Citation:
Danman Guo, Yuyuan Wang, Jinzheng Chen, Yifeng Cao, Yiling Miao, Huahua Huang, Zhenguo Chi, Zhiyong Yang. Intrinsic persistent room temperature phosphorescence derived from 1H-benzo[f]indole itself as a guest[J]. Chinese Chemical Letters,
;2023, 34(7): 107882.
doi:
10.1016/j.cclet.2022.107882
-
The influence of 1H-benzo[f]indole (Bd) and its derivatives on room temperature phosphorescence (RTP) has raised great concern since they were found to significantly affect RTP of the extensively studied carbazole (Cz) derivatives. However, the role of Bd itself existing in Cz-based or other doping systems was still unclear. In order to clarify its intrinsic phosphorescent property, Bd was introduced as a guest into different organic matrixes including substituted Cz derivatives and polymers. The phosphorescence located in 560–620 nm was confirmed to be derived from Bd itself, which can be detected whatever Bd was doped in the crystal or amorphous state of Cz derivatives. The suitable energy gap between Cz derivatives and Bd is the key to achieve ultralong RTP of Bd. Additionally, when doped in polymers with plenty of hydrogen bonds, RTP of Bd with lifetime over 280 ms was easily obtained. Among them, Bd@PHEMA (poly(hydroxyethyl methacrylate) exhibited superior phosphorescence, with yellow afterglow lasting for over 2.5 s. Therefore, this work demonstrated that a new organic RTP phosphor, Bd, is discovered, and ultralong RTP of Bd can be achieved not only doped in Cz derivatives but also in polymers as the hosts.
-
-
-
[1]
C.A. DeRosa, S.A. Seaman, A.S. Mathew, et al., ACS Sens. 1 (2016) 1366–1373. doi: 10.1021/acssensors.6b00533
-
[2]
S.M.A. Fateminia, Z. Mao, S. Xu, et al., Angew. Chem. Int. Ed. 56 (2017) 12160–12164. doi: 10.1002/anie.201705945
-
[3]
L. Gu, H. Wu, H. Ma, et al., Nat. Commun. 11 (2020) 944. doi: 10.1038/s41467-020-14792-1
-
[4]
F. Lin, H. Wang, Y. Cao, et al., Adv. Mater. 34 (2022) e2108333. doi: 10.1002/adma.202108333
-
[5]
X.F. Wang, H. Xiao, P.Z. Chen, et al., J. Am. Chem. Soc. 141 (2019) 5045–5050. doi: 10.1021/jacs.9b00859
-
[6]
S. Cai, Z. Sun, H. Wang, et al., J. Am. Chem. Soc. 143 (2021) 16256–16263. doi: 10.1021/jacs.1c07674
-
[7]
Q. Liao, Q. Li, Z. Li, et al., ChemPhotoChem 5 (2021) 694–701. doi: 10.1002/cptc.202100016
-
[8]
Y. Zhang, Y. Su, H. Wu, et al., J. Am. Chem. Soc. 143 (2021) 13675–13685. doi: 10.1021/jacs.1c05213
-
[9]
J. Guo, C. Yang, Y. Zhao, et al., Acc. Chem. Res. 55 (2022) 1160–1170. doi: 10.1021/acs.accounts.2c00038
-
[10]
H. Thomas, D.L. Pastoetter, M. Gmelch, et al., Adv. Mater. 32 (2020) e2000880. doi: 10.1002/adma.202000880
-
[11]
X. Zhang, L. Du, W. Zhao, et al., Nat. Commun. 10 (2019) 5161. doi: 10.1038/s41467-019-13048-x
-
[12]
Y. Gong, L. Zhao, Q. Peng, et al., Chem. Sci. 6 (2015) 4438–4444. doi: 10.1039/C5SC00253B
-
[13]
H.E. Hackney, D.F. Perepichka, Aggregate. 3 (2022) e123. doi: 10.1002/agt2.123
-
[14]
K. Narushima, Y. Kiyota, T. Mori, et al., Adv. Mater. 31 (2019) e1807268. doi: 10.1002/adma.201807268
-
[15]
J.A. Li, J. Zhou, Z. Mao, et al., Angew. Chem. Int. Ed. 57 (2018) 6449–6453. doi: 10.1002/anie.201800762
-
[16]
W. Zhao, T.S. Cheung, N. Jiang, et al., Nat. Commun. 10 (2019) 1595. doi: 10.1038/s41467-019-09561-8
-
[17]
Z. Yang, Z. Mao, X. Zhang, et al., Angew. Chem. Int. Ed. 55 (2016) 2181–2185. doi: 10.1002/anie.201509224
-
[18]
Z. An, C. Zheng, Y. Tao, et al., Nat. Mater. 14 (2015) 685–690. doi: 10.1038/nmat4259
-
[19]
S. Chanmungkalakul, C. Wang, R. Miao, et al., Angew. Chem. Int. Ed. 61 (2022) e202200546. doi: 10.1002/anie.202200546
-
[20]
B. Chen, W. Huang, X. Nie, et al., Angew. Chem. Int. Ed. 60 (2021) 16970–16973. doi: 10.1002/anie.202106204
-
[21]
Y. Lei, W. Dai, J. Guan, et al., Angew. Chem. Int. Ed. 59 (2020) 16054–16060. doi: 10.1002/anie.202003585
-
[22]
S. Sun, L. Ma, J. Wang, et al., Natl. Sci. Rev. 9 (2022) nwab085. doi: 10.1093/nsr/nwab085
-
[23]
R. Tian, S. Xu, Q. Xu, et al., Sci. Adv. 6 (2020) eaaz6107. doi: 10.1126/sciadv.aaz6107
-
[24]
Y. Gong, G. Chen, Q. Peng, et al., Adv. Mater. 27 (2015) 6195–6201. doi: 10.1002/adma.201502442
-
[25]
Y. Tao, R. Chen, H. Li, et al., Adv. Mater. 30 (2018) e1803856. doi: 10.1002/adma.201803856
-
[26]
W. Zhao, Z. He, Jacky W.Y. Lam, et al., Chem. 1 (2016) 592–602. doi: 10.1016/j.chempr.2016.08.010
-
[27]
Z. He, W. Zhao, J.W.Y. Lam, et al., Nat. Commun. 8 (2017) 416. doi: 10.1038/s41467-017-00362-5
-
[28]
Kenry, C. Chen, B. Liu, Nat. Commun. 10 (2019) 2111. doi: 10.1038/s41467-019-10033-2
-
[29]
B. Xu, H. Wu, J. Chen, et al., Chem. Sci. 8 (2017) 1909–1914. doi: 10.1039/C6SC03038F
-
[30]
Z. Mao, Z. Yang, Z. Fan, et al., Chem. Sci. 10 (2019) 179–184. doi: 10.1039/c8sc03019g
-
[31]
Y. Xiong, Z. Zhao, W. Zhao, et al., Angew. Chem. Int. Ed. 57 (2018) 7997–8001. doi: 10.1002/anie.201800834
-
[32]
C. Chen, Z. Chi, K.C. Chong, et al., Nat. Mater. 20 (2021) 175–180. doi: 10.1038/s41563-020-0797-2
-
[33]
C. Qian, Z. Ma, B. Yang, et al., J. Mater. Chem. C 9 (2021) 14294–14302. doi: 10.1039/d1tc03020e
-
[34]
C. Qian, Z. Ma, X. Fu, et al., Adv. Mater. 34 (2022) e2200544. doi: 10.1002/adma.202200544
-
[35]
L. Tu, W. Che, S. Li, et al., J. Mater. Chem. C. 9 (2021) 12124–12132. doi: 10.1039/d1tc02742e
-
[36]
X.F. Wang, W.J. Guo, H. Xiao, et al., Adv. Funct. Mater. 30 (2020) 1907282. doi: 10.1002/adfm.201907282
-
[37]
Y. Su, Y. Zhang, Z. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 9967–9971. doi: 10.1002/anie.201912102
-
[38]
H. Wang, H. Shi, W. Ye, et al., Angew. Chem. Int. Ed. 58 (2019) 18776–18782. doi: 10.1002/anie.201911331
-
[39]
S. Xu, W. Wang, H. Li, et al., Nat. Commun. 11 (2020) 4802. doi: 10.1038/s41467-020-18572-9
-
[40]
M.S. Kwon, D. Lee, S. Seo, J. Jung, et al., Angew. Chem. Int. Ed. 53 (2014) 11177–11181. doi: 10.1002/anie.201404490
-
[41]
C. Maes, W. Luyten, G. Herremans, et al., Polym. Rev. 58 (2018) 209–246. doi: 10.1080/15583724.2017.1394323
-
[1]
-
-
-
[1]
Xing Cao , Xinyu Tian , Yuanyuan Huang , Liping Zhang , Yanpeng Ni , Yu-Zhong Wang . H3PO3-protonated chitosan enabling flame-retardant and antibacterial PVA composite films with high strength and toughness through multiple H-bonds and interlocking interfaces. Chinese Chemical Letters, 2025, 36(11): 111382-. doi: 10.1016/j.cclet.2025.111382
-
[2]
Meng Shan , Yongmei Yu , Mengli Sun , Shuping Yang , Mengqi Wang , Bo Zhu , Junbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781
-
[3]
Shi Li , Wenshuai Zhao , Yong Qi , Wenbin Niu , Wei Ma , Bingtao Tang , Shufen Zhang . Hydrogen bonding induced ultra-highly thermal stability of azo dyes for color films. Chinese Chemical Letters, 2025, 36(9): 110653-. doi: 10.1016/j.cclet.2024.110653
-
[4]
Yao Wang , Jun Ouyang , Huadong Yuan , Jianmin Luo , Shihui Zou , Jianwei Nai , Xinyong Tao , Yujing Liu . Impact of local amorphous environment on the diffusion of sodium ions at the solid electrolyte interface in sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110412-. doi: 10.1016/j.cclet.2024.110412
-
[5]
Ke Zhang , Yajing Wei , Linhua Xie , Sha Kang , Fei Li , Chuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086
-
[6]
Ya-Ting Gao , Yi-Lin Zhu , Xiao-Yuan Wang , Li-Ya Liang , Meng-Li Liu , Shuai Chang , Han-Bin Xu , Da-Wei Li , Bin-Bin Chen . Pure organic electrophosphorochromism system. Chinese Chemical Letters, 2025, 36(11): 110855-. doi: 10.1016/j.cclet.2025.110855
-
[7]
Jianmei Guo , Yupeng Zhao , Lei Ma , Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335
-
[8]
Zeyuan Zhang , Zixuan Li , Chenjing Liu , Yali Hou , Ke Gao , Shijin Jian , Guoping Li , Gang He , Mingming Zhang . Porphyrin metallacage-based host-guest complexation for highly efficient photocatalytic hydrogen production. Chinese Chemical Letters, 2025, 36(12): 111322-. doi: 10.1016/j.cclet.2025.111322
-
[9]
Dian-Xue Ma , Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391
-
[10]
Chunyuan Kang , Xiaoyu Li , Fan Yang , Bai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156
-
[11]
Jie Yang , Xin-Yue Lou , Dihua Dai , Jingwei Shi , Ying-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818
-
[12]
Cheng He , Renlan Huang , Lingling Wei , Qiuhui He , Jinbo Liu , Jiao Chen , Ge Gao , Cheng Yang , Wanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103
-
[13]
Shengyong Liu , Hui Li , Wei Zhang , Yan Zhang , Yan Dong , Wei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465
-
[14]
Huipeng Li , Xue Yang , Minjie Sun . Self-strengthened cascade-explosive nanogel using host-guest interaction strategy for synergistic tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110651-. doi: 10.1016/j.cclet.2024.110651
-
[15]
Zeyin Chen , Jiaju Shi , Yusheng Zhou , Peng Zhang , Guodong Liang . Polymer microparticles with ultralong room-temperature phosphorescence for visual and quantitative detection of oxygen through phosphorescence image and lifetime analysis. Chinese Chemical Letters, 2025, 36(5): 110629-. doi: 10.1016/j.cclet.2024.110629
-
[16]
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
-
[17]
Ran Zhu , Pan Zhang , Yitong Xu , Jiutong Ma , Qiong Jia . Design of host-guest interaction based molecularly imprinted polymers: Targeting recognition of the epitope of neuron-specific enolase via a SERS assay. Chinese Chemical Letters, 2025, 36(6): 110259-. doi: 10.1016/j.cclet.2024.110259
-
[18]
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
-
[19]
Jiayin Zhou , Depeng Liu , Longqiang Li , Min Qi , Guangqiang Yin , Tao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929
-
[20]
Hong Yao , Feixiang Yang , Jianpeng Hu , Wenyu Cao , Shuning Qin , Tai-Bao Wei , Bingbing Shi , Qi Lin . Ultralong room temperature phosphorescence and broad color-tunability persistent luminescence via new strategy. Chinese Chemical Letters, 2025, 36(6): 110375-. doi: 10.1016/j.cclet.2024.110375
-
[1]
Metrics
- PDF Downloads(10)
- Abstract views(2222)
- HTML views(92)
Login In
DownLoad: