A review on covalent organic frameworks for rechargeable zinc-ion batteries
-
* Corresponding author.
E-mail address: yuyingjiankmu@163.com (Y. Yu).
1 These authors contributed equally to this work.
Citation:
Yunyu Zhao, Chuntao Yang, Yingjian Yu. A review on covalent organic frameworks for rechargeable zinc-ion batteries[J]. Chinese Chemical Letters,
;2024, 35(7): 108865.
doi:
10.1016/j.cclet.2023.108865
P. Lokhande, S. Kulkarni, S. Chakrabarti, et al., Coord. Chem. Rev. 473 (2022) 214771.
doi: 10.1016/j.ccr.2022.214771
X. Wei, Y. Song, L. Song, X. Liu, et al., Small 17 (2021) 2007062.
doi: 10.1002/smll.202007062
S. Wang, C. Tang, Y. Huang, J. Gong, Chin. Chem. Lett. 33 (2022) 3802–3808.
doi: 10.1016/j.cclet.2021.11.037
Q. Dai, L. Li, K. Tuan, et al., J. Energy Storage 55 (2022) 105397.
doi: 10.1016/j.est.2022.105397
D. Zhu, G. Xu, Y. Li, et al., Adv. Funct. Mater. 31 (2021) 2100505.
doi: 10.1002/adfm.202100505
J. Park, M. Kwak, C. Hwang, et al., Adv. Mater. 33 (2021) 2101726.
doi: 10.1002/adma.202101726
R. Zhang, Z. Wu, Z. Huang, et al., Chin. Chem. Lett. 34 (2022) 107600.
Y. Song, L. Zou, C. Wei, Y. Zhou, Y. Hu, Carbon Energy 5 (2023) e286.
doi: 10.1002/cey2.286
L. Zhang, Y. Hou, Adv. Energy Mater. 11 (2021) 2003823.
doi: 10.1002/aenm.202003823
Y. Yu, S. Hu, Chin. Chem. Lett. 32 (2021) 3277–3287.
doi: 10.1016/j.cclet.2021.04.049
Y. Liu, Z. Li, Y. Han, et al., ChemSusChem 16 (2023) e202202305.
doi: 10.1002/cssc.202202305
T. Jin, X. Ji, P.F. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 119433.
A. Naveed, T. Rasheed, B. Raza, et al., Energy Storage Mater. 44 (2022) 206–230.
doi: 10.1016/j.ensm.2021.10.005
X. Han, T. Wu, L. Gu, et al., Chin. Chem. Lett. 34 (2023) 107594.
doi: 10.1016/j.cclet.2022.06.017
W. He, S. Zuo, X. Xu, et al., Mater. Chem. Front. 5 (2021) 2201–2217.
doi: 10.1039/D0QM00693A
H. Hong, X. Guo, J. Zhu, et al., Sci. China. Chem. (2023), doi: 10.1007/s11426-023-1558-2.
doi: 10.1007/s11426-023-1558-2
Y. Liu, Q. Li, X. Zhang, et al., Ceram. Int. 49 (2023) 27506–27513.
doi: 10.1016/j.ceramint.2023.06.026
X. Li, H. Cheng, H. Hu, et al., Chin. Chem. Lett. 32 (2021) 3753–3761.
doi: 10.1016/j.cclet.2021.04.045
X. Cao, Y. Xu, B. Yang, et al., J. Alloys Compd. 896 (2022) 162785.
doi: 10.1016/j.jallcom.2021.162785
M. Al-Amin, S. Islam, S.U.A. Shibly, S. Iffat, Nanomaterials 12 (2022) 3997.
doi: 10.3390/nano12223997
Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Adv. Energy Mater. 11 (2021) 2003065.
doi: 10.1002/aenm.202003065
N. Guo, W. Huo, X. Dong, et al., Small Methods 6 (2022) 2200597.
doi: 10.1002/smtd.202200597
S. Chen, H. Wang, M. Zhu, et al., Nanoscale Horiz. 8 (2023) 29–54.
doi: 10.1039/D2NH00354F
C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, ACS Energy Lett. 6 (2021) 1015–1033.
doi: 10.1021/acsenergylett.0c02684
J. Zhou, Y. Mei, F. Wu, et al., Angew. Chem. Int. Ed. 62 (2023) e202304454.
doi: 10.1002/anie.202304454
Q. Li, D. Wang, B. Yan, et al., Angew. Chem. Int. Ed. 61 (2022) e202202780.
doi: 10.1002/anie.202202780
Q. Li, X. Ye, H. Yu, et al., Chin. Chem. Lett. 33 (2022) 2663–2668.
doi: 10.1016/j.cclet.2021.09.091
R. Huang, W. Wang, C. Zhang, et al., Chin. Chem. Lett. 33 (2022) 3955–3960.
doi: 10.1016/j.cclet.2021.11.094
I.R. Tay, J. Xue, W.S.V. Lee, Adv. Sci. (2023), doi: 10.1002/advs.202303211.
doi: 10.1002/advs.202303211
Y. Niu, D. Wang, Y. Ma, L. Zhi, Chin. Chem. Lett. 33 (2022) 1430–1434.
doi: 10.1016/j.cclet.2021.08.058
W. Li, Y. Ma, H. Shi, K. Jiang, D. Wang, Adv. Funct. Mater. 32 (2022) 2205602.
doi: 10.1002/adfm.202205602
B. Wu, Y. Mu, Z. Li, et al., Chin. Chem. Lett. 34 (2023) 107629.
doi: 10.1016/j.cclet.2022.06.052
W. Deng, C.F. Sun, J. Phys. Chem. C 127 (2023) 11902–11910.
doi: 10.1021/acs.jpcc.3c03583
H. Wang, Q. Wu, L. Cheng, G. Zhu, Coord. Chem. Rev. 472 (2022) 214772.
doi: 10.1016/j.ccr.2022.214772
Y. Liu, Y. Li, X. Huang, et al., Small 18 (2022) 2203061.
doi: 10.1002/smll.202203061
K. Nam, S. Park, R. Reis, et al., Nat. Commun. 10 (2019) 4948.
doi: 10.1038/s41467-019-12857-4
J. Zheng, Z. Huang, F. Ming, et al., Small 18 (2022) 2200006.
doi: 10.1002/smll.202200006
D. Song, C. Hu, Z. Gao, et al., Materials (Basel) 15 (2022) 5837.
doi: 10.3390/ma15175837
Z. Zhang, B. Xi, X. Ma, et al., SusMat 2 (2022) 114–141.
doi: 10.1002/sus2.53
Z. Qi, T. Xiong, Z. Yu, et al., J. Power Sources 558 (2023) 232628.
doi: 10.1016/j.jpowsour.2023.232628
H. Ying, P. Huang, Z. Zhang, et al., Nano-Micro Lett. 14 (2022) 180.
doi: 10.1007/s40820-022-00921-6
X. Chen, H. Su, B. Yang, et al., Chin. Chem. Lett. 35 (2024) 108487.
doi: 10.1016/j.cclet.2023.108487
H. Peng, Y. Fang, J. Wang, et al., Matter 5 (2022) 4363–4378.
doi: 10.1016/j.matt.2022.08.025
Y. Wang, Z. Wang, W. Pang, et al., Nat. Commun. 14 (2023) 2720.
doi: 10.1038/s41467-023-38384-x
L. Li, S. Jia, Z. Cheng, C. Zhang, ChemSusChem 16 (2023) e202202330.
doi: 10.1002/cssc.202202330
K. Feng, D. Wang, Y. Yu, Molecules 28 (2023) 2721.
doi: 10.3390/molecules28062721
W. Yang, W. Yang, Y. Huang, et al., Chin. Chem. Lett. 33 (2022) 4628–4634.
doi: 10.1016/j.cclet.2021.12.049
H. Zhang, C. Gu, M. Yao, S. Kitagawa, Adv. Energy Mater. 12 (2022) 2100321.
doi: 10.1002/aenm.202100321
J. Li, N. Luo, F. Wan, et al., Nanoscale 12 (2020) 20638–20648.
doi: 10.1039/D0NR03394D
Y. Jiao, L. Kang, J. Gair, et al., J. Mater. Chem. A 8 (2020) 22075–22082.
doi: 10.1039/D0TA08638J
B. Li, S. Zhang, B. Wang, et al., Energy Environ. Sci. 11 (2018) 1723–1729.
doi: 10.1039/C8EE00977E
R. Shah, S. Ali, F. Raziq, et al., Coord. Chem. Rev. 477 (2023) 214968.
doi: 10.1016/j.ccr.2022.214968
D. -H. Yang, Y. Tao, X. Ding, B.H. Han, Chem. Soc. Rev. 51 (2022) 761–791.
doi: 10.1039/D1CS00887K
S. Huang, K. Chen, T. Li, Coord. Chem. Rev. 464 (2022) 214563.
doi: 10.1016/j.ccr.2022.214563
H. Qian, Y. Wang, X. Yan, Trends Analyt. Chem. 147 (2022) 116516.
doi: 10.1016/j.trac.2021.116516
A. Esrafili, A. Wagner, S. Inamdar, A. Acharya, Adv. Healthcare Mater. 10 (2021) 2002090.
doi: 10.1002/adhm.202002090
M. Wu, Y. Yang, Chin. Chem. Lett. 28 (2017) 1135–1143.
doi: 10.1016/j.cclet.2017.03.026
Z. Zhou, L. Zhang, Y. Yang, et al., Nat. Chem. 15 (2023) 841–847.
doi: 10.1038/s41557-023-01181-6
S. Talekar, Y. Kim, Y. Wee, J. Kim, Chem. Eng. J. 456 (2023) 141058.
doi: 10.1016/j.cej.2022.141058
D. Yang, Y. Tao, X. Ding, B. Han, Chem. Soc. Rev. 51 (2022) 761–791.
doi: 10.1039/D1CS00887K
R. Freund, O. Zaremba, G. Arnauts, et al., Chem. Int. Ed. 60 (2021) 23975.
doi: 10.1002/anie.202106259
L. Guo, J. Zhang, Q. Huang, W. Zhou, S. Jin, Chin. Chem. Lett. 33 (2022) 2856–2866.
doi: 10.1016/j.cclet.2022.02.065
P. Xiong, Y. Zhang, J. Zhang, et al., Energy Chem. 4 (2022) 100076.
doi: 10.1016/j.enchem.2022.100076
G. Ren, F. Cai, S. Wang, Z. Luo, Z. Yuan, RSC Adv. 13 (2023) 18983–18990.
doi: 10.1039/D3RA01414B
X. Ren, X. Wang, W. Song, F. Bai, Y. Li, Nanoscale 15 (2023) 4762–4771.
doi: 10.1039/D2NR07228A
P. Qi, J. Wang, H. Li, et al., Sci. Total Environ. 840 (2022) 156529.
doi: 10.1016/j.scitotenv.2022.156529
Q.N. Tran, H.J. Lee, N. Tran, Polymers 15 (2023) 1279.
doi: 10.3390/polym15051279
W. Wang, V. Kale, Z. Cao, et al., Adv. Mater. 33 (2021) 2103617.
doi: 10.1002/adma.202103617
K. Wu, X. Shi, F. Yu, et al., Energy Stor. Mater. 51 (2022) 391–399.
J. Segura, S. Royuela, M. Ramos, Chem. Soc. Rev. 48 (2019) 3903–3945.
doi: 10.1039/C8CS00978C
X. Han, C. Yuan, B. Hou, et al., Chem. Soc. Rev. 49 (2020) 6248–6272.
doi: 10.1039/D0CS00009D
Z. Mu, Y. Zhu, B. Li, et al., J. Am. Chem. Soc. 144 (2022) 5145–5154.
doi: 10.1021/jacs.2c00584
Y. Yusran, Q. Fang, S. Qiu, Isr. J. Chem. 58 (2018) 971.
doi: 10.1002/ijch.201800066
A. Bagheri, N. Aramesh, J. Mater. Sci. 56 (2021) 1116–1132.
doi: 10.1007/s10853-020-05308-9
T. Wang, Y. Zhang, Z. Wang, et al., Dalton Trans. (2023), doi: 10.1039/D3DT01684F.
doi: 10.1039/D3DT01684F
X. Wu, X. Zhang, Y. Li, et al., J. Mater. Sci. 56 (2021) 2717–2724.
doi: 10.1007/s10853-020-05380-1
B. Bai, D. Wang, L. Wan, Bull. Chem. Soc. Jpn. 94 (2021) 1090–1098.
doi: 10.1246/bcsj.20200391
K. Geng, T. He, R. Liu, et al., Chem. Rev. 120 (2020) 8814–8933.
doi: 10.1021/acs.chemrev.9b00550
Y. Gong, X. Guan, H. Jiang, Coord. Chem. Rev. 475 (2023) 214889.
doi: 10.1016/j.ccr.2022.214889
J. Colson, A. Woll, A. Mukherjee, et al., Science 332 (2011) 228–231.
doi: 10.1126/science.1202747
A. Halder, M. Ghosh, S. Bera, et al., J. Am. Chem. Soc. 140 (2018) 10941–10945.
doi: 10.1021/jacs.8b06460
S.L. Zhang, Z.C. Guo, K. Xu, Z. Li, G. Li, ACS Appl. Mater. Interfaces 15 (2023) 33148–33158.
doi: 10.1021/acsami.3c05990
X. Feng, L. Chen, Y. Dong, D. Jiang, Chem. Commun. 47 (2011) 1979–1981.
doi: 10.1039/c0cc04386a
W. Ji, Y. Guo, H. Xie, et al., J. Hazard. Mater. 397 (2020) 122793.
doi: 10.1016/j.jhazmat.2020.122793
H. Wei, S. Chai, N. Hu, et al., Chem. Commun. 51 (2015) 12178–12181.
doi: 10.1039/C5CC04680G
S. Ding, W. Wang, Chem. Soc. Rev. 42 (2013) 548–568.
doi: 10.1039/C2CS35072F
P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 47 (2008) 3450–3453.
doi: 10.1002/anie.200705710
X. Yang, L. Gong, K. Wang, et al., Adv. Mater. 34 (2022) 2207245.
doi: 10.1002/adma.202207245
S. Chandra, S. Kandambeth, B.P. Biswal, J. Am. Chem. Soc. 135 (2013) 17853–17861.
doi: 10.1021/ja408121p
B.P. Biswal, S. Chandra, S. Kandambeth, et al., J. Am. Chem. Soc. 135 (2013) 5328–5331.
doi: 10.1021/ja4017842
K. Dey, M. Pal, K. Rout, et al., J. Am. Chem. Soc. 139 (2017) 13083–13091.
doi: 10.1021/jacs.7b06640
M. Matsumoto, L. Valentino, G. Stiehl, et al., Chem 4 (2018) 308–317.
doi: 10.1016/j.chempr.2017.12.011
Q. Hao, C. Zhao, B. Sun, et al., J. Am. Chem. Soc. 140 (2018) 12152–12158.
doi: 10.1021/jacs.8b07120
L. Beagle, Q. Fang, L. Tran, et al., Mater. Today 51 (2021) 427–448.
doi: 10.1016/j.mattod.2021.08.007
J. He, L. Yu, Z. Li, et al., J. Colloid Interface Sci. 629 (2023) 428–437.
doi: 10.1016/j.jcis.2022.09.036
H. Yang, H. Wu, Y. Zhao, et al., Mater. Chem. A 8 (2020) 19328–19336.
doi: 10.1039/D0TA07352K
Y. Yang, Y. Chen, F. Izquierdo-Ruiz, et al., Nat. Commun. 14 (2023) 220.
doi: 10.1038/s41467-023-35931-4
J. Xiao, J. Chen, J. Liu, H. Ihara, H. Qiu, Green Energy Environ. 8 (2023) 1596–1618.
doi: 10.1016/j.gee.2022.05.003
Y. Chen, W. Li, X. Wang, et al., Material. Chem. Front. 5 (2021) 1253–1267.
doi: 10.1039/D0QM00801J
J.A. MartinIllan, D. Rodriguez San Miguel, C. Franco, et al., Chem. Commun. 56 (2020) 6704–6707.
doi: 10.1039/D0CC02033H
F. van Rantwijk, R.A. Sheldon, Chem. Rev. 107 (2007) 2757–2785.
doi: 10.1021/cr050946x
A. Zheng, T. Guo, F. Guan, et al., Trends Anal. Chem. 119 (2019) 115638.
doi: 10.1016/j.trac.2019.115638
J. Qiu, P. Guan, Y. Zhao, et al., Green Chem. 22 (2020) 7537–7542.
doi: 10.1039/D0GC02670K
L. Huang, J. Yang, Y. Asakura, Q. Shuai, ACS Nano 17 (2023) 8918–8934.
doi: 10.1021/acsnano.3c01758
M. Cui, X. Meng, Nanoscale Adv. 2 (2020) 5516.
doi: 10.1039/D0NA00573H
T. Zhou, L. Zhu, L. Xie, et al., J. Colloid Interface Sci. 605 (2022) 828–850.
doi: 10.1016/j.jcis.2021.07.138
C. Wang, Z. Song, P. Shi, et al., Nanoscale Adv. 3 (2021) 5222.
doi: 10.1039/D1NA00523E
E. Fan, Z. Wang, J. Lin, et al., Chem. Rev. 120 (2020) 7020–7063.
doi: 10.1021/acs.chemrev.9b00535
X. Li, X. Yang, J. Zhang, Y. Huang, B. Liu, ACS Catal. 9 (2019) 2521–2531.
doi: 10.1021/acscatal.8b04937
X. Cao, C. Ma, L. Luo, et al., Adv. Fiber Mater. (2023), doi: 10.1007/s42765-023-00278-4.
doi: 10.1007/s42765-023-00278-4
J. Um, S.H. Yu, Adv. Energy Mater. 11 (2021) 2003004.
doi: 10.1002/aenm.202003004
A. Tripathi, W.N. Su, B. Hwang, Chem. Soc. Rev. 7 (2018) 736–851.
doi: 10.1039/c7cs00180k
M. Chen, W. Hua, J. Xiao, et al., J. Am. Chem. Soc. 143 (2021) 18091–18102.
doi: 10.1021/jacs.1c06727
J. Song, X. Sun, L. Ren, et al., J. Electrochem. 28 (2022) 2108461.
J. Chen, Y. Yang, Y. Tang, et al., Adv. Funct. Mater. 33 (2023) 2211515.
doi: 10.1002/adfm.202211515
J. Tian, T. Jiang, L. Zhang, et al., Small Methods 4 (2019) 1900467.
R. Shi, L. Liu, Y. Lu, et al., Nat. Commun. 11 (2020) 178.
doi: 10.1038/s41467-019-13739-5
Y. Cai, Z. Gong, Q. Rong, et al., Appl. Surf. Sci. 594 (2022) 153481.
doi: 10.1016/j.apsusc.2022.153481
Y. Matsuda, N. Kuwata, T. Okawa, et al., Solid State Ion 335 (2019) 7–14.
doi: 10.1016/j.ssi.2019.02.010
K.A. Niherysh, J. Andzane, M.M. Mikhalik, et al., Nanoscale Adv. 3 (2021) 6395.
doi: 10.1039/D1NA00390A
M. Yu, X. Lu, C. Liang, et al., J. Am. Chem. Soc. 142 (2020) 19570–19578.
doi: 10.1021/jacs.0c07992
S. Zheng, D. Shi, D. Yan, et al., Angew. Chem. Int. Ed. 61 (2022) e202117511.
doi: 10.1002/anie.202117511
X. Chen, Y. Li, L. Wang, et al., Adv. Mater. 31 (2019) 1901640.
doi: 10.1002/adma.201901640
V. Singh, J. Kim, B. Kang, et al., Adv. Energy Mater. 11 (2021) 2003735.
doi: 10.1002/aenm.202003735
S. Cai, J. Dai, Z. Shao, et al., J. Am. Chem. Soc. 144 (2022) 1910–1920.
doi: 10.1021/jacs.1c12235
L. Shi, F. Huo, S. Zhang, et al., ACS Nano 13 (2019) 878–884.
doi: 10.1021/acsnano.8b08667
X. Yang, S. Wang, D. Han, et al., Small 18 (2022) 2201522.
doi: 10.1002/smll.202201522
Z. Wang, W. Zheng, W. Sun, L. Zhao, W. Yuan, ACS Appl. Energy Mater. 4 (2021) 2808–2819.
doi: 10.1021/acsaem.0c03229
Y. Ding, L. Zhang, X. Wang, et al., Chin. Chem. Lett. 34 (2023) 107399.
doi: 10.1016/j.cclet.2022.03.122
W. Yang, C. Xu, Y. Huang, et al., Chin. Chem. Lett. 33 (2022) 4628–4634.
doi: 10.1016/j.cclet.2021.12.049
S. Wang, Y. Ru, Y. Sun, H. Pang, Chin. Chem. Lett. 34 (2023) 108143.
doi: 10.1016/j.cclet.2023.108143
M. Liu, L. Yao, Y. Ji, et al., Nano Lett. 23 (2023) 541–549.
doi: 10.1021/acs.nanolett.2c03919
S. Chen, S. Wang, X. Xue, J. Zhao, H. Du, Polymers 13 (2021) 3300.
doi: 10.3390/polym13193300
T. Wang, S. Li, X. Weng, et al., Adv. Energy Mater. 13 (2023) 2204358.
doi: 10.1002/aenm.202204358
Y. Du, Y. Li, B. Xu, et al., Small 18 (2021) 2104640.
P. Yu, Y. Zeng, H. Zhang, et al., Small 15 (2019) 1804760.
doi: 10.1002/smll.201804760
J. Sun, Y. Xu, Y. Lv, Q. Zhang, X. Zhou, CCS Chem. (2023), doi: 10.31635/ccschem.023.202302808.
doi: 10.31635/ccschem.023.202302808
M. Zang, R. Liang, T. Or, et al., Small Struct. 2 (2021) 2000064.
doi: 10.1002/sstr.202000064
F. Xu, S. Jin, H. Zhong, et al., Sci. Rep. 5 (2015) 8225.
doi: 10.1038/srep08225
D. Yang, D. Yao, Y. Wu, et al., J. Mater. Chem. A 4 (2016) 18621.
doi: 10.1039/C6TA07606H
Z. Luo, L. Liu, J. Ning, et al., Angew. Chem. Int. Ed. 57 (2018) 9443–9446.
doi: 10.1002/anie.201805540
Z. Wang, Y. Li, P. Liu, et al., Nanoscale 11 (2019) 5330–5335.
doi: 10.1039/C9NR00088G
M. Wu, Y. Zhao, B. Sun, et al., Nano Energy 70 (2020) 104498.
doi: 10.1016/j.nanoen.2020.104498
M. Ghosh, V. Vijayakumar, A. Halder, et al., Chem. Sci. 10 (2019) 8889.
doi: 10.1039/C9SC03052B
X. Zhong, H. Zhang, Y. Liu, et al., ACS Energy Lett. 5 (2020) 2256–2264.
doi: 10.1021/acsenergylett.0c00903
M. Prajapati, V. Singh, M. Jacob, C. Kant, Renew. Sust. Energ. Rev. 183 (2023) 113509.
doi: 10.1016/j.rser.2023.113509
B. Ball, P. Sarkar, Phys. Chem. Chem. Phys. 23 (2021) 12644.
doi: 10.1039/D1CP01209F
D. Ma, H. Zhao, F. Cao, et al., Chem. Sci. 13 (2022) 2385.
doi: 10.1039/D1SC06412F
Z. Lin, J. Zhu, X. Yang, et al., ACS Appl. Mater. Interfaces 14 (2022) 38689–38695.
doi: 10.1021/acsami.2c08170
A. Venkatesha, R. Gomes, A. Nair, et al., ACS Sustain. Chem. Eng. 10 (2022) 6205–6212.
doi: 10.1021/acssuschemeng.1c08678
H. Peng, S. Huang, H. Guo, et al., Angew. Chem. Int. Ed. 62 (2023) e202216136.
doi: 10.1002/anie.202216136
M. Wu, Z. Zhou, Interdiscip. Mater. 2 (2023) 1–29.
doi: 10.1002/idm2.12034
J. Zheng, L. Archer, Sci. Adv. 7 (2021) 0219.
doi: 10.1126/sciadv.abe0219
Y. Wang, Z. Deng, B. Luo, et al., Adv. Funct. Mater. 32 (2022) 2209028.
doi: 10.1002/adfm.202209028
Z. Zhao, R. Wang, C. Peng, et al., Nat. Commun. 12 (2021) 6606.
doi: 10.1038/s41467-021-26947-9
Q. Yang, G. Liang, Y. Guo, et al., Adv. Mater. 31 (2019) 1903778.
doi: 10.1002/adma.201903778
J. Zhao, Y. Ying, G. Wang, et al., Energy Stor. Mater. 48 (2022) 82–89.
Y. Cui, Q. Zhao, X. Wu, et al., Chem. Int. Ed. 59 (2020) 16594.
doi: 10.1002/anie.202005472
X. Hu, Z. Lin, S. Wang, et al., ACS Appl. Energy Mater. 5 (2022) 3715–3723.
doi: 10.1021/acsaem.2c00154
X. Yue, W. Wang, Q. Wang, et al., Energy Stor. Mater. 21 (2019) 180–189.
L. Pan, H. He, Q. Yan, Peng Hu, J. Power Sources 571 (2023) 233090.
doi: 10.1016/j.jpowsour.2023.233090
L. Zhang, B. Zhang, T. Zhang, et al., Adv. Funct. Mater. 31 (2021) 2100186.
doi: 10.1002/adfm.202100186
H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Adv. Energy Mater. 11 (2021) 2102222.
doi: 10.1002/aenm.202102222
M. Rosso, T. Gobron, C. Brissot, J. Chazalviel, S. Lascaud, J. Power Sources 97 (2001) 804–806.
C. Guo, J. Zhou, Y. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202210871.
doi: 10.1002/anie.202210871
V. Aupama, W. Kao-ian, J. Sangsawang, et al., Nanoscale 15 (2023) 9003–9013.
doi: 10.1039/D3NR00898C
Y. Zhang, C. Wei, M. Wu, et al., Chem. Eng. J. 451 (2023) 138915.
doi: 10.1016/j.cej.2022.138915
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Zhuangzhuang Zhang , Yaru Qiao , Jun Zhao , Dai-Huo Liu , Mengmin Jia , Hongwei Tang , Liang Wang , Dongmei Dai , Bao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Yanxue Wu , Xijun Xu , Shanshan Shi , Fangkun Li , Shaomin Ji , Jingwei Zhao , Jun Liu , Yanping Huo . Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage. Chinese Chemical Letters, 2025, 36(6): 110062-. doi: 10.1016/j.cclet.2024.110062
Yuhuan Meng , Long Zhang , Lequan Wang , Junming Kang , Hongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Shilong Li , Ming Zhao , Yefei Xu , Zhanyi Liu , Mian Li , Qing Huang , Xiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Chao Liu , Chao Jia , Shi-Xian Gan , Qiao-Yan Qi , Guo-Fang Jiang , Xin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750
Lulu He , Le Wang , Zhen He , Yiqian Yang , Cheng Heng Pang , Aiguo Wu , Bencan Tang , Juan Li . An imine-linked covalent organic framework with intrinsic photo-induced mitochondrial regulation for breast cancer therapy. Chinese Chemical Letters, 2025, 36(9): 110717-. doi: 10.1016/j.cclet.2024.110717
Peng Gao , Yuanyuan Chen , Qianlin He , Xue Liu , Echuan Tan , Zhiqiang Yu , Hui Wang . Highly efficient adoptive cell therapy of metastatic triple negative breast cancer with bioactive covalent organic framework-engineered macrophages. Chinese Chemical Letters, 2025, 36(8): 110585-. doi: 10.1016/j.cclet.2024.110585
Chong Wang , Hao Xie , Rulan Xia , Xuewei Liao , Jin Wang , Huajun Yang , Chen Wang . Nanofluidic ion rectification sensor for enantioselective recognition and detection. Chinese Chemical Letters, 2025, 36(8): 110642-. doi: 10.1016/j.cclet.2024.110642
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Qi Zhang , Bin Han , Yucheng Jin , Mingrun Li , Enhui Zhang , Jianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330
Shouchao Zhong , Yue Wang , Mingshu Xie , Yiqian Wu , Jiuqiang Li , Jing Peng , Liyong Yuan , Maolin Zhai , Weiqun Shi . Radiation reduction modification of sp2 carbon-conjugated covalent organic frameworks for enhanced photocatalytic chromium(VI) removal. Chinese Chemical Letters, 2025, 36(5): 110312-. doi: 10.1016/j.cclet.2024.110312