Activatable photoacoustic bioprobe for visual detection of aging in vivo
-
* Corresponding author.
E-mail address: weiyinglin2013@163.com (W. Lin).
Citation:
Zihong Li, Jie Cheng, Ping Huang, Guoliang Wu, Weiying Lin. Activatable photoacoustic bioprobe for visual detection of aging in vivo[J]. Chinese Chemical Letters,
;2024, 35(4): 109153.
doi:
10.1016/j.cclet.2023.109153
C. Debes, A. Papadakis, S. Gronke, O. Karalay, L.S. Tain, et al., Nature 616 (2023) 814–821.
doi: 10.1038/s41586-023-05922-y
T. Niccoli, L. Partridge, Curr. Biol. 22 (2012) 741–752.
doi: 10.1016/j.cub.2012.07.024
J.L. Schneider, J.H. Rowe, C. Garcia-de-Alba, et al., Cell 184 (2021) 1990–2019.
doi: 10.1016/j.cell.2021.03.005
A.V. Poznyak, N.K. Sadykhov, A.G. Kartuesov, et al., Int. J. Mol. Sci. 23 (2022) 13.
T.W. Wang, Y. Johmura, N. Suzuki, S. Omori, et al., Nature 611 (2022) 358.
doi: 10.1038/s41586-022-05388-4
A.L. Roy, F. Sierra, K. Howcroft, et al., Cell 183 (2020) 1143–1146.
doi: 10.1016/j.cell.2020.10.032
K. Evangelou, P.V.S. Vasileiou, A. Papaspyropoulos, et al., Physiol. Rev. 103 (2023) 40.
D. Carmona-Gutierrez, A.L. Hughes, F. Madeo, C. Ruckenstuhl, Ageing Res. Rev. 32 (2016) 2–12.
doi: 10.1016/j.arr.2016.04.009
R. Waziry, C.P. Ryan, D.L. Corcoran, et al., Nat. Aging 3 (2023) 248–257.
doi: 10.1038/s43587-022-00357-y
G.E. Neurohr, R.L. Terry, J. Lengefeld, et al., Cell 176 (2019) 1083.
doi: 10.1016/j.cell.2019.01.018
J. Campisi, P. Kapahi, G.J. Lithgow, et al., Nature 571 (2019) 183–192.
doi: 10.1038/s41586-019-1365-2
A. Santoro, E. Bientinesi, D. Monti, Ageing Res. Rev. 71 (2021) 19.
P. Hari, F.R. Millar, N. Tarrats, et al., Sci. Adv. 5 (2019) 14.
S. Wang, S. Hu, Y. Mao, Aging Med. 4 (2021) 153–158.
doi: 10.1002/agm2.12151
J.M. Harland, Early Mediev. Eur. 29 (2021) 636–639.
doi: 10.1111/emed.12508
G. Katsuumi, I. Shimizu, M. Suda, Y. Yoshida, et al., Eur. Heart J. 41 (2020) 3746.
S.H. He, N.E. Sharpless, Cell 169 (2017) 1000–1011.
doi: 10.1016/j.cell.2017.05.015
A. Hernandez-Segura, J. Nehme, M. Demaria, Trends Cell Biol. 28 (2018) 436–453.
doi: 10.1016/j.tcb.2018.02.001
C.D. Camell, M.J. Yousefzadeh, Y. Zhu, et al., Science 373 (2021) 47.
doi: 10.1126/science.abj1003
X. Li, W. Qiu, J. Li, et al., Chem. Sci. 11 (2020) 7292–7301.
doi: 10.1039/d0sc01234c
Y. Su, B. Yu, S. Wang, H. Cong, Y. Shen, Biomaterials 271 (2021) 120717.
doi: 10.1016/j.biomaterials.2021.120717
Y.L. Qi, H.R. Wang, L.L. Chen, et al., Coord. Chem. Rev. 445 (2021) 214068.
doi: 10.1016/j.ccr.2021.214068
L. Fu, Y. Tan, Y. Ding, W. Qing, Y. Wang, Chin. Chem. Lett. 35 (2024) 108886.
doi: 10.1016/j.cclet.2023.108886
Z. Wang, J. Li, J. Chen, et al., Chin. Chem. Lett. 34 (2023) 108507.
doi: 10.1016/j.cclet.2023.108507
R. Chen, W. Li, R. Li, et al., Chin. Chem. Lett. 34 (2023) 107845.
doi: 10.1016/j.cclet.2022.107845
L. Wu, J. Liu, P. Li, B. Tang, T.D. James, Coord. Chem. Rev. 50 (2021) 702–734.
doi: 10.1039/d0cs00861c
J. Krämer, R. Kang, L.M. Grimm, et al., Chem. Rev. 122 (2022) 3459–3636.
doi: 10.1021/acs.chemrev.1c00746
J. Huang, K. Pu, Angew. Chem. Int. Ed. 59 (2020) 11717–11731.
doi: 10.1002/anie.202001783
L.V. Wang, S. Hu, Science 335 (2012) 1458–1462.
doi: 10.1126/science.1216210
L.L. Zeng, G.C. Ma, J. Lin, P. Huang, Small 14 (2018) 18.
Y. Wu, S. Huang, J. Wang, et al., Nat. Commun. 9 (2018) 3983.
doi: 10.1038/s41467-018-06499-1
R.S. Mezrich, Radiology 291 (2019) 50–51.
Z.X. Zhao, C.B. Swartchick, J. Chan, Chem. Soc. Rev. 51 (2022) 829–868.
doi: 10.1039/d0cs00771d
E. Fitsiou, A. Soto-Gamez, M. Demaria, Semin. Cancer Biol. 81 (2022) 5–13.
doi: 10.1016/j.semcancer.2021.03.021
S. Wang, B. Zhu, B. Wang, et al., Chin. Chem. Lett. 32 (2021) 1795–1798.
doi: 10.1016/j.cclet.2020.12.039
D. Ma, S. Hou, C. Bae, et al., Chin. Chem. Lett. 32 (2021) 3886–3889.
doi: 10.1016/j.cclet.2021.05.048
J.C. Acosta, J. Gil, Trends Cell Biol. 22 (2012) 211–219.
doi: 10.1016/j.tcb.2011.11.006
Xianzhu Luo , Feifei Yu , Rui Wang , Tian Su , Pan Luo , Pengfei Wen , Fabiao Yu . A near-infrared two-photon fluorescent probe for the detection of HClO in inflammatory and tumor-bearing mice. Chinese Chemical Letters, 2025, 36(7): 110531-. doi: 10.1016/j.cclet.2024.110531
Keliang Li , Guoqiang Dong , Shanchao Wu , Chunquan Sheng . Discovery of an activatable near-infrared fluorescent and theranostic PROTAC for tumor-targeted detecting and degrading of BRD4. Chinese Chemical Letters, 2025, 36(6): 110280-. doi: 10.1016/j.cclet.2024.110280
Yupeng Liu , Hui Wang , Songnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618
Yudi Cheng , Xiao Wang , Jiao Chen , Zihan Zhang , Jiadong Ou , Mengyao She , Fulin Chen , Jianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156
Yanyan Ma , Lizhen Xu , Muxin Xu , Jie Niu , Wei Xu , Weiying Lin . All in one: An in-situ activated tumor theranostic agent for NIR-Ⅱ fluorescence imaging guided surgical resection and photothermal therapy. Chinese Chemical Letters, 2025, 36(11): 110850-. doi: 10.1016/j.cclet.2025.110850
Wenxiang Ma , Xinyu He , Tianyi Chen , De-Li Ma , Hongzheng Chen , Chang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099
Dandan Tang , Ningge Xu , Yuyang Fu , Wei Peng , Jinsheng Wu , Heng Liu , Fabiao Yu . Rationally designed an innovative proximity labeling near-infrared fluorogenic probe for imaging of peroxynitrite in acute lung injury. Chinese Chemical Letters, 2025, 36(5): 110082-. doi: 10.1016/j.cclet.2024.110082
Meiling Zhao , Yao Lu , Yutao Zhang , Haoyun Xue , Zhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105
Xu Qu , Baohua Ji , Haocheng Gong , Guangwei Wang , Liang-Liang Gao , Jing Zhang , Jianjian Zhang , Yuan Guo . Dual-emissive near-infrared fluorogenic probe with enhanced cellular uptake capability for sensitive tracking of cellular polarity. Chinese Chemical Letters, 2025, 36(10): 110766-. doi: 10.1016/j.cclet.2024.110766
Wenping Dong , Mo Ma , Jingkang Li , Lanlan Xu , Dejiang Gao , Pinyi Ma , Daqian Song . Near-infrared fluorescent probe with large Stokes shift and long emission wavelength for rapid diagnosis of lung cancer via aerosol inhalation delivery. Chinese Chemical Letters, 2025, 36(5): 110147-. doi: 10.1016/j.cclet.2024.110147
Shupeng Han , Caiting Deng , Meichen Zheng , Linwei Yang , Hancun Kong , Yongchao He , Yinuo Zheng , Guowei Deng , Yu Ren , Feifei An . A GSH-responsive NIR-BODIPY fluorophore with large Stokes-shift for tumor specific fluorescence imaging and surgical guidance. Chinese Chemical Letters, 2025, 36(7): 110459-. doi: 10.1016/j.cclet.2024.110459
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
Zhouze Chen , Yujie Yan , Jun Luo , Pengnian Shan , Changyu Lu , Feng Guo , Weilong Shi . Piezoelectric effect synergistically boosted NIR-driven photothermal-assisted photocatalytic hydrogen evolution. Chinese Chemical Letters, 2025, 36(10): 111302-. doi: 10.1016/j.cclet.2025.111302
Yueyan Zhang , Zhihai Yang , Xia Suo , Ruicheng Wang , Xuewei Nie , Zafar Mahmood , Yanping Huo , Shi-Jian Su , Shaomin Ji . Tailoring luminescence properties of NIR-BODIPY emitters through donor engineering and intramolecular conformational locking for high-performance solution-processed OLEDs. Chinese Chemical Letters, 2025, 36(12): 111071-. doi: 10.1016/j.cclet.2025.111071
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
Mingrui Zhang , Lingyu Jin , Yuda Zhu , Junfeng Kou , Bo Liu , Jing Chen , Xiaolin Zhong , Xianghua Wu , Junfeng Zhang , Wenxiu Ren . A near-infrared Ⅱ fluorescent dye based on oxanthracene: Real-time imaging of drug-induced acute liver injury and photothermal therapy for tumor. Chinese Chemical Letters, 2025, 36(10): 110772-. doi: 10.1016/j.cclet.2024.110772
Botao QU , Qian WANG , Xiaogang NING , Yuxin ZHOU , Ruiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416
Ying Zhang , Chuang Shen , Jiaxu Zhang , Qi Shen , Fei Xu , Shengheng Wang , Jiuyi Hu , Faisal Saleem , Feng Huang , Zhimin Luo . Ultrasmall PtCu nanosheets as a broadband phototheranostic agent in near-infrared biowindow. Chinese Chemical Letters, 2025, 36(6): 111059-. doi: 10.1016/j.cclet.2025.111059
Yang Liu , Leilei Zhang , Kaixuan Liu , Ling-Ling Wu , Hai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759