Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides
-
* Corresponding author.
E-mail address: liuhong@cigit.ac.cn (H. Liu).
1 These authors contributed equally to this work.
Citation:
Ling Fang, Sha Wang, Shun Lu, Fengjun Yin, Yujie Dai, Lin Chang, Hong Liu. Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides[J]. Chinese Chemical Letters,
;2024, 35(4): 108864.
doi:
10.1016/j.cclet.2023.108864
M. Duca, M.T.M. Koper, Energy Environ. Sci. 5 (2012) 9726–9742.
doi: 10.1039/c2ee23062c
S. Leaković, I. Mijatović, Š. Cerjan-Stefanović, et al., Water Res. 34 (2000) 185–190.
doi: 10.1016/S0043-1354(99)00122-0
Y. Zeng, C. Priest, G. Wang, et al., Small Methods 4 (2020) 2000672.
doi: 10.1002/smtd.202000672
Z. Zhang, Y. Han, C. Xu, et al., Bioresour. Technol. 262 (2018) 65–73.
doi: 10.1016/j.biortech.2018.04.059
W. Zheng, L. Zhu, Z. Yan, et al., Environ. Sci. Technol. 55 (2021) 13231–13243.
X. Yang, R. Wang, S. Wang, et al., Appl. Catal. B: Environ. 325 (2023) 122360.
doi: 10.1016/j.apcatb.2023.122360
H. Yin, X. Zhao, S. Xiong, et al., J. Catal. 406 (2022) 39–47.
doi: 10.1016/j.jcat.2021.12.031
X. He, Z. Ling, X. Peng, et al., Electrochem. Commun. 148 (2023) 107441.
doi: 10.1016/j.elecom.2023.107441
V. Rosca, M. Duca, M.T. de Groot, et al., Chem. Rev. 109 (2009) 2209–2244.
doi: 10.1021/cr8003696
M. Tang, Q. Tong, Y. Li, et al., Chin. Chem. Lett. 34 (2023) 108410.
doi: 10.1016/j.cclet.2023.108410
J. Martinez, A. Ortiz, I. Ortiz, Appl. Catal. B: Environ. 207 (2017) 42–59.
doi: 10.1016/j.apcatb.2017.02.016
L. Fang, S. Wang, C. Song, et al., Chem. Eng. J. 446 (2022) 137341.
doi: 10.1016/j.cej.2022.137341
D. Reyter, D. Bélanger, L. Roué, Electrochim. Acta 53 (2008) 5977–5984.
doi: 10.1016/j.electacta.2008.03.048
L. Fang, S. Wang, C. Song, et al., J. Hazard. Mater. 421 (2022) 126628.
doi: 10.1016/j.jhazmat.2021.126628
G.F. Chen, Y.F. Yuan, H.F. Jiang, et al., Nat. Energy 5 (2020) 605–613.
doi: 10.1038/s41560-020-0654-1
Y. Wang, W. Zhou, R. Jia, et al., Angew. Chem. Int. Ed. 59 (2020) 5350–5354.
doi: 10.1002/anie.201915992
T. Feng, J. Wang, Y. Wang, et al., Chem. Eng. J. 433 (2022) 133495.
doi: 10.1016/j.cej.2021.133495
A.A. Peterson, J.K. Nørskov, J. Phys. Chem. Lett. 3 (2012) 251–258.
doi: 10.1021/jz201461p
A. Vojvodic, J.K. Nørskov, Natl. Sci. Rev. 2 (2015) 140–143.
doi: 10.1093/nsr/nwv023
Y. Wang, S. Shu, M. Peng, et al., Nanoscale 13 (2021) 17504–17511.
doi: 10.1039/D1NR04962C
C.G. Morales-Guio, E.R. Cave, S.A. Nitopi, et al., Nat. Catal. 1 (2018) 764–771.
doi: 10.1038/s41929-018-0139-9
W.H. He, J. Zhang, S. Dieckhofer, et al., Nat. Commun. 13 (2022) 1129.
doi: 10.1038/s41467-022-28728-4
H. Wang, X. Zheng, L. Fang, et al., ChemElectroChem 10 (2023) e202300138.
doi: 10.1002/celc.202300138
Y. Zhao, X. Chang, A.S. Malkani, et al., J. Am. Chem. Soc. 142 (2020) 9735–9743.
Y. Deng, A.D. Handoko, Y. Du, et al., ACS Catal. 6 (2016) 2473–2481.
doi: 10.1021/acscatal.6b00205
W.R. Zheng, M.J. Liu, L.Y.S. Lee, ACS Catal. 10 (2020) 81–92.
doi: 10.1021/acscatal.9b03790
S. Cattarin, J. Appl. Electrochem. 22 (1992) 1077–1081.
doi: 10.1007/BF01029588
E. Pérez-Gallent, M.C. Figueiredo, I. Katsounaros, et al., Electrochim. Acta 227 (2017) 77–84.
doi: 10.1016/j.electacta.2016.12.147
Y. Guo, J.R. Stroka, B. Kandemir, et al., J. Am. Chem. Soc. 140 (2018) 16888–16892.
doi: 10.1021/jacs.8b09612
J.N. Gao, B. Jiang, C.C. Ni, et al., Chem. Eng. J. 382 (2020) 123034.
doi: 10.1016/j.cej.2019.123034
J. Zhuo, M. Cabán-Acevedo, H. Liang, et al., ACS Catal. 5 (2015) 6355–6361.
doi: 10.1021/acscatal.5b01657
L. Fang, W. Li, Y. Guan, et al., Adv. Funct. Mater. 27 (2017) 1701008.
doi: 10.1002/adfm.201701008
J. Gao, B. Jiang, C. Ni, et al., Appl. Catal. B: Environ. 254 (2019) 391–402.
doi: 10.1016/j.apcatb.2019.05.016
L.H. Su, K. Li, H.B. Zhang, et al., Water Res. 120 (2017) 1–11.
doi: 10.1016/j.watres.2017.04.069
M. Paidar, I. Roušar, K. Bouzek, J. Appl. Electrochem. 29 (1999) 611–617.
doi: 10.1023/A:1026423218899
K. Artyushkova, S. Levendosky, P. Atanassov, et al., Top. Catal. 46 (2007) 263–275.
doi: 10.1007/s11244-007-9002-y
J. Sheng, L. Wang, L. Deng, et al., ACS Appl. Mater. Interfaces 10 (2018) 7191–7200.
doi: 10.1021/acsami.8b00573
J. Papavasiliou, G. Avgouropoulos, T. Ioannides, J. Catal. 251 (2007) 7–20.
doi: 10.1016/j.jcat.2007.07.025
B.T. Li, X. Luo, Y.R. Zhu, et al., Appl. Surf. Sci. 359 (2015) 609–620.
doi: 10.1016/j.apsusc.2015.10.131
L. Xu, Q.Q. Jiang, Z.H. Xiao, et al., Angew. Chem. Int. Ed. 55 (2016) 5277–5281.
doi: 10.1002/anie.201600687
Z.L. Wang, L. Zhang, T.U. Schulli, et al., Angew. Chem. Int. Ed. 58 (2019) 17604–17609.
doi: 10.1002/anie.201909182
Y.C. Liu, J.A. Koza, J.A. Switzer, Electrochim. Acta 140 (2014) 359–365.
doi: 10.1016/j.electacta.2014.04.036
C. Fu, S. Shu, L. Hu, et al., Chem. Eng. J. 435 (2022) 134969.
doi: 10.1016/j.cej.2022.134969
J. Li, G.M. Zhan, J.H. Yang, et al., J. Am. Chem. Soc. 142 (2020) 7036–7046.
doi: 10.1021/jacs.0c00418
J.X. Liu, D. Richards, N. Singh, et al., ACS Catal. 9 (2019) 7052–7064.
doi: 10.1021/acscatal.9b02179
F. Yin, H. Liu, J. Energy Chem. 50 (2020) 339–343.
doi: 10.1016/j.jechem.2020.03.078
X.T. Chen, T. Zhang, M. Kan, et al., Environ. Sci. Technol. 54 (2020) 13344–13353.
doi: 10.1021/acs.est.0c05631
P. Gayen, J. Spataro, S. Avasarala, et al., Environ. Sci. Technol. 52 (2018) 9370–9379.
doi: 10.1021/acs.est.8b03038
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Qi Zhang , Bin Han , Yucheng Jin , Mingrun Li , Enhui Zhang , Jianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Yuwei Liu , Yihui Zhu , Weijian Duan , Yizhuo Yang , Haorui Tuo , Chunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Zhenfei Tang , Yunwu Zhang , Zhiyuan Yang , Haifeng Yuan , Tong Wu , Yue Li , Guixiang Zhang , Xingzhi Wang , Bin Chang , Dehui Sun , Hong Liu , Lili Zhao , Weijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Sajid Mahmood , Haiyan Wang , Fang Chen , Yijun Zhong , Yong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550
Xuan Liu , Qing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670
Xiang-Da Zhang , Jian-Mei Huang , Xiaorong Zhu , Chang Liu , Yue Yin , Jia-Yi Huang , Yafei Li , Zhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Qiang Cao , Xue-Feng Cheng , Jia Wang , Chang Zhou , Liu-Jun Yang , Guan Wang , Dong-Yun Chen , Jing-Hui He , Jian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759
Ying Chen , Xingyuan Xia , Lei Tian , Mengying Yin , Ling-Ling Zheng , Qian Fu , Daishe Wu , Jian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
Doudou Liu , Weiwei Guo , Guoliang Mei , Youpeng Dan , Rong Yang , Chao Huang , Yanling Zhai , Xiaoquan Lu . Application of catalyst Cu-t-ZrO2 based on the electronic metal-support interaction in electrocatalytic nitrate reduction. Chinese Chemical Letters, 2025, 36(8): 110578-. doi: 10.1016/j.cclet.2024.110578