Recent advances in organic electrosynthesis using heterogeneous catalysts modified electrodes
-
* Corresponding authors.
E-mail addresses: li_ma@qlu.edu.cn (L. Ma), jchen@qlu.edu.cn (J. Chen).
Citation:
Li Ma, Xianang Gao, Xin Liu, Xiaojun Gu, Baoying Li, Beibei Mao, Zeyuan Sun, Wei Gao, Xiaofei Jia, Jianbin Chen. Recent advances in organic electrosynthesis using heterogeneous catalysts modified electrodes[J]. Chinese Chemical Letters,
;2023, 34(4): 107735.
doi:
10.1016/j.cclet.2022.08.015
R. Francke, R.D. Little, Chem. Soc. Rev. 43 (2014) 2492–2521.
doi: 10.1039/c3cs60464k
E.J. Horn, B.R. Rosen, P.S. Baran, ACS Cent. Sci. 2 (2016) 302–308.
doi: 10.1021/acscentsci.6b00091
Y. Jiang, K. Xu, C. Zeng, Chem. Rev. 118 (2018) 4485–4540.
doi: 10.1021/acs.chemrev.7b00271
P. Xiong, H.C. Xu, Acc. Chem. Res. 52 (2019) 3339–3350.
doi: 10.1021/acs.accounts.9b00472
Y. Yuan, A. Lei, Acc. Chem. Res. 52 (2019) 3309–3324.
doi: 10.1021/acs.accounts.9b00512
L.F.T. Novaes, J. Liu, Y. Shen, et al., Chem. Soc. Rev. 50 (2021) 7941–8002.
doi: 10.1039/D1CS00223F
Z. Du, Q. Qi, W. Gao, et al., Chem. Rec. 22 (2022) e202100178.
M. Yan, Y. Kawamata, P.S. Baran, Chem. Rev. 117 (2017) 13230–13319.
doi: 10.1021/acs.chemrev.7b00397
J. Li, S. Zhang, K. Xu, Chin. Chem. Lett. 32 (2021) 2729–2735.
doi: 10.1016/j.cclet.2021.03.027
Q. Tian, J. Zhang, L. Xu, Y. Wei, Mol. Catal. 500 (2021) 111345.
doi: 10.1016/j.mcat.2020.111345
S. Lv, X. Han, J.Y. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 11583–11590.
doi: 10.1002/anie.202001510
L. Ackermann, Acc. Chem. Res. 53 (2020) 84–104.
doi: 10.1021/acs.accounts.9b00510
K.J. Jiao, Y.K. Xing, Q.L. Yang, H. Qiu, T.S. Mei, Acc. Chem. Res. 53 (2020) 300–310.
doi: 10.1021/acs.accounts.9b00603
J. Zhong, Y. Yu, D. Zhang, K. Ye, Chin. Chem. Lett. 32 (2021) 963–972.
doi: 10.1016/j.cclet.2020.08.011
J.E. Nutting, M. Rafiee, S.S. Stahl, Chem. Rev. 118 (2018) 4834–4885.
doi: 10.1021/acs.chemrev.7b00763
F. Lian, K. Xu, C. Zeng, Chem. Rec. 21 (2021) 2290–2305.
doi: 10.1002/tcr.202100036
F. Wang, S.S. Stahl, Acc. Chem. Res. 53 (2020) 561–574.
doi: 10.1021/acs.accounts.9b00544
A. Das, S.S. Stahl, Angew. Chem. Int. Ed. 56 (2017) 8892–8897.
doi: 10.1002/anie.201704921
L. Yang, L. Cao, R. Huang, et al., ACS Appl. Mater. Interfaces 10 (2018) 36290–36296.
doi: 10.1021/acsami.8b13356
B. You, X. Liu, X. Liu, Y. Sun, ACS Catal. 7 (2017) 4564–4570.
doi: 10.1021/acscatal.7b00876
J. Zheng, X. Chen, X. Zhong, et al., Adv. Funct. Mater. 27 (2017) 1704169.
doi: 10.1002/adfm.201704169
D. Si, B. Xiong, L. Chen, J. Shi, Chem. Catal. 1 (2021) 941–955.
doi: 10.1016/j.checat.2021.08.001
Z. Zhang, K. Deng, ACS Catal. 5 (2015) 6529–6544.
doi: 10.1021/acscatal.5b01491
M. Sajid, X. Zhao, D. Liu, Green Chem. 20 (2018) 5427–5453.
doi: 10.1039/C8GC02680G
H. Luo, J. Barrio, N. Sunny, et al., Adv. Energy Mater. 11 (2021) 2101180.
doi: 10.1002/aenm.202101180
Y. Zhao, M. Cai, J. Xian, Y. Sun, G. Li, J. Mater. Chem. A 9 (2021) 20164–20183.
doi: 10.1039/D1TA04981J
G. Grabowski, J. Lewkowski, R. Skowrońsk, Electrochim. Acta 36 (1991) 1995.
doi: 10.1016/0013-4686(91)85084-K
D.J. Chadderdon, L. Xin, J. Qi, et al., Green Chem. 16 (2014) 3778–3786.
doi: 10.1039/C4GC00401A
M. Park, M. Gu, B.S. Kim, ACS Nano 14 (2020) 6812–6822.
doi: 10.1021/acsnano.0c00581
N. Jiang, B. You, R. Boonstra, I.M. Terrero Rodriguez, Y. Sun, ACS Energy Lett. 1 (2016) 386–390.
doi: 10.1021/acsenergylett.6b00214
B. You, N. Jiang, X. Liu, Y. Sun, Angew. Chem. Int. Ed. 55 (2016) 9913–9917.
doi: 10.1002/anie.201603798
N. Jiang, X. Liu, J. Dong, et al., ChemNanoMat 3 (2017) 491–495.
doi: 10.1002/cnma.201700076
B. You, X. Liu, N. Jiang, Y. Sun, J. Am. Chem. Soc. 138 (2016) 13639–13646.
doi: 10.1021/jacs.6b07127
S. Barwe, J. Weidner, S. Cychy, et al., Angew. Chem. Int. Ed. 57 (2018) 11460–11464.
doi: 10.1002/anie.201806298
J. Weidner, S. Barwe, K. Sliozberg, et al., Beilstein J. Org. Chem. 14 (2018) 1436–1445.
doi: 10.3762/bjoc.14.121
P. Zhang, X. Sheng, X. Chen, et al., Angew. Chem. Int. Ed. 58 (2019) 9155–9159.
doi: 10.1002/anie.201903936
S. Li, X. Sun, Z. Yao, et al., Adv. Funct. Mater. 29 (2019) 1904780.
doi: 10.1002/adfm.201904780
N. Zhang, Y. Zou, L. Tao, et al., Angew. Chem. Int. Ed. 58 (2019) 15895–15903.
doi: 10.1002/anie.201908722
L. Gao, Y. Bao, S. Gan, et al., ChemSusChem 11 (2018) 2547–2553.
doi: 10.1002/cssc.201800695
M.J. Kang, H. Park, J. Jegal, et al., Appl. Catal. B: Environ. 242 (2019) 85–91.
doi: 10.1016/j.apcatb.2018.09.087
Z. Zhou, C. Chen, M. Gao, B. Xia, J. Zhang, Green Chem. 21 (2019) 6699–6706.
doi: 10.1039/C9GC02880C
C. Wang, H.J. Bongard, M. Yu, F. Schuth, ChemSusChem 14 (2021) 5199–5206.
doi: 10.1002/cssc.202002762
X. Huang, J. Song, M. Hua, et al., Green Chem. 22 (2020) 843–849.
doi: 10.1039/C9GC03698A
S. Choi, M. Balamurugan, K.G. Lee, et al., J. Phys. Chem. Lett. 11 (2020) 2941–2948.
doi: 10.1021/acs.jpclett.0c00425
F.J. Holzhäuser, T. Janke, F. Öztas, C. Broicher, R. Palkovits, Adv. Sustain. Syst. 4 (2020) 1900151.
doi: 10.1002/adsu.201900151
L. Wang, J. Cao, C. Lei, et al., ACS Appl. Mater. Interfaces 11 (2019) 27743–27750.
doi: 10.1021/acsami.9b06502
G. Yang, Y. Jiao, H. Yan, et al., Adv. Mater. 32 (2020) e2000455.
doi: 10.1002/adma.202000455
K. Gu, D. Wang, C. Xie, et al., Angew. Chem. Int. Ed. 60 (2021) 20253–20258.
doi: 10.1002/anie.202107390
L. Gao, S. Gan, J. Ma, et al., ChemElectroChem 7 (2020) 4251–4258.
doi: 10.1002/celc.202001117
L. Gao, Z. Liu, J. Ma, et al., Appl. Catal. B: Environ. 261 (2020) 118235.
doi: 10.1016/j.apcatb.2019.118235
S.R. Kubota, K.S. Choi, ChemSusChem 11 (2018) 2138–2145.
doi: 10.1002/cssc.201800532
M. Sun, Y. Wang, C. Sun, et al., Chin. Chem. Lett. 33 (2022) 385–389.
doi: 10.1016/j.cclet.2021.05.009
W.J. Liu, L. Dang, Z. Xu, et al., ACS Catal. 8 (2018) 5533–5541.
doi: 10.1021/acscatal.8b01017
M. Zhang, Y. Liu, B. Liu, et al., ACS Catal. 10 (2020) 5179–5189.
doi: 10.1021/acscatal.0c00007
H. Chen, J. Wang, Y. Yao, et al., ChemElectroChem 6 (2019) 5797–5801.
doi: 10.1002/celc.201901366
B. Zhou, Y. Li, Y. Zou, et al., Angew. Chem. Int. Ed. 60 (2021) 22908–22914.
doi: 10.1002/anie.202109211
B.J. Taitt, D.H. Nam, K.S. Choi, ACS Catal. 9 (2019) 660–670.
doi: 10.1021/acscatal.8b04003
N. Heidary, N. Kornienko, Chem. Sci. 11 (2020) 1798–1806.
doi: 10.1039/D0SC00136H
Y. Zhang, Z. Xue, X. Zhao, B. Zhang, T. Mu, Green Chem. 24 (2022) 1721–1731.
doi: 10.1039/D1GC04499K
B. Zhou, C.L. Dong, Y.C. Huang, et al., J. Energy Chem. 61 (2021) 179–185.
doi: 10.1016/j.jechem.2021.02.026
Y. Lu, C.L. Dong, Y.C. Huang, et al., Angew. Chem. Int. Ed. 59 (2020) 19215–19221.
doi: 10.1002/anie.202007767
Y. Lu, C.L. Dong, Y.C. Huang, et al., Sci. China Chem. 63 (2020) 980–986.
doi: 10.1007/s11426-020-9749-8
X. Deng, G.Y. Xu, Y.J. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 20535–20542.
doi: 10.1002/anie.202108955
O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, et al., Nature 423 (2003) 705–714.
doi: 10.1038/nature01650
A.P. Cote, A.I. Benin, N.W. Ockwig, et al., Science 310 (2005) 1166–1170.
doi: 10.1126/science.1120411
H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortes, et al., Science 316 (2007) 268–272.
doi: 10.1126/science.1139915
A. Dhakshinamoorthy, Z. Li, H. Garcia, Chem. Soc. Rev. 47 (2018) 8134–8172.
doi: 10.1039/C8CS00256H
L. Jiao, Y. Wang, H.L. Jiang, Q. Xu, Adv. Mater. 30 (2018) 1703663.
doi: 10.1002/adma.201703663
Y. Wen, J. Zhang, Q. Xu, X.T. Wu, Q.L. Zhu, Coord. Chem. Rev. 376 (2018) 248–276.
doi: 10.1016/j.ccr.2018.08.012
X. Zhao, P. Pachfule, A. Thomas, Chem. Soc. Rev. 50 (2021) 6871–6913.
doi: 10.1039/D0CS01569E
H.Y. Cheng, T. Wang, Adv. Synth. Catal. 363 (2021) 144–193.
doi: 10.1002/adsc.202001086
L. Ma, S. Wang, X. Feng, B. Wang, Chin. Chem. Lett. 27 (2016) 1383–1394.
doi: 10.1016/j.cclet.2016.06.046
L. Hu, C. Dai, L. Chen, et al., Angew. Chem. Int. Ed. 60 (2021) 27324–27329.
doi: 10.1002/anie.202113895
S. Yuan, J. Zhang, L. Hu, et al., Angew. Chem. Int. Ed. 60 (2021) 21685–21690.
doi: 10.1002/anie.202107053
Y.R. Wang, H.M. Ding, X.Y. Ma, et al., Angew. Chem. Int. Ed. 61 (2022) e202114648.
Y.L. Yang, Y.R. Wang, G.K. Gao, et al., Chin. Chem. Lett. 33 (2022) 1439–1444.
doi: 10.1016/j.cclet.2021.08.063
M. Cai, Y. Zhang, Y. Zhao, et al., J. Mater. Chem. A 8 (2020) 20386–20392.
doi: 10.1039/D0TA07793C
X.J. Bai, W.X. He, X.Y. Lu, Y. Fu, W. Qi, J. Mater. Chem. A 9 (2021) 14270–14275.
doi: 10.1039/D1TA02464G
M. Cai, S. Ding, B. Gibbons, et al., Chem. Commun. 56 (2020) 14361–14364.
doi: 10.1039/D0CC02206C
H. Wu, J. Song, H. Liu, et al., Chem. Sci. 10 (2019) 4692–4698.
doi: 10.1039/C9SC00322C
X. Zhang, M. Han, G. Liu, et al., Appl. Catal. B: Environ. 244 (2019) 899–908.
doi: 10.1016/j.apcatb.2018.12.025
D. Kaiser, I. Klose, R. Oost, J. Neuhaus, N. Maulide, Chem. Rev. 119 (2019) 8701–8780.
doi: 10.1021/acs.chemrev.9b00111
N. Wang, P. Saidhareddy, X. Jiang, Nat. Prod. Rep. 37 (2020) 246–275.
doi: 10.1039/C8NP00093J
L. Zhang, Y.M. Lee, M. Guo, S. Fukuzumi, W. Nam, J. Am. Chem. Soc. 142 (2020) 19879–19884.
doi: 10.1021/jacs.0c10159
K. Kaczorowska, Z. Kolarska, K. Mitka, P. Kowalski, Tetrahedron 61 (2005) 8315–8327.
doi: 10.1016/j.tet.2005.05.044
S. Liu, B. Chen, Y. Yang, et al., Electrochem. Commun. 109 (2019) 106583.
doi: 10.1016/j.elecom.2019.106583
Y. Liang, S.H. Shi, R. Jin, et al., Nat. Catal. 4 (2021) 116–123.
doi: 10.1038/s41929-020-00559-w
S. Han, C. Wang, Y. Shi, et al., Cell Rep. Phys. Sci. 2 (2021) 100462.
doi: 10.1016/j.xcrp.2021.100462
F.F. Fleming, L. Yao, P.C. Ravikumar, L. Funk, B.C. Shook, J. Med. Chem. 53 (2010) 7902–7917.
doi: 10.1021/jm100762r
R.V. Jagadeesh, H. Junge, M. Beller, Nat. Commun. 5 (2014) 4123.
doi: 10.1038/ncomms5123
R.Y. Liu, M. Bae, S.L. Buchwald, J. Am. Chem. Soc. 140 (2018) 1627–1631.
doi: 10.1021/jacs.8b00643
P. Anbarasan, T. Schareina, M. Beller, Chem. Soc. Rev. 40 (2011) 5049–5067.
doi: 10.1039/c1cs15004a
M.F. Semmelhack, C.R. Schmid, J. Am. Chem. Soc. 105 (1983) 6732–6734.
doi: 10.1021/ja00360a042
J. Kim, S.S. Stahl, ACS Catal. 3 (2013) 1652–1656.
doi: 10.1021/cs400360e
K.N. Tseng, A.M. Rizzi, N.K. Szymczak, J. Am. Chem. Soc. 135 (2013) 16352–16355.
doi: 10.1021/ja409223a
Y. Huang, X. Chong, C. Liu, Y. Liang, B. Zhang, Angew. Chem. Int. Ed. 57 (2018) 13163–13166.
doi: 10.1002/anie.201807717
I. Mondal, J.N. Hausmann, G. Vijaykumar, et al., Adv. Energy Mater. 12 (2022) 2200269.
doi: 10.1002/aenm.202200269
S. Torii, K. Uneyama, H. Tanaka, et al., J. Org. Chem. 46 (1981) 3312–3315.
doi: 10.1021/jo00329a032
S. Torii, K. Uneyama, M. Ono, H. Tazawa, S. Matsunami, Tetrahedron Lett. 20 (1979) 4661–4662.
doi: 10.1016/S0040-4039(01)86676-4
K. Rossen, R.P. Volante, P.J. Reider, Tetrahedron Lett. 38 (1997) 777–778.
doi: 10.1016/S0040-4039(96)02445-8
Y. Zhang, A. Iqbal, J. Zai, et al., Org. Chem. Front. 9 (2022) 436–444.
doi: 10.1039/D1QO01588E
K. Jin, J.H. Maalouf, N. Lazouski, et al., J. Am. Chem. Soc. 141 (2019) 6413–6418.
doi: 10.1021/jacs.9b02345
K. Kamata, J. Kasai, K. Yamaguchi, N. Mizuno, Org. Lett. 6 (2004) 3577–3580.
doi: 10.1021/ol0485363
C. Gunanathan, D. Milstein, Science 341 (2013) 1229712.
doi: 10.1126/science.1229712
C. Huang, Y. Huang, C. Liu, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 58 (2019) 12014–12017.
doi: 10.1002/anie.201903327
M. Li, C. Liu, B. Zhang, Sci. Bull. 66 (2021) 1047–1049.
doi: 10.1016/j.scib.2021.01.024
Y. Wang, C. Liu, B. Zhang, Y. Yu, Sci. China Mater. 63 (2020) 2530–2538.
doi: 10.1007/s40843-020-1365-0
L. Yang, F.X. Ma, F. Xu, et al., Chem. Asian J. 14 (2019) 3557–3560.
doi: 10.1002/asia.201900391
L. Kesavan, R. Tiruvalam, M.H. Ab Rahim, et al., Science 331 (2011) 195–199.
doi: 10.1126/science.1198458
X. Cao, Z. Chen, R. Lin, et al., Nat. Catal. 1 (2018) 704–710.
doi: 10.1038/s41929-018-0128-z
B.G. Hashiguchi, S.M. Bischof, M.M. Konnick, R.A. Periana, Acc. Chem. Res. 45 (2012) 885–898.
doi: 10.1021/ar200250r
M. Ravi, M. Ranocchiari, J.A. van Bokhoven, Angew. Chem. Int. Ed. 56 (2017) 16464–16483.
doi: 10.1002/anie.201702550
A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, ACS Catal. 9 (2018) 1081–1102.
X. Lin, S.N. Zhang, D. Xu, et al., Nat. Commun. 12 (2021) 3882.
doi: 10.1038/s41467-021-24203-8
X. Chong, C. Liu, C. Wang, R. Yang, B. Zhang, Angew. Chem. Int. Ed. 60 (2021) 22010–22016.
doi: 10.1002/anie.202108666
Y. Wu, C. Liu, C. Wang, S. Lu, B. Zhang, Angew. Chem. Int. Ed. 59 (2020) 21170–21175.
doi: 10.1002/anie.202009757
Y. Wu, C. Liu, C. Wang, et al., Nat. Commun. 12 (2021) 3881.
doi: 10.1038/s41467-021-24059-y
S. Wang, K. Uwakwe, L. Yu, et al., Nat. Commun. 12 (2021) 7072.
doi: 10.1038/s41467-021-27372-8
Y. Ling, Y. Wu, C. Wang, et al., ACS Catal. 11 (2021) 9471–9478.
doi: 10.1021/acscatal.1c02316
R. Yamaguchi, C. Ikeda, Y. Takahashi, K. Fujita, J. Am. Chem. Soc. 131 (2009) 8410–8412.
doi: 10.1021/ja9022623
T. Wang, L.G. Zhuo, Z. Li, et al., J. Am. Chem. Soc. 133 (2011) 9878–9891.
doi: 10.1021/ja2023042
M. Li, C. Liu, Y. Huang, S. Han, B. Zhang, Chin. J. Catal. 42 (2021) 1983–1991.
doi: 10.1016/S1872-2067(21)63834-2
X. Huang, L. Zhang, C. Li, L. Tan, Z. Wei, ACS Catal. 9 (2019) 11307–11316.
doi: 10.1021/acscatal.9b03500
S. Han, Y. Shi, C. Wang, C. Liu, B. Zhang, Cell Rep. Phys. Sci. 2 (2021) 100337.
doi: 10.1016/j.xcrp.2021.100337
X.H. Chadderdon, D.J. Chadderdon, T. Pfennig, B.H. Shanks, W. Li, Green Chem. 21 (2019) 6210–6219.
doi: 10.1039/C9GC02264C
H.P. Yang, Q. Fen, H. Wang, J.X. Lu, Electrochem. Commun. 71 (2016) 38–42.
doi: 10.1016/j.elecom.2016.08.004
H. Wu, J. Song, C. Xie, et al., Chem. Sci. 10 (2019) 1754–1759.
doi: 10.1039/C8SC03161D
D.B. Bagal, B.M. Bhanage, Adv. Synth. Catal. 357 (2015) 883–900.
doi: 10.1002/adsc.201400940
D. Zhang, J. Chen, Z. Hao, et al., Chem. Catal. 1 (2021) 393–406.
doi: 10.1016/j.checat.2021.03.012
R. Xia, D. Tian, S. Kattel, et al., Nat. Commun. 12 (2021) 1949.
doi: 10.1038/s41467-021-22291-0
H.U. Blaser, Science 313 (2006) 312–313.
doi: 10.1126/science.1131574
A. Corma, P. Concepcion, P. Serna, Angew. Chem. Int. Ed. 46 (2007) 7266–7269.
doi: 10.1002/anie.200700823
A. Corma, P. Serna, P. Concepcion, J.J. Calvino, J. Am. Chem. Soc. 130 (2008) 8748–8753.
doi: 10.1021/ja800959g
J. Song, Z.F. Huang, L. Pan, et al., Appl. Catal. B: Environ. 227 (2018) 386–408.
doi: 10.1016/j.apcatb.2018.01.052
D. Formenti, F. Ferretti, F.K. Scharnagl, M. Beller, Chem. Rev. 119 (2019) 2611–2680.
doi: 10.1021/acs.chemrev.8b00547
T. Wirtanen, E. Rodrigo, S.R. Waldvogel, Adv. Synth. Catal. 362 (2020) 2088–2101.
doi: 10.1002/adsc.202000349
X.Z. Yuan, Z.F. Ma, Q.Z. Jiang, W.S. Wu, Electrochem. Commun. 3 (2001) 599–602.
doi: 10.1016/S1388-2481(01)00226-0
J. Jiang, R. Zhai, X. Bao, J. Alloy. Compd. 354 (2003) 248–258.
doi: 10.1016/S0925-8388(02)01359-2
Z. Chen, Z. Wang, D. Wu, L. Ma, J. Hazard. Mater. 197 (2011) 424–429.
doi: 10.1016/j.jhazmat.2011.09.054
X. Sheng, B. Wouters, T. Breugelmans, et al., ChemElectroChem 1 (2014) 1198–1210.
doi: 10.1002/celc.201402015
B. Wouters, X. Sheng, A. Boschin, et al., Electrochim. Acta 111 (2013) 405–410.
doi: 10.1016/j.electacta.2013.07.210
X. Sheng, B. Wouters, T. Breugelmans, et al., Appl. Catal. B: Environ. 147 (2014) 330–339.
doi: 10.1016/j.apcatb.2013.09.006
N. Daems, J. Wouters, C. Van Goethem, et al., Appl. Catal. B: Environ. 226 (2018) 509–522.
doi: 10.1016/j.apcatb.2017.12.079
M. Jin, Y. Liu, X. Zhang, et al., Appl. Catal. B: Environ. 298 (2021) 120545.
doi: 10.1016/j.apcatb.2021.120545
C. Liu, A.Y. Zhang, D.N. Pei, H.Q. Yu, Environ. Sci. Technol. 50 (2016) 5234–5242.
doi: 10.1021/acs.est.6b00730
L.Z. Huang, H.C.B. Hansen, M.J. Bjerrum, J. Hazard. Mater. 306 (2016) 175–183.
doi: 10.1016/j.jhazmat.2015.12.009
X. Chong, C. Liu, Y. Huang, C. Huang, B. Zhang, Natl. Sci. Rev. 7 (2020) 285–295.
doi: 10.1093/nsr/nwz146
Y. Zhao, C. Liu, C. Wang, X. Chong, B. Zhang, CCS Chem. 3 (2021) 507–515.
doi: 10.31635/ccschem.020.202000218
S. Wu, X. Huang, H. Zhang, Z. Wei, M. Wang, ACS Catal. 12 (2022) 58–65.
doi: 10.1021/acscatal.1c03763
K. Mitsudo, T. Okada, S. Shimohara, H. Mandai, S. Suga, Electrochemistry 81 (2013) 362–364.
doi: 10.5796/electrochemistry.81.362
C. Liu, S. Han, M. Li, X. Chong, B. Zhang, Angew. Chem. Int. Ed. 59 (2020) 18527–18531.
doi: 10.1002/anie.202009155
Y.L. Lai, J.M. Huang, Org. Lett. 19 (2017) 2022–2025.
doi: 10.1021/acs.orglett.7b00473
J.M. Huang, X.X. Wang, Y. Dong, Angew. Chem. Int. Ed. 50 (2011) 924–927.
doi: 10.1002/anie.201004852
J.M. Huang, H.R. Ren, Chem. Commun. 46 (2010) 2286–2288.
doi: 10.1039/b922897g
Z. Yin, H. Pang, X. Guo, et al., Angew. Chem. Int. Ed. 59 (2020) 15933–15936.
doi: 10.1002/anie.202006293
N. Chen, X. Lai, H. Xu, Chin. J. Org. Chem. 40 (2020) 2592–2593.
doi: 10.6023/cjoc202000050
K. Geng, T. He, R. Liu, et al., Chem. Rev. 120 (2020) 8814–8933.
doi: 10.1021/acs.chemrev.9b00550
J. Li, X. Jing, Q. Li, et al., Chem. Soc. Rev. 49 (2020) 3565–3604.
doi: 10.1039/D0CS00017E
X.F. Lu, B.Y. Xia, S.Q. Zang, X.W.D. Lou, Angew. Chem. Int. Ed. 59 (2020) 4634–4650.
doi: 10.1002/anie.201910309
X. Liu, T. Yue, K. Qi, et al., Chin. Chem. Lett. 31 (2020) 2189–2201.
doi: 10.1016/j.cclet.2019.12.009
S. Zhao, Y. Wang, J. Dong, et al., Nat. Energy 1 (2016) 16184.
doi: 10.1038/nenergy.2016.184
E.C.R. McKenzie, S. Hosseini, A.G.C. Petro, et al., Chem. Rev. 122 (2022) 3292–3335.
doi: 10.1021/acs.chemrev.1c00471
J.P. Barham, B. Konig, Angew. Chem. Int. Ed. 59 (2020) 11732–11747.
doi: 10.1002/anie.201913767
S. Wu, J. Kaur, T.A. Karl, X. Tian, J.P. Barham, Angew. Chem. Int. Ed. 61 (2022) e202107811.
W. Qiao, I. Waseem, G. Shang, et al., ACS Catal. 11 (2021) 13510–13518.
doi: 10.1021/acscatal.1c03938
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xuyun Lu , Yanan Chang , Shasha Wang , Xiaoxuan Li , Jianchun Bao , Ying Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
Shuai Tang , Zian Wang , Mengyi Zhu , Xinyun Zhao , Xiaoyun Hu , Hua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005