Understanding reaction mechanisms of metal-free dinitrogen activation by methyleneboranes
-
* Corresponding author.
E-mail address: jun.zhu@xmu.edu.cn (J. Zhu).
Citation:
Jie Zeng, Jiaying Su, Feiying You, Jun Zhu. Understanding reaction mechanisms of metal-free dinitrogen activation by methyleneboranes[J]. Chinese Chemical Letters,
;2023, 34(2): 107759.
doi:
10.1016/j.cclet.2022.107759
M. Falcone, L. Chatelain, R. Scopelliti, I. Živković, M. Mazzanti, Nature 547 (2017) 332–335.
doi: 10.1038/nature23279
Z. Lv, J. Wei, W. Zhang, et al., Natl. Sci. Rev. 7 (2020) 1564–1583.
doi: 10.1093/nsr/nwaa142
J.B. Howard, D.C. Rees, Chem. Rev. 96 (1996) 2965–2982.
doi: 10.1021/cr9500545
Z. Mo, S. Takanori, Z. Hou, Angew. Chem. Int. Ed. 59 (2020) 8635–8644.
doi: 10.1002/anie.201916171
G. Wang, J. Yin, J. Li, et al., CCS Chem. 3 (2021) 308–316.
doi: 10.31635/ccschem.021.202000712
S. Dong, J. Zhu, Chem. Asian J. 16 (2021) 1626–1633.
doi: 10.1002/asia.202100394
M. Zhong, X. Cui, B. Wu, et al., CCS Chem. 4 (2022), 532–539.
doi: 10.31635/ccschem.021.202100945
J. Li, J. Yin, C. Yu, W. Zhang, Z. Xi, Acta Chim. Sin. 75 (2017) 733–743.
doi: 10.6023/A17040170
M. -. A. Légaré, G. Belanger-Chabot, R.D. Dewhurst, et al., Science 359 (2018) 896–900.
doi: 10.1126/science.aaq1684
M.A. Légaré, M. Rang, B.G. langer-Chabot, M.C. Holthausen, H. Brauschweig, Science 363 (2019) 1329–1332.
doi: 10.1126/science.aav9593
Q. Wang, S. Pan, S. Lei, et al., Nat. Commun. 10 (2019) 1–8.
doi: 10.1038/s41467-018-07882-8
M.A. Légaré, C. Pranckevicius, H. Braunschweig, Chem. Rev. 119 (2019) 8231–8261.
doi: 10.1021/acs.chemrev.8b00561
M.A. Légaré, G. Belanger-Chabot, M. Rang, et al., Nat. Chem. 12 (2020) 1076–1080.
doi: 10.1038/s41557-020-0520-6
M.G. Walawalkar, Dalton Trans. 50 (2021) 460–465.
doi: 10.1039/d0dt03599h
G. Deng, S. Pan, G. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 18201–18207.
doi: 10.1002/anie.202007241
G. Deng, S. Pan, X. Dong, et al., Chem. Eur. J. 27 (2021) 2131–2137.
doi: 10.1002/chem.202004357
B. Rösch, T.X. Gentner, J. Langer, et al., Science 12 (2021) 1125–1128.
doi: 10.1126/science.abf2374
S. Hasenstab-Riedel, B. Xu, H. Beckers, Angew. Chem. Int. Ed. 60 (2021) 17205–17210.
doi: 10.1002/anie.202106984
K. Edel, M. Krieg, D. Grote, H.F. Bettinger, J. Am. Chem. Soc. 139 (2017) 15151–15159.
doi: 10.1021/jacs.7b08497
H. Zhang, R. Yuan, W. Wu, Y. Mo, Chem. Eur. J. 26 (2020) 2619–2625.
doi: 10.1002/chem.201904724
J. Zhu, Chem. Asian J. 14 (2019) 1413–1417.
doi: 10.1002/asia.201900010
A.M. Rouf, C. Dai, F. Xu, J. Zhu, Adv. Theory Simul. 3 (2020) 1900205.
doi: 10.1002/adts.201900205
A.M. Rouf, C. Dai, S. Dong, J. Zhu, Inorg. Chem. 59 (2020) 11770–11781.
doi: 10.1021/acs.inorgchem.0c01754
A.M. Rouf, Y. Huang, S. Dong, J. Zhu, Inorg. Chem. 60 (2021) 5598–5606.
doi: 10.1021/acs.inorgchem.0c03520
C. Dai, Y. Huang, J. Zhu, Organometallics 41 (2022) 1480–1487.
doi: 10.1021/acs.organomet.2c00069
C. Dai, J. Zhu, Phys. Chem. Chem. Phys. 24 (2022) 14651–14657.
doi: 10.1039/d2cp01233b
Q. Zhu, R. Qiu, S. Dong, G. Zeng, J. Zhu, Chem. Asian J. 16 (2021) 2063–2067.
doi: 10.1002/asia.202100427
F. Fantuzzi, R. Moral, R.D. Dewhurst, H. Braunschweig, A.K. Phukan, Chem. Eur. J. 28 (2022) e202104123.
F. You, J. Zeng, A.M. Rouf, S. Dong, J. Zhu, Chem. Asian J. 17 (2022) e202200232.
J. Zeng, S. Dong, C. Dai, J. Zhu, Inorg. Chem. 61 (2022) 2234–2241.
doi: 10.1021/acs.inorgchem.1c03546
C. Wang, Z. Yin, J. Wei, et al., Tetrahedron 76 (2020) 131703.
doi: 10.1016/j.tet.2020.131703
P. Bissinger, H. Braunschweig, A. Damme, et al., J. Am. Chem. Soc. 133 (2011) 19044–19047.
doi: 10.1021/ja208372k
M. Arrowsmith, D. Auerhammer, R. Bertermann, et al., Angew. Chem. Int. Ed. 55 (2016) 14464–14468.
doi: 10.1002/anie.201608429
F. Dahcheh, D. Martin, D.W. Stephan, G. Bertrand, Angew. Chem. Int. Ed. 53 (2014) 13159–13163.
doi: 10.1002/anie.201408371
W. Lu, Y. Li, R. Ganguly, R. Kinjo, Angew. Chem. Int. Ed. 56 (2017) 9829–9832.
doi: 10.1002/anie.201704887
J. Böhnke, H. Braunschweig, W.C. Ewing, et al., Angew. Chem. Int. Ed. 53 (2014) 9082–9085.
doi: 10.1002/anie.201403888
M. Pilz, M. Stadler, R. Hunold, et al., Angew. Chem. Int. Ed. 28 (1989) 784–786.
doi: 10.1002/anie.198907841
I. Mayer, P. Salvador, Chem. Phys. Lett. 383 (2004) 368–375.
doi: 10.1016/j.cplett.2003.11.048
E.D. Glendening, F. Weinhold, J. Comput. Chem. 19 (1998) 593–609.
doi: 10.1002/(SICI)1096-987X(19980430)19:6<593::AID-JCC3>3.0.CO;2-M
J. Zhang, F. Sheong, Z. Lin, Chem. Eur. J. 24 (2018) 9639–9650.
doi: 10.1002/chem.201801220
J. Zhang, F. Sheong, Z. Lin, WIREs Comput. Mol. Sci. 10 (2020) e1469.
M. Phipps, T. Fox, C. Tautermann, C. Skylaris, Chem. Soc. Rev. 44 (2015) 3177–3211.
doi: 10.1039/C4CS00375F
F. Bickelhaupt, K. Houk, Angew. Chem. Int. Ed. 56 (2017) 10070–10086.
doi: 10.1002/anie.201701486
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
Chunrui Zhao , Tianren Li , Jiage Li , Yansong Liu , Zian Fang , Xinyu Wang , Mingxin Huo , Shuangshi Dong , Mingyu Li . Doped cobalt for simultaneously promoting active (001) facet exposure of MIL-68(In) and acting as reactive sites in peroxymonosulfate-mediated photocatalytic decontamination. Chinese Chemical Letters, 2025, 36(5): 110201-. doi: 10.1016/j.cclet.2024.110201
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Shuai Qiu , Jia He , Xiao Hu , Hongxia Yan , Zhao Gao , Wei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Xin Li , Jia-Min Lu , Bo Li , Chen Zhao , Bei-Bei Yang , Li Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310
Yan Guo , Hongtao Bian , Le Yu , Jiani Ma , Yu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971
Huazhe Wang , Chenghuan Qiao , Chuchu Chen , Bing Liu , Juanshan Du , Qinglian Wu , Xiaochi Feng , Shuyan Zhan , Wan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499