110432-. doi: 10.1016/j.cclet.2024.110432
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Yiwen Xu , Chaozheng He , Chenxu Zhao , Ling Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Hong-Jin Liao , Zhu Zhuo , Qing Li , Yoshihito Shiota , Jonathan P. Hill , Katsuhiko Ariga , Zi-Xiu Lu , Lu-Yao Liu , Zi-Ang Nan , Wei Wang , You-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052