Stability and regeneration of metal catalytic sites with different sizes in Fenton-like system
-
* Corresponding authors.
E-mail addresses: shangyanan@sdust.edu.cn (Y. Shang), xuxing@sdu.edu.cn (X. Xu).
Citation:
Yanan Shang, Yujiao Kan, Xing Xu. Stability and regeneration of metal catalytic sites with different sizes in Fenton-like system[J]. Chinese Chemical Letters,
;2023, 34(8): 108278.
doi:
10.1016/j.cclet.2023.108278
Y. Qi, J. Li, Y. Zhang, et al., Appl. Catal. B Environ. 286 (2021) 119910.
doi: 10.1016/j.apcatb.2021.119910
L. Peng, Y. Shang, B. Gao, X. Xu, Appl. Catal. B Environ. 282 (2021) 119484.
doi: 10.1016/j.apcatb.2020.119484
Q. Zhao, C.C. Wang, P. Wang, Chin. Chem. Lett. 33 (2022) 4828–4833.
doi: 10.1016/j.cclet.2022.01.033
N. Li, Y. Wang, C. Wu, et al., Appl. Surf. Sci. 434 (2018) 1112–1121.
doi: 10.1016/j.apsusc.2017.11.048
J. Liang, L. Fu, K. Gao, X. Duan, Appl. Catal. B Environ. 315 (2022) 121542.
doi: 10.1016/j.apcatb.2022.121542
Y. Yang, P. Zhang, K. Hu, et al., Appl. Catal. B Environ. 315 (2022) 121593.
doi: 10.1016/j.apcatb.2022.121593
D. Guo, L.X. Zhao, H. Zhang, Chin. Chem. Lett. 33 (2022) 1263–1266.
doi: 10.1016/j.cclet.2021.07.051
Z. Shen, Y. Zhou, Y. Guo, et al., Chin. Chem. Lett. 32 (2021) 2524–2528.
doi: 10.1016/j.cclet.2021.01.044
Y. Shang, X. Duan, S. Wang, et al., Chin. Chem. Lett. 33 (2022) 663–673.
doi: 10.1016/j.cclet.2021.07.050
Y. Su, M. Lu, R. Su, et al., Chin. Chem. Lett. 33 (2022) 2573–2578.
doi: 10.1016/j.cclet.2021.08.078
L. Peng, X. Duan, Y. Shang, B. Gao, X. Xu, Appl. Catal. B Environ. 287 (2021) 119963.
doi: 10.1016/j.apcatb.2021.119963
H. Zheng, Y. Hou, S. Li, et al., Chin. Chem. Lett. 33 (2022) 5013–5022.
doi: 10.1016/j.cclet.2022.01.048
Y. Shang, X. Xu, B. Gao, S. Wang, X. Duan, Chem. Soc. Rev. 50 (2021) 5281–5322.
doi: 10.1039/d0cs01032d
M. Yang, Z. Hou, X. Zhang, et al., Environ. Sci. Technol. 56 (2022) 11635–11645.
doi: 10.1021/acs.est.2c01261
Y. Li, T. Yang, S. Qiu, et al., Chem. Eng. J. 389 (2020) 124382.
doi: 10.1016/j.cej.2020.124382
Q.Y. Wu, J. Wang, Z.W. Wang, et al., Mater. Chem. A 8 (2020) 13685–13693.
doi: 10.1039/d0ta04943c
C. Chu, J. Yang, X. Zhou, et al., Environ. Sci. Technol. 55 (2021) 1242–1250.
doi: 10.1021/acs.est.0c06086
L.S. Zhang, X.H. Jiang, et al., Angew. Chem. Int. Ed. 60 (2021) 21751–21755.
doi: 10.1002/anie.202109488
X. Li, X. Huang, S. Xi, et al., J. Am. Chem. Soc. 140 (2018) 12469–12475.
doi: 10.1021/jacs.8b05992
K. Qian, H. Chen, W. Li, et al., Environ. Sci. Technol. 55 (2021) 7034–7043.
doi: 10.1021/acs.est.0c08805
Y. Gao, X.G. Duan, B. Li, et al., J. Mater. Chem. A 9 (2021) 14793–14805.
doi: 10.1039/d1ta02446a
H. Li, J. Qian, B. Pan, Chem. Eng. J. 403 (2021) 126395.
doi: 10.1016/j.cej.2020.126395
S. Zuo, X. Jin, X. Wang, et al., Appl. Catal. B Environ. 282 (2021) 119551.
doi: 10.1016/j.apcatb.2020.119551
Y. Hua, C. Wang, S. Wang, J. Xiao, Environ. Sci. Pollut. Res. 28 (2021) 62690–62702.
doi: 10.1007/s11356-021-15088-7
G. Wang, X. Nie, X. Ji, et al., Environ. Sci. Nano 6 (2019) 399–410.
doi: 10.1039/c8en01231h
R. Bai, W. Yan, Y. Xiao, et al., Chem. Eng. J. 397 (2020) 125501.
doi: 10.1016/j.cej.2020.125501
W. Du, Q. Zhang, Y. Shang, et al., Appl. Catal. B Environ. 262 (2020) 118302.
doi: 10.1016/j.apcatb.2019.118302
S. Yanan, X. Xing, Q. Yue, B. Gao, Y. Li, Environ. Sci. Nano 7 (2020) 1444–1453.
doi: 10.1039/d0en00050g
Y. Yin, R. Jia, W. Zhang, et al., J. Clean. Prod. 319 (2021) 128680.
doi: 10.1016/j.jclepro.2021.128680
X. Peng, J. Wu, Z. Zhao, et al., Chem. Eng. J. 429 (2022) 132245.
doi: 10.1016/j.cej.2021.132245
J.C.E. Yang, Y. Lin, H.H. Peng, et al., Appl. Catal. B Environ. 268 (2020) 118549.
doi: 10.1016/j.apcatb.2019.118549
C. Chen, T. Ma, Y. Shang, et al., Appl. Catal. B Environ. 250 (2019) 382–395.
doi: 10.1016/j.apcatb.2019.03.048
H. Zheng, J. Bao, Y. Huang, et al., Appl. Catal. B Environ. 259 (2019) 118056.
doi: 10.1016/j.apcatb.2019.118056
Y. Liu, H. Guo, Y. Zhang, et al., Environ. Pollut. 252 (2019) 1042–1050.
doi: 10.1016/j.envpol.2019.05.157
Y. Fan, Y. Ji, D. Kong, J. Lu, Q. Zhou, J. Hazard. Mater. 300 (2015) 39–47.
doi: 10.1016/j.jhazmat.2015.06.058
J. Luo, T. Liu, D. Zhang, et al., Water Res. 159 (2019) 102–110.
doi: 10.1016/j.watres.2019.05.019
Y. Wang, P. Yan, X. Dou, et al., Appl. Catal. B Environ. 290 (2021) 120048.
doi: 10.1016/j.apcatb.2021.120048
F. Chen, L. Liu, J. Chen, et al., Water Res. 191 (2021) 116799.
doi: 10.1016/j.watres.2020.116799
Z. Zhang, Y. Zheng, W. Hang, X. Yan, Y. Zhao, Talanta 85 (2011) 779–786.
doi: 10.1016/j.talanta.2011.04.078
C. Zhu, Y. Nie, S. Zhao, Z. Fan, F. Liu, A. Li, Appl. Catal. B Environ. 305 (2022) 121057.
doi: 10.1016/j.apcatb.2021.121057
X. Peng, J. Wu, Z. Zhao, X. Wang, H. Dai, Y. Li, Y. Wei, G. Xu, F. Hu, et al., Environ. Res. 205 (2022) 112538.
doi: 10.1016/j.envres.2021.112538
Z. Wu, Y. Wang, Z. Xiong, et al., Appl. Catal. B Environ. 277 (2020) 119136.
doi: 10.1016/j.apcatb.2020.119136
X. Peng, J. Wu, Z. Zhao, et al., Chem. Eng. J. 427 (2022) 130803.
doi: 10.1016/j.cej.2021.130803
Y. Li, S. Ma, S. Xu, et al., Chem. Eng. J. 387 (2020) 124094.
doi: 10.1016/j.cej.2020.124094
E. Yun, S. Park, H. Shin, et al., Appl. Catal. B Environ. 279 (2020) 119360.
doi: 10.1016/j.apcatb.2020.119360
L. Chen, S. Wang, Z. Yang, J. Qian, B. Pan, Appl. Catal. B Environ. 292 (2021) 120193.
doi: 10.1016/j.apcatb.2021.120193
C.A. Akinremi, S. Rashid, P.D. Upreti, G.T. Chi, K. Huddersman, RSC Adv. 10 (2020) 12941–12952.
doi: 10.1039/d0ra00520g
A.A. Oladipo, A.O. Ifebajo, M. Gazi, Appl. Catal. B Environ. 243 (2019) 243–252.
doi: 10.1016/j.apcatb.2018.10.050
Z. Yang, J. Qian, A. Yu, B. Pan, P. Natl Acad. Sci. U. S. A. 116 (2019) 6659–6664.
doi: 10.1073/pnas.1819382116
X. Wang, J. Jing, M. Zhou, R. Dewil, Chin. Chem. Lett. 34 (2023) 107621.
doi: 10.1016/j.cclet.2022.06.044
X. Hu, D. Zhou, H. Wang, et al., Chin. Chem. Lett. 34 (2023) 108050.
doi: 10.1016/j.cclet.2022.108050
M. Cheng, C. Lai, Y. Liu, et al., Coord. Chem. Rev. 368 (2018) 80–92.
doi: 10.1016/j.ccr.2018.04.012
Tianjun Ni , Hui Zhang , Liping Zhou , Roujie Ma , Yanyu Wang , Zhijun Yang , Dan Luo , Nithima Khaorapapong , Xingtao Xu , Yusuke Yamauchi , Dong Liu . Atomic cobalt catalysts on 3D interconnected g-C3N4 support for activation of peroxymonosulfate: The importance of Co-N coordination effect. Chinese Chemical Letters, 2025, 36(9): 110659-. doi: 10.1016/j.cclet.2024.110659
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Shenglan Zhou , Haijian Li , Hongyi Gao , Ang Li , Tian Li , Shanshan Cheng , Jingjing Wang , Jitti Kasemchainan , Jianhua Yi , Fengqi Zhao , Wengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Fenglin Wang , Chengwei Kuang , Zhicheng Zheng , Dan Wu , Hao Wan , Gen Chen , Ning Zhang , Xiaohe Liu , Renzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Xiaoyun Lei , Hanghang Zhao , Chao Bai , Longlong Geng , Xing Xu . Wood-derived catalysts for green and stable Fenton-like chemistry: From basic mechanisms to catalytic modules and future inspiration. Chinese Chemical Letters, 2025, 36(10): 111550-. doi: 10.1016/j.cclet.2025.111550
Lina Zou , Dengke Wang , Shiqin Lai , Xunheng Jiang , Siqi Chen , Lanqing Deng , Dong Fan , Hengshuai Li , Zhigang Zhou , Denglong Chen , Xiangyang Yao , Jianping Zou . Local spin-state manipulation of iron single-atom sites induced by sulfur modification to boost Fenton-like reaction. Chinese Chemical Letters, 2025, 36(12): 111094-. doi: 10.1016/j.cclet.2025.111094
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Qingbai Tian , BingLiang Yu , Zhihao Li , Wei Hong , Qian Li , Xing Xu . Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation. Chinese Chemical Letters, 2025, 36(6): 110322-. doi: 10.1016/j.cclet.2024.110322
Kexin Yin , Jingren Yang , Yanwei Li , Qian Li , Xing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847
Hanghang Zhao , Wenbo Qi , Xin Tan , Xing Xu , Fengmin Song , Xianzhao Shao . Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications. Chinese Chemical Letters, 2025, 36(6): 110898-. doi: 10.1016/j.cclet.2025.110898
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Junyou Ding , Xiaotong Li , Hongmin Lin , Bochao Ye , Xing Zhou , Feihu Cui , Yingming Pan , Haitao Tang . Highly regioselective hydrogermylation of unsaturated C-C bonds over ligand-control single atom palladium catalysts. Chinese Chemical Letters, 2025, 36(11): 111286-. doi: 10.1016/j.cclet.2025.111286
Jieyu Liu , Junze Zhang , Haigang Deng , Shuoao Wang , Xingxing Jiang , Li Wang , Changhong Wang . Understanding the activity origin of Pd-anchored single-atom alloy catalysts for NO-to-NH3 conversion by DFT studies and machine learning. Chinese Chemical Letters, 2025, 36(12): 110656-. doi: 10.1016/j.cclet.2024.110656
Peiyang Du , Ling Yuan , Tong Bao , Yamin Xi , Jiaxin Li , Yin Bi , Luli Yin , Jing Wang , Chao Liu . Facet effect of metal-organic frameworks on supporting co-catalysts for photocatalytic hydrogen peroxide production. Chinese Chemical Letters, 2025, 36(11): 110472-. doi: 10.1016/j.cclet.2024.110472
Chi Zhang , Ning Ding , Yuwei Pan , Lichun Fu , Ying Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331