Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects
-
* Corresponding authors.
E-mail addresses: lqye@ctgu.edu.cn (L. Ye), chem_ctgu@126.com (Y. Huang)
Citation:
Yuqing Zhu, Haohao Chen, Li Wang, Liqun Ye, Houle Zhou, Qintian Peng, Huaiyong Zhu, Yingping Huang. Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects[J]. Chinese Chemical Letters,
;2024, 35(4): 108884.
doi:
10.1016/j.cclet.2023.108884
R. Huang, J. Wu, E. Lin, et al., Nanoscale Adv. 3 (2021) 3159–3166.
doi: 10.1039/d1na00024a
T. Han, H. Zhang, W. Hu, et al., Environ. Sci. Pollut. Res. Int. 22 (2015) 8201–8215.
doi: 10.1007/s11356-014-3920-6
T.I. Moiseenko, Sci. Total Environ. 236 (1999) 19–39.
doi: 10.1016/S0048-9697(99)00280-6
S.A. Ostroumov, Russ. J. Org. Chem. 80 (2011) 2754–2761.
Y. Chen, X.M. Deng, J.Y. Wen, J. Zhu, Z.F. Bian, Appl. Catal. B 258 (2019) 118024.
doi: 10.1016/j.apcatb.2019.118024
W. Lv, L.J. Kong, S.Y. Lan, et al., J. Chem. Technol. Biotechnol. 92 (2017) 152–156.
doi: 10.1002/jctb.4981
J. Wang, C. Hu, L. Shi, et al., J. Mater. Chem. A 9 (2021) 12400–12432.
doi: 10.1039/d1ta02531g
S. Li, Z. Zhao, J. Zhao, et al., ACS Appl. Nano Mater. 3 (2020) 1063–1079.
doi: 10.1021/acsanm.0c00039
Z.R. Liu, X. Yu, L.L. Li, Chinese J Catal. 41 (2020) 534–549.
doi: 10.1016/S1872-2067(19)63431-5
J. Li, X. Liu, G. Zhao, et al., Sci. Total Environ. 869 (2023) 161767.
doi: 10.1016/j.scitotenv.2023.161767
V. Govorukha, M. Kamlah, V. Loboda, Y. Lapusta, Smart Mater. Sturct. 25 (2016) 023001.
doi: 10.1088/0964-1726/25/2/023001
W. Dong, H.Y. Xiao, Y.M. Jia, et al., Adv. Sci. 9 (2022) 2105368.
doi: 10.1002/advs.202105368
S. Li, Z.C. Zhao, D.F. Yu, Nano Energy 66 (2019) 104083.
doi: 10.1016/j.nanoen.2019.104083
S. Lan, X. Ke, Z. Li, et al., ACS ES&T Water 2 (2022) 367–375.
doi: 10.1021/acsestwater.1c00411
M. Acosta, N. Novak, V. Rojas, et al., Appl. Phys. Rev. 4 (2017) 041305.
doi: 10.1063/1.4990046
S.K. Ray, J. Cho, J. Hur, J. Environ. Manage 290 (2021) 112679.
doi: 10.1016/j.jenvman.2021.112679
J. Wu, Q. Xu, E. Lin, B. Yuan, et al., ACS Appl. Mater. Interfaces 10 (2018) 17842–17849.
doi: 10.1021/acsami.8b01991
R. Yuan, Z. Liu, P.V. Balachandran, et al., Adv. Mater. 30 (2018) 1702884.
doi: 10.1002/adma.201702884
P. Zhu, Y. Chen, J. Shi, Adv. Mater. 32 (2020) 2001976.
doi: 10.1002/adma.202001976
C.Y. Yu, M.X. Tan, C.D. Tao, et al., J. Am. Ceram. Soc. 11 (2022) 414–426.
doi: 10.1007/s40145-021-0544-4
X. Liu, L. Xiao, Y. Zhang, H. Sun, J. Materiomics 6 (2020) 256–262.
doi: 10.1016/j.jmat.2020.03.004
Y. Li, R. Li, Y. Zhai, et al., Appl. Surf. Sci. 570 (2021) 151146.
doi: 10.1016/j.apsusc.2021.151146
W. Qian, K. Zhao, D. Zhang, et al., ACS Appl. Mater. Interfaces 11 (2019) 27862–27869.
doi: 10.1021/acsami.9b07857
L. Shi, C. Lu, L. Chen, Q. Zhang, Y. Li, T. Zhang, X. Hao, J. Alloys Compd. 895 (2022) 162591.
doi: 10.1016/j.jallcom.2021.162591
R. Zhang, X. Wu, Y. Li, et al., RSC Adv. 10 (2020) 7443–7451.
doi: 10.1039/d0ra01101k
Y. Liu, Y. Ji, Y. Yang, Nanomaterials 11 (2021) 1724.
doi: 10.3390/nano11071724
Y. Bai, J. Zhao, Z. Lv, K. Lu, J. Mater. Sci. 55 (2020) 14112–14124.
doi: 10.1007/s10853-020-05053-z
Y. Chen, J. Fang, B. Dai, et al., Catal. Sci. Technol. 10 (2020) 2337–2342.
doi: 10.1039/c9cy02509j
B. Kumar, S.W. Kim, Nano Energy 1 (2012) 342–355.
doi: 10.1016/j.nanoen.2012.02.001
S. Li, M. Zhang, Y. Gao, B. Bao, S. Wang, Nano Energy 2 (2013) 1329–1336.
doi: 10.1016/j.nanoen.2013.06.015
Y. Li, H. Chen, L. Wang, et al., Ultrason. Sonochem. 78 (2021) 105754.
doi: 10.1016/j.ultsonch.2021.105754
Q. Nie, Y. Xie, J. Ma, J. Wang, G. Zhang, J. Cleaner Prod. 242 (2020) 118532.
doi: 10.1016/j.jclepro.2019.118532
R. Pagano, C. Ingrosso, G. Giancane, L. Valli, S. Bettini, Materials 13 (2020) 2938.
doi: 10.3390/ma13132938
H. Parangusan, D. Ponnamma, M.A.A. Al-Maadeed, Sci. Rep. 8 (2018) 754.
doi: 10.1038/s41598-017-19082-3
W. Wu, X. Yin, B. Dai, et al., Appl. Surf. Sci. 517 (2020) 146119.
doi: 10.1016/j.apsusc.2020.146119
C. Zhang, N. Li, D. Chen, et al., J. Alloys Compd. 885 (2021) 160987.
doi: 10.1016/j.jallcom.2021.160987
W.X. Ma, M.L. Lv, F.P. Cao, et al., J. Environ. Chem. Eng. 10 (2022) 107840.
doi: 10.1016/j.jece.2022.107840
J. Hu, C. Yu, C. Li, et al., Nano Energy 101 (2022) 107583.
doi: 10.1016/j.nanoen.2022.107583
X. Zhou, F. Yan, S. Wu, et al., Small 16 (2020) 2001573.
doi: 10.1002/smll.202001573
K. Fan, C. Yu, S. Cheng, S. Lan, M. Zhu, Surf. Interfaces 26 (2021) 101335.
doi: 10.1016/j.surfin.2021.101335
H. Huang, C. Zeng, K. Xiao, Y. Zhang, J. Colloid Interface Sci. 504 (2017) 257–267.
doi: 10.1016/j.jcis.2017.05.048
A. Durairaj, S. Ramasundaram, T. Sakthivel, et al., Appl. Surf. Sci. 493 (2019) 1268–1277.
doi: 10.1016/j.apsusc.2019.07.127
L. Li, M.A. Boda, C. Chen, et al., Cryst. Growth Des. 21 (2021) 7179–7185.
doi: 10.1021/acs.cgd.1c01026
X. Yang, X. Yang, Y. Peng, et al., Ind. Eng. Chem. Res. 61 (2022) 1704–1714.
doi: 10.1021/acs.iecr.1c03616
J. Hu, Y. Chen, Y. Zhou, et al., Appl. Catal. B 311 (2022) 121369.
doi: 10.1016/j.apcatb.2022.121369
S. Lan, C. Yu, F. Sun, et al., Nano Energy 93 (2022) 106792.
doi: 10.1016/j.nanoen.2021.106792
J.J. Long, T.T. Ren, J. Han, et al., Sep. Purif. Technol. 290 (2022) 120861.
doi: 10.1016/j.seppur.2022.120861
G. Jian, F. Xue, Y. Guo, et al., Materials 11 (2018) 2441.
doi: 10.3390/ma11122441
V. Teodoro, A. Barrios Trench, L. Guerreiro da Trindade, et al., Chem. Phys. Lett. 785 (2021) 139123.
doi: 10.1016/j.cplett.2021.139123
J. Chen, H. Lei, S. Ji, et al., J. Colloid Interface Sci. 601 (2021) 704–713.
doi: 10.1016/j.jcis.2021.05.151
M.Y. Cha, H. Liu, T.Y. Wang, et al., AIP Adv. 10 (2020) 065107.
doi: 10.1063/5.0010829
Y. Chen, S. Lan, M. Zhu, Chin. Chem. Lett. 32 (2021) 2052–2056.
doi: 10.1016/j.cclet.2020.11.016
S. Liu, B. Jing, C. Nie, et al., Environ. Sci. Nano 8 (2021) 784–794.
doi: 10.1039/D0EN01237H
J.M. Wu, W.E. Chang, Y.T. Chang, C.K. Chang, Adv. Mater. 28 (2016) 3718–3725.
doi: 10.1002/adma.201505785
X. Zhao, Y. Lei, G. Liu, et al., RSC Adv. 10 (2020) 38715–38726.
doi: 10.1039/D0RA06532C
C. Zheng, C. Ma, D. Wang, et al., Mater. Lett. 272 (2020) 127800.
doi: 10.1016/j.matlet.2020.127800
J.T. Lee, M.C. Lin, J.M. Wu, Nano Energy 98 (2022) 107280.
doi: 10.1016/j.nanoen.2022.107280
W.T. Yein, Q. Wang, Y. Li, X.H. Wu, Catal. Commun. 125 (2019) 61–65.
doi: 10.1016/j.catcom.2019.03.023
H. Lei, Q. He, M. Wu, et al., J. Hazard. Mater. 421 (2022) 126696.
doi: 10.1016/j.jhazmat.2021.126696
M.H. Wu, J.T. Lee, Y.J. Chung, M. Srinivaas, J.M. Wu, Nano Energy 40 (2017) 369–375.
doi: 10.1016/j.nanoen.2017.08.042
M. Chai, W. Tong, Z. Wang, et al., J. Hazard. Mater. 430 (2022) 128446.
doi: 10.1016/j.jhazmat.2022.128446
F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, J. Membr. Sci. 375 (2011) 1–27.
doi: 10.1016/j.memsci.2011.03.014
L. Wan, W. Tian, N. Li, et al., Nano Energy 94 (2022) 106930.
doi: 10.1016/j.nanoen.2022.106930
X. Zheng, Y. Liu, X. Liu, Q. Li, Y. Zheng, Ecotoxicol. Environ. Saf. 210 (2021) 111866.
doi: 10.1016/j.ecoenv.2020.111866
G. Dong, L. Yang, F. Wang, L. Zang, C. Wang, ACS Catal. 6 (2016) 6511–6519.
doi: 10.1021/acscatal.6b01657
R. Tang, D. Gong, Y. Zhou, et al., Appl. Catal. B 303 (2022) 120929.
doi: 10.1016/j.apcatb.2021.120929
R. Agrawal, H.D. Espinosa, Nano. Lett. 11 (2011) 786–790.
doi: 10.1021/nl104004d
Z. Kang, K. Ke, E. Lin, et al., J. Colloid Interface Sci. 607 (2022) 1589–1602.
doi: 10.1016/j.jcis.2021.09.007
R. Turner, P.A. Fuierer, R. Newnham, T.R. Shrout, Appl. Acoust. 41 (1994) 299–324.
doi: 10.1016/0003-682X(94)90091-4
Z.M. Dang, J.K. Yuan, J.W. Zha, et al., Prog. Mater. Sci. 57 (2012) 660–723.
doi: 10.1016/j.pmatsci.2011.08.001
M. Qin, F. Gao, J. Cizek, et al., Acta. Mater. 164 (2019) 76–89.
doi: 10.1016/j.actamat.2018.10.025
Z. Liang, C.F. Yan, S. Rtimi, J. Bandara, Appl. Catal B: Environ. 241 (2019) 256–269.
doi: 10.1016/j.apcatb.2018.09.028
J.F. Alder, J.J. McCallum, Analyst 108 (1983) 1169–1189.
doi: 10.1039/an9830801169
K.S. SUSLICK, Sonochemistry, Science 247 (1990) 1439–1445.
doi: 10.1126/science.247.4949.1439
N.N. Rosman, R.M. Yunus, L.J. Minggu, et al., Int. J. Hydroger Energy 43 (2018) 18925–18945.
doi: 10.1016/j.ijhydene.2018.08.126
P.F. Wu, X.M. Wang, W.J. Lin, L.X. Bai, Ultrasonics. Sonochem. 82 (2022) 105878.
doi: 10.1016/j.ultsonch.2021.105878
Timothy J. Mason, J.Phillip Lorimer, Applied Sonochemistry: the Uses of Power Ultrasound in Chemistry and Processing, Wiley-Vch, Weinheim, 2002.
S. Lan, C. Yu, E. Wu, M. Zhu, D.D. Dionysiou, ACS ES&T Eng. 2 (2022) 101–109.
C. Yu, J. He, S. Lan, W. Guo, M. Zhu, Environ. Sci. Ecotechnol. 10 (2022) 100165.
doi: 10.1016/j.ese.2022.100165
S. Lan, Y. Chen, L. Zeng, et al., J. Hazard. Mater. 393 (2020) 122448.
doi: 10.1016/j.jhazmat.2020.122448
B.M. Jun, J. Han, C.M. Park, Y. Yoon, Ultrason. Sonochem. 64 (2020) 104993.
doi: 10.1016/j.ultsonch.2020.104993
H. Lei, M. Wu, F. Mo, et al., Environ. Sci-Nano. 8 (2021) 1398–1407.
doi: 10.1039/D0EN01028F
W. Liu, P. Wang, Y. Ao, et al., Adv. Mater. 34 (2022) 2202508.
doi: 10.1002/adma.202202508
C. Yu, S. Lan, S. Cheng, L. Zeng, M. Zhu, J. Hazard. Mater. 424 (2022) 127440.
doi: 10.1016/j.jhazmat.2021.127440
M. Pan, C. Zhang, J. Wang, et al., Environ. Sci. Technol. 53 (2019) 8342–8351.
doi: 10.1021/acs.est.9b02355
J. Ling, K. Wang, Z. Wang, H. Huang, G. Zhang, Ultrason. Sonochem. 61 (2020) 104819.
doi: 10.1016/j.ultsonch.2019.104819
Y. Long, H. Xu, J. He, C. Li, M. Zhu, Surf. Interfaces 31 (2022) 102056.
doi: 10.1016/j.surfin.2022.102056
M. Li, H. Huang, S. Yu, et al., ChemCatChem 10 (2018) 4477–4496.
doi: 10.1002/cctc.201800859
S. Yu, H. Huang, F. Dong, et al., ACS Appl. Mater. Interfaces 7 (2015) 27925–27933.
doi: 10.1021/acsami.5b09994
H. Huang, X. Li, J. Wang, et al., ACS Catal. 5 (2015) 4094–4103.
doi: 10.1021/acscatal.5b00444
X. Li, J. Qiu, X. Chen, et al., Mater. Lett. 325 (2022) 132867.
doi: 10.1016/j.matlet.2022.132867
T. Chen, L. Liu, C. Hu, H. Huang, Chin. J. Catal. 42 (2021) 1413–1438.
doi: 10.1016/S1872-2067(20)63769-X
C. Lei, L. Song, S. Zhang, Ceram. Int. 46 (2020) 29344–29351.
doi: 10.1016/j.ceramint.2020.08.084
J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Integr. Ferroelectr. 126 (2011) 47–59.
doi: 10.1080/10584587.2011.574986
N. Wang, X. Luo, L. Han, et al., Nanomicro. Lett. 12 (2020) 81.
F. Mushtaq, X. Chen, M. Hoop, et al., iScience 4 (2018) 236–246.
doi: 10.1016/j.isci.2018.06.003
Z. Li, X. Meng, Z. Zhang, J. Photochem. Photobiol. C 35 (2018) 39–55.
doi: 10.1016/j.jphotochemrev.2017.12.002
J. Low, S. Cao, J. Yu, S. Wageh, Chem. Commun. 50 (2014) 10768–10777.
doi: 10.1039/C4CC02553A
Z.C. Tu, X. Hu, Phys. Rev. B. 74 (2006) 10768–10777.
Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, et al., J. Appl. Phys. 98 (2005) 11.
R. Araneo, F. Bini, M. Pea, et al., IEEE Trans. Nanotechnol. 15 (2016) 512–520.
doi: 10.1109/TNANO.2016.2538798
J. Zhang, R.J. Wang, C.Y. Wang, Phys. E (Amsterdam, Neth.) 46 (2012) 105–112.
doi: 10.1270/jsbbs.62.105
Y. Wen, J. Chen, X. Gao, et al., Nano Energy 101 (2022) 107614.
doi: 10.1016/j.nanoen.2022.107614
D. Yadav, N. Tyagi, H. Yadav, et al., J. Mater. Sci. 58 (2023) 223111.
H. Song, X. Meng, S. Wang, et al., J. Am. Chem. Soc. 141 (2019) 107394.
doi: 10.1016/j.cclet.2022.03.117
Y. Chen, M. Xu, J. Wen, et al., Nat. Sustain. 4 (2021) 618–626.
doi: 10.1038/s41893-021-00697-4
X. Li, Y. Chen, Y. Tao, et al., Chem. Catal. 2 (2022) 1315–1345.
doi: 10.1016/j.checat.2022.04.007
X. Ning, A. Hao, Y. Cao, et al., J. Colloid Interface Sci. 577 (2020) 290–299.
doi: 10.1016/j.jcis.2020.05.082
H. Wei, H. Wang, Y. Xia, et al., J. Mater. Chem. C 6 (2018) 12446–12467.
doi: 10.1039/c8tc04515a
K.S. Ramadan, D. Sameoto, S. Evoy, Smart. Mater. Struct. 23 (2014) 290–299.
A. Petchsuk, W. Supmak, A. Thanaboonsombut, J. Am. Ceram. Soc. 94 (2011) 2126–2134.
doi: 10.1111/j.1551-2916.2010.04367.x
Q. Lu, L. Liu, X. Lan, Y. Liu, J. Leng, Compos. Struct. 153 (2016) 843–850.
doi: 10.1016/j.compstruct.2016.07.008
X. Cui, X. Ni, Y. Zhang, J. Alloy. Compd. 675 (2016) 306–310.
doi: 10.1016/j.jallcom.2016.03.129
P. Saxena, P. Shukla, Adv. Compos. Hybrid Mater. 4 (2021) 8–26.
doi: 10.1007/s42114-021-00217-0
G.D. Zhu, Z.G. Zeng, L. Zhang, X.J. Yan, Comp. Mater. Sci. 44 (2008) 224–229.
doi: 10.1016/j.commatsci.2008.03.016
G. Kalimuldina, N. Turdakyn, I. Abay, et al., Sensors 20 (2020) 306–310.
J.A. Christman, R.R. Woolcott, A.I. Kingon, R.J. Nemanich, Appl. Phys. Lett. 73 (1998) 3851–3853.
doi: 10.1063/1.122914
H.J. Xiang, J. Yang, J.G. Hou, Q. Zhu, Appl. Phys. Lett. 89 (2006) 223111.
doi: 10.1063/1.2397013
E.K. Akdogan, A. Safari, J. Appl. Phys. 101 (2007) 064114.
doi: 10.1063/1.2713081
P. Ayyub, V.R. Palkar, S. Chattopadhyay, M. Multani, Phys. Rev. B 51 (1995) 6135–6138.
doi: 10.1103/PhysRevB.51.6135
S. Gorfman, H. Choe, N. Zhang, P. Thomas, U. Pietsch, Acta Cryst. 73 (2017) C824-C824.
L.H. Luo, P. Du, W.P. Li, W.D. Tao, H.B. Chen, J. Appl. Phys. 114 (2013) 124104.
doi: 10.1063/1.4823812
X.H. He, T.H. Kai, P. Ding, Environ. Chem. Lett. 19 (2021) 4563–4601.
doi: 10.1007/s10311-021-01295-8
H.L. Wang, L.S. Zhang, Z.G. Chen, et al., Chem. Soc. Rev. 43 (2014) 5234–5244.
doi: 10.1039/C4CS00126E
L. Guo, Y. Chen, Z. Ren, et al., Ultrason. Sonochem. 81 (2021) 105849.
doi: 10.1016/j.ultsonch.2021.105849
X. Li, J. Yu, J. Low, et al., J. Mater. Chem. A 3 (2015) 2485–2534.
doi: 10.1039/C4TA04461D
C. Liu, M. Peng, A. Yu, et al., Nano Energy 26 (2016) 417–424.
doi: 10.1016/j.nanoen.2016.05.041
Z. Liu, L. Wang, X. Yu, et al., Adv. Funct. Mater. 29 (2019) 1807279.
doi: 10.1002/adfm.201807279
J. Shi, M.B. Starr, X. Wang, Adv. Mater. 24 (2012) 4683–4691.
doi: 10.1002/adma.201104386
Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48 (2019) 2109–2125.
doi: 10.1039/C8CS00542G
S. Goktas, A. Goktas, J. Alloy. Compd. 863 (2021) 158734.
doi: 10.1016/j.jallcom.2021.158734
H.W. Lin, A. Jiang, S.B. Xing, et al., Nanomater 12 (2022) 910.
doi: 10.3390/nano12060910
V. Soni, P. Singh, A.A.P. Khan, et al., J. Nanostruct. Chem. 13 (2023) 129–166.
doi: 10.1007/s40097-021-00462-1
L. Zhou, S. Dai, S. Xu, Y. She, et al., Appl. Catal. B 291 (2021) 120019.
doi: 10.1016/j.apcatb.2021.120019
L. Wang, J. Wang, C. Ye, et al., Ultrason. Sonochem. 80 (2021) 105813.
doi: 10.1016/j.ultsonch.2021.105813
A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2 (2018) 65–81.
doi: 10.1038/s41570-018-0010-1
S. Lan, B. Jing, C. Yu, et al., Small 18 (2022) 2105279.
doi: 10.1002/smll.202105279
L. Pan, S. Sun, Y. Chen, et al., Adv. Energy Mater. 10 (2020) 2000214.
doi: 10.1002/aenm.202000214
Li Qin , Wenjing Wei , Keqing Wang , Xianbao Shi , Guixia Ling , Peng Zhang . Ultrasound-responsive heterojunction sonosensitizers for multifunctional synergistic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(7): 110777-. doi: 10.1016/j.cclet.2024.110777
Hanghang Zhao , Wenbo Qi , Xin Tan , Xing Xu , Fengmin Song , Xianzhao Shao . Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications. Chinese Chemical Letters, 2025, 36(6): 110898-. doi: 10.1016/j.cclet.2025.110898
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
Menglu Guo , Ying-Qi Song , Junfei Cheng , Guoqiang Dong , Xun Sun , Chunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392
Yunlong Sun , Wei Ding , Yanhao Wang , Zhening Zhang , Ruyun Wang , Yinghui Guo , Zhiyuan Gao , Haiyan Du , Dong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
Xinlong Zheng , Zhongyun Shao , Jiaxin Lin , Qizhi Gao , Zongxian Ma , Yiming Song , Zhen Chen , Xiaodong Shi , Jing Li , Weifeng Liu , Xinlong Tian , Yuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971
Zimo Yang , Yan Tong , Yongbo Liu , Qianlong Liu , Zhihao Ni , Yuna He , Yu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577
Jinshu Huang , Zhuochun Huang , Tengyu Liu , Yu Wen , Jili Yuan , Song Yang , Hu Li . Modulating single-atom Co and oxygen vacancy coupled motif for selective photodegradation of glyphosate wastewater to circumvent toxicant residue. Chinese Chemical Letters, 2025, 36(5): 110179-. doi: 10.1016/j.cclet.2024.110179
Ting Zhang , Baojing Huang , Hong Huang , Ailing Yan , Shiqiang Lu , Xufang Qian . Visible light boosted Fenton-like reaction of carbon dot-Fe(Ⅲ) complex: Kinetics and mechanism insights. Chinese Chemical Letters, 2025, 36(11): 110885-. doi: 10.1016/j.cclet.2025.110885
Shuangyu Wu , Jian Peng , Yue Jiang , Sijie Lin . The overlooked promotional effects of alcohols to BiOBr catalysts in photocatalytic degradation of organic pollutants. Chinese Chemical Letters, 2025, 36(11): 110819-. doi: 10.1016/j.cclet.2025.110819
Mengmeng Ao , Jian Wei , Chuan-Shu He , Heng Zhang , Zhaokun Xiong , Yonghui Song , Bo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
Siyang Xue , Chen Cheng , Jieqiong Kang , Kaixuan Zheng , Adela Jing Li , Renli Yin . Oxygen vacancies-rich BiOBr bridged direct electron transfer with peroxymonosulfate for integrating superoxide radical and singlet oxygen on selective pollutants degradation. Chinese Chemical Letters, 2025, 36(10): 110776-. doi: 10.1016/j.cclet.2024.110776
Haijing Cui , Weihao Zhu , Chuning Yue , Ming Yang , Wenzhi Ren , Aiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727
Xin Dai , Tong Liu , Ye Du , Jie-Yu Cao , Zhong-Juan Wang , Jie Li , Peng Zhou , Heng Zhang , Bo Lai . Synergistic effect in enhancing treatment of micro-pollutants by ferrate and carbon materials: A review. Chinese Chemical Letters, 2025, 36(8): 110548-. doi: 10.1016/j.cclet.2024.110548
Shiyan Ai , Yaning Xu , Hui Zhou , Ziwei Cui , Tiantian Wu , Dan Tian . Superelastic and ultralight covalent organic framework composite aerogels modified with different functional groups for ultrafast adsorbing organic pollutants in water. Chinese Chemical Letters, 2025, 36(10): 110761-. doi: 10.1016/j.cclet.2024.110761