Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction
-
* Corresponding author.
E-mail address: ligang.feng@yzu.edu.cn (L. Feng).
Citation:
Jiayu Xu, Meng Li, Baoxia Dong, Ligang Feng. Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction[J]. Chinese Chemical Letters,
;2024, 35(6): 108798.
doi:
10.1016/j.cclet.2023.108798
M. Jamesh, M. Harb, J. Energy Chem. 56 (2021) 299–342.
doi: 10.1016/j.jechem.2020.08.001
M. Li, L. Feng, Chin. J. Struc. Chem. 41 (2022) 2201019–2201024.
L. Lu, Q. Li, J. Du, et al., Chin. Chem. Lett. 33 (2022) 2928–2932.
doi: 10.1016/j.cclet.2021.10.090
F. Gao, J. He, H. Wang, et al., Nano Res. Energy 1 (2022) e9120029.
doi: 10.26599/nre.2022.9120029
Y. Zhou, Q. Wang, X. Tian, et al., J. Energy Chem. 75 (2022) 46–54.
doi: 10.1117/12.2644115
S. Wang, J. Zhu, X. Wu, et al., Chin. Chem. Lett. 33 (2022) 1105–1109.
doi: 10.1021/acs.orglett.2c00084
Y. Zhou, Y. Kuang, G. Hu, et al., Mater. Today Phys. 27 (2022) 100831.
doi: 10.1016/j.mtphys.2022.100831
Z. Yin, R. He, Y. Zhang, et al., J. Energy Chem. 69 (2022) 585–592.
doi: 10.1016/j.jechem.2022.01.020
M. Li, F. Yang, J. Chang, et al., Acta Phys. Chim. Sin. 39 (2023) 2301005.
doi: 10.3866/pku.whxb202301005
S. Wang, L. Zhao, J. Li, et al., J. Energy Chem. 66 (2022) 483–492.
doi: 10.1016/j.jechem.2021.08.042
C. Wang, A. Schechter, L. Feng, Nano Res. Energy 2 (2023) e9120056.
doi: 10.26599/nre.2023.9120056
Y. Zhao, M. Xi, Y. Qi, et al., J. Energy Chem. 69 (2022) 330–337.
doi: 10.1016/j.jechem.2022.01.030
Y. Liu, L. Bai, Q. Jia, et al., Chin. Chem. Lett. 34 (2023) 107855.
doi: 10.1016/j.cclet.2022.107855
J. Xie, X. Zhang, N. Yu, et al., Mater. Today Phys. 27 (2022) 100778.
doi: 10.1016/j.mtphys.2022.100778
X. Li, L. Zheng, S. Liu, et al., Chin. Chem. Lett. 33 (2022) 4761–4765.
doi: 10.1016/j.cclet.2021.12.095
K. Sun, Y. Zhao, J. Yin, et al., Acta Phys. Chim. Sin. 38 (2022) 2107005.
L. Lv, B. Tang, Q. Ji, et al., Chin. Chem. Lett. 34 (2023) 107524.
doi: 10.1016/j.cclet.2022.05.038
L. Bai, C. Hsu, D.T.L. Alexander, et al., J. Am. Chem. Soc. 141 (2019) 14190–14199.
doi: 10.1021/jacs.9b05268
M. Xiao, C. Zhang, P. Wang, et al., Mater. Today Phys. 24 (2022) 100684.
doi: 10.1016/j.mtphys.2022.100684
L. Jiao, J.Y.R. Seow, W.S. Skinner, et al., Mater. Today 27 (2019) 43–68.
doi: 10.1016/j.mattod.2018.10.038
M. Liu, M. Peng, B. Dong, et al., Chin. J. Struct. Chem. 41 (2022) 2207046–2207052.
M. Li, L. Feng, J. Electrochem. 28 (2022) 2106211.
K. Karuppasamy, R. Bose, D. Vikraman, et al., J. Alloy. Compd. 934 (2023) 167909.
doi: 10.1016/j.jallcom.2022.167909
Q. Zhang, H. Wang, W. Han, et al., Nano Res. 16 (2023) 3695–3702.
doi: 10.1007/s12274-022-4832-2
X. Hou, T. Jiang, X. Xu, et al., Chin. J. Struc. Chem. 41 (2022) 2207074–2207080.
S. Kouser, A. Hezam, M.J.N. Khadri, et al., J. Porous Mater. 29 (2022) 663–681.
doi: 10.1007/s10934-021-01184-z
C. Chen, D. Xiong, M. Gu, et al., ACS Appl. Mater. Interfaces 12 (2020) 35365–35374.
doi: 10.1021/acsami.0c09689
C. Liu, L. Lin, Q. Sun, et al., Chem. Sci. 11 (2020) 3680–3686.
doi: 10.1039/d0sc00417k
H. Zou, X. Liu, K. Wang, et al., Chem. Commun. 57 (2021) 8011–8014.
doi: 10.1039/d1cc02224e
C. Xuan, W. Lei, J. Wang, et al., J. Mater. Chem. A 7 (2019) 12350–12357.
doi: 10.1039/c9ta02761k
N. Ma, R. Ohtani, H.M. Le, et al., Nat. Commun. 13 (2022) 4023.
doi: 10.1038/s41467-022-31658-w
A. Shahzad, F. Zulfiqar, M. Arif Nadeem, Coordin. Chem. Rev. 477 (2023) 214925.
doi: 10.1016/j.ccr.2022.214925
S.S. Selvasundarasekar, T.K. Bijoy, S. Kumaravel, et al., ACS Appl. Mater. Interfaces 14 (2022) 46581–46594.
doi: 10.1021/acsami.2c12643
S. Ghoshal, S. Zaccarine, G.C. Anderson, et al., ACS Appl. Energy Mater. 2 (2019) 5568–5576.
doi: 10.1021/acsaem.9b00733
X. Wang, L. Yu, B. Guan, et al., Adv. Mater. 30 (2018) 1801211.
doi: 10.1002/adma.201801211
X. Gu, Z. Liu, H. Liu, et al., Chem. Eng. J. 403 (2021) 126371.
doi: 10.1016/j.cej.2020.126371
Y. Tian, H. Wu, A. Hanif, et al., Chin. Chem. Lett. 34 (2023) 108056.
doi: 10.1016/j.cclet.2022.108056
M. Li, X. Pan, M. Jiang, et al., Chem. Eng. J. 395 (2020) 125160.
doi: 10.1016/j.cej.2020.125160
G.H. Jeong, S.P. Sasikala, T. Yun, et al., Adv. Mater. 32 (2020) 1907006.
doi: 10.1002/adma.201907006
M. Zha, C. Pei, Q. Wang, et al., J. Energy Chem. 47 (2020) 166–171.
doi: 10.1016/j.jechem.2019.12.008
H. Liu, M. Zha, Z. Liu, et al., Chem. Commun. 56 (2020) 7889–7892.
doi: 10.1039/d0cc03422c
B. Zhang, K. Jiang, H. Wang, et al., Nano Lett. 19 (2019) 530–537.
doi: 10.1021/acs.nanolett.8b04466
L. Zhong, Y. Bao, L. Feng, Electrochim. Acta 321 (2019) 134656.
doi: 10.1016/j.electacta.2019.134656
L. Zhuang, L. Ge, Y. Yang, et al., Adv. Mater. 29 (2017) 1606793.
doi: 10.1002/adma.201606793
M. Li, H. Liu, L. Feng, Electrochem. Commun. 122 (2021) 106901.
doi: 10.1016/j.elecom.2020.106901
H. Liu, Z. Liu, L. Feng, Nanoscale 11 (2019) 16017–16025.
doi: 10.1039/c9nr05204f
J. Wen, J. Xie, H. Zhang, et al., ACS Appl. Mater. Interfaces 9 (2017) 14031–14042.
doi: 10.1021/acsami.7b02701
Q. Lv, W. Si, J. He, et al., Nat. Commun. 9 (2018) 3376.
doi: 10.1038/s41467-018-05878-y
C. Pei, H. Chen, B. Dong, et al., J. Power. Sources 424 (2019) 131–137.
doi: 10.1016/j.jpowsour.2019.03.089
S. Divanis, T. Kutlusoy, I.M. Ingmer Boye, et al., Chem. Sci. 11 (2020) 2943–2950.
doi: 10.1039/c9sc05897d
Y. Zhou, H. Liu, X. Gu, et al., Carbon Energy 4 (2022) 924–938.
doi: 10.1002/cey2.206
K. Fan, H. Chen, Y. Ji, et al., Nat. Commun. 7 (2016) 11981.
doi: 10.1038/ncomms11981
R. He, M. Li, W. Qiao, et al., Chem. Eng. J. 423 (2021) 130168.
doi: 10.1016/j.cej.2021.130168
Y. Kuang, R. He, X. Gu, et al., Chem. Eng. J. 456 (2023) 141055.
doi: 10.1016/j.cej.2022.141055
G. Moon, M. Yu, C.K. Chan, et al., Angew. Chem. Int. Ed. 58 (2019) 3491–3495.
doi: 10.1002/anie.201813052
Z. Liu, H. Liu, X. Gu, et al., Chem. Eng. J. 397 (2020) 125500.
doi: 10.1016/j.cej.2020.125500
M.B. Stevens, L.J. Enman, A.S. Batchellor, et al., Chem. Mater. 29 (2017) 120–140.
doi: 10.1021/acs.chemmater.6b02796
Q. Qian, Y. Li, Y. Liu, et al., Adv. Mater. 31 (2019) 1901139.
doi: 10.1002/adma.201901139
Q. Qian, Y. Li, Y. Liu, et al., Appl. Catal. B: Environ. 266 (2020) 118642.
doi: 10.1016/j.apcatb.2020.118642
Z. Liu, H. Yu, B. Dong, et al., Nanoscale 10 (2018) 16911–16918.
doi: 10.1039/c8nr05587d
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
Xiangshuai Li , Jian Zhao , Li Luo , Zhuohao Jiao , Ying Shi , Shengli Hou , Bin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Ning Zhang , Mengjie Qin , Jiawen Zhu , Xuejing Lou , Xiao Tian , Wende Ma , Youmei Wang , Minghua Lu , Zongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177
Xuying Yu , Jiarong Mi , Yulan Han , Cai Sun , Mingsheng Wang , Guocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Pingping Wang , Huixian Miao , Kechuan Sheng , Bin Wang , Fan Feng , Xuankun Cai , Wei Huang , Dayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Jiawei Ge , Xian Wang , Heyuan Tian , Hao Wan , Wei Ma , Jiangying Qu , Junjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906
Chupeng Luo , Keying Su , Shan Yang , Yujia Liang , Yawen Tang , Xiaoyu Qiu . Ultrathin NiS2 nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(5): 109940-. doi: 10.1016/j.cclet.2024.109940
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Tao Tang , Chen Li , Sipu Li , Zhong Qiu , Tianqi Yang , Beirong Ye , Shaojun Shi , Chunyang Wu , Feng Cao , Xinhui Xia , Minghua Chen , Xinqi Liang , Xinping He , Xin Liu , Yongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232