Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides
-
* Corresponding author.
E-mail address: yushouyun@nju.edu.cn (S. Yu)
Citation:
Chen Li, Ziyuan Zhao, Shouyun Yu. Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides[J]. Chinese Chemical Letters,
;2024, 35(6): 109128.
doi:
10.1016/j.cclet.2023.109128
L.R. Malins, Curr. Opin. Chem. Biol. 46 (2018) 25–32.
O. Boutureira, G.J.L. Bernardes, Chem. Rev. 115 (2015) 2174–2195.
doi: 10.1021/cr500399p
J.Q. Liu, A. Shatskiy, B.S. Matsuura, M.D. Karkas, Synthesis 51 (2019) 2759-2791.
doi: 10.1055/s-0037-1611852
J.N. deGruyter, L.R. Malins, P.S. Baran, Biochemistry 56 (2017) 3863–3873.
doi: 10.1021/acs.biochem.7b00536
B.G. Davis, X.X. Chen, B. Josephson, ACS Cent. Sci. 9 (2023) 614–638.
doi: 10.1111/1468-5922.12917
S.J. McCarver, J.X. Qiao, J. Carpenter, et al., Angew. Chem. Int. Ed. 56 (2017) 728–732.
doi: 10.1002/anie.201608207
C. Bottecchia, M. Rubens, S.B. Gunnoo, et al., Angew. Chem. Int. Ed. 56 (2017) 12702–12707.
doi: 10.1002/anie.201706700
B.A. Vara, X.P. Li, S. Berritt, et al., Chem. Sci. 9 (2018) 336–344.
doi: 10.1039/C7SC04292B
N. Ichiishi, J.P. Caldwell, M. Lin, et al., Chem. Sci. 9 (2018) 4168–4175.
doi: 10.1039/c8sc00368h
S. Bloom, C. Liu, D.K. Kolmel, et al., Nat. Chem. 10 (2018) 205–211.
doi: 10.1038/nchem.2888
P.G. Arnison, M.J. Bibb, G. Bierbaum, et al., Nat. Prod. Rep. 30 (2013) 1568.
doi: 10.1039/c3np90040a
M.A. Ortega, W.A. van der Donk, Cell. Chem. Biol. 23 (2016) 31–44.
doi: 10.1016/j.chembiol.2015.11.012
J.M. Chalker, S.B. Gunnoo, O. Boutureira, et al., Chem. Sci. 2 (2011) 1666–1667.
doi: 10.1039/c1sc00185j
S.B. Gunnoo, A. Madder, ChemBioChem 17 (2016) 529–553.
doi: 10.1002/cbic.201500667
H.G. Viehe, Z. Janousek, R. Merenyi, L. Stella, Acc. Chem. Res. 18 (1985) 148–154.
doi: 10.1021/ar00113a004
T.H. Wright, B.J. Bower, J.M. Chalker, et al., Science 354 (2016) aag1465.
doi: 10.1126/science.aag1465
A. Yang, S. Ha, J. Ahn, et al., Science 354 (2016) 623–626.
doi: 10.1126/science.aah4428
B. Josephson, C. Fehl, P.G. Isenegger, et al., Nature 585 (2020) 530–537.
doi: 10.1038/s41586-020-2733-7
A.D. de Bruijn, G. Roelfes, Chem. Eur. J. 24 (2018) 11314–11318.
doi: 10.1002/chem.201803144
M. Imiolek, G. Karunanithy, W.L. Ng, et al., J. Am. Chem. Soc. 140 (2018) 1568–1571.
doi: 10.1021/jacs.7b10230
A.J. Parodi, Biochim. BioPhys. Acta 1426 (1999) 287–295.
doi: 10.1016/S0304-4165(98)00130-5
J.N. Arnold, M.R. Wormald, R.B. Sim, P.M. Rudd, R.A. Dwek, Annu. Rev. Immunol. 25 (2007) 21–50.
doi: 10.1146/annurev.immunol.25.022106.141702
Y. Yang, B. Yu, Chem. Rev. 117 (2017) 12281–12356.
doi: 10.1021/acs.chemrev.7b00234
W. Yan, M. Zheng, P. Chuang, et al., Chin. Chem. Lett. 34 (2023) 108021.
doi: 10.1016/j.cclet.2022.108021
W. Zhu, Q. Sun, H. Chang, et al., Chin. J. Chem. 40 (2022) 571–576.
doi: 10.1002/cjoc.202100658
K.L. Lu, Y. Ma, S. Liu, S. Guo, Y. Zhang, Chin. J. Chem. 40 (2022) 681–686.
doi: 10.1002/cjoc.202100438
A. Tamburrini, C. Colombo, A. Bernardi, Med. Res. Rev. 40 (2020) 495–531.
doi: 10.1002/med.21625
P.H. Seeberger, D.B. Werz, Nature 446 (2007) 1046–1105.
doi: 10.1038/nature05819
D.C. Koester, A. Holkenbrink, D.B. Werz, Synthesis 19 (2010) 3217–3242.
A. Dondoni, A. Marra, Chem. Rev. 100 (2000) 4395–4422.
doi: 10.1021/cr9903003
R. Mao, S. Xi, S. Shah, et al., J. Am. Chem. Soc. 143 (2021) 12699–12707.
doi: 10.1021/jacs.1c05567
D. Takeda, M. Yoritate, H. Yasutomi, et al., Org. Lett. 23 (2021) 1940–1944.
doi: 10.1021/acs.orglett.1c00402
E.M. Miller, M.A. Walczak, Org. Lett. 23 (2010) 4289–4293.
K. Mukai, S. Kasuya, Y. Nakagawa, D. Urabe, M. Inoue, Chem. Sci. 6 (2015) 2765–2769.
doi: 10.1039/C5SC00457H
P. Ji, Y. Zhang, Y. Wei, et al., Org. Lett. 21 (2019) 3086–3092.
doi: 10.1021/acs.orglett.9b00724
R. Qi, C. Wang, Z. Ma, et al., Angew. Chem. Int. Ed. 61 (2022) e202200822.
doi: 10.1002/anie.202200822
W. Shang, S.N. Su, R. Shi, et al., Angew. Chem. Int. Ed. 60 (2021) 385–390.
doi: 10.1002/anie.202009828
Y.H. Liu, Y.N. Xia, T. Gulzar, et al., Nat. Commun. 12 (2021) 4924–4932.
doi: 10.1038/s41467-021-25127-z
H. Kessler, V. Wittmann, M. Kock, M. Kottenhahn, Angew. Chem. Int. Ed. 31 (1992) 902–904.
doi: 10.1002/anie.199209021
R. Hamzavi, C. Meyer, N. Metzler-Nolte, Org. Biomol. Chem. 4 (2006) 3648–3651.
doi: 10.1039/b607463d
G.A. Adamson, A.L.J. Beckwith, C.L.L. Chai, Aust. J. Chem. 57 (2004) 629–633.
doi: 10.1071/CH04054
L. Xia, W. Fan, X.A. Yuan, S. Yu, ACS Catal. 11 (2021) 9397–9406.
doi: 10.1021/acscatal.1c02088
L. Xia, M. Jin, Y. Jiao, S. Yu, Org. Lett. 24 (2022) 364–368.
doi: 10.1021/acs.orglett.1c04041
A. Chen, S. Zhao, Y. Han, et al., Chem. Sci. 14 (2023) 7569–7580.
doi: 10.1039/d3sc01995k
L. Poletti, A. Massi, G. Di Carmine, et al., Org. Lett. 25 (2023) 4862–4867.
doi: 10.1021/acs.orglett.3c01660
R.S. Andrews, J.J. Becker, M.R. Gagne, Angew. Chem. Int. Ed. 49 (2010) 7274–7276.
doi: 10.1002/anie.201004311
R. Persky, A. Albeck, J. Org. Chem. 65 (2000) 5632–5638.
doi: 10.1021/jo0003908
E.R. van Rijssel, D.V. Filippov, J.D. Codee, et al., J. Org. Chem. 80 (2015) 4553–4565.
doi: 10.1021/acs.joc.5b00419
T. Constantin, M. Zanini, D. Leonori, et al., Science 367 (2020) 1021–1026.
doi: 10.1126/science.aba2419
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866
Ao Sun , Zipeng Li , Shuchun Li , Xiangbao Meng , Zhongtang Li , Zhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972
Minjun Yin , Yuhui Lin , Manli Zhuang , Wei Xiao , Jie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926
Liangfeng Yang , Liang Zeng , Yanping Zhu , Qiuan Wang , Jinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685
Dake Liu , Shuyan Liu , Fanlei Hu , Zhongtang Li , Zhongjun Li . N-Glycosylated type Ⅱ collagen peptides as therapeutic saccharide vaccines for rheumatoid arthritis. Chinese Chemical Letters, 2024, 35(5): 108762-. doi: 10.1016/j.cclet.2023.108762
Hongjin Shi , Guoyin Yin , Xi Lu , Yangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674
Lijia Xu , Tong Zhong , Wei Zhao , Bing Yao , Lin Ding , Huangxian Ju . Chemoselective labeling-based spermatozoa glycan imaging reveals abnormal glycosylation in oligoasthenotspermia. Chinese Chemical Letters, 2024, 35(4): 108760-. doi: 10.1016/j.cclet.2023.108760
Hong-Tao Ji , Yu-Han Lu , Yan-Ting Liu , Yu-Lin Huang , Jiang-Feng Tian , Feng Liu , Yan-Yan Zeng , Hai-Yan Yang , Yong-Hong Zhang , Wei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Xiangyang Ji , Yishuang Chen , Peng Zhang , Shaojia Song , Jian Liu , Weiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Lin Zhang , Chaoran Li , Thongthai Witoon , Xingda An , Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Yunqiang Li , Yongxian Huang , Sinuo Li , He Huang , Zhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051
Chonglong He , Yulong Wang , Quan-Xin Li , Zichen Yan , Keyuan Zhang , Shao-Fei Ni , Xin-Hua Duan , Le Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472