Recent advance in carbocation-catalyzed reactions
-
* Corresponding author.
E-mail address: jie_wu@fudan.edu.cn (J. Wu).
Citation:
Wei Xiao, Jie Wu. Recent advance in carbocation-catalyzed reactions[J]. Chinese Chemical Letters,
;2023, 34(2): 107637.
doi:
10.1016/j.cclet.2022.06.060
J. Clayden, N. Greeves, S. Warren, Organic Chemistry, 2nd Ed., University Press, Oxford, 2012.
G.A. Olah, G.K.S. Prakash, Carbocation Chemistry, Wiley, Hoboken, 2004.
G. Merling, Ber. Dtsch. Chem. Ges. 24 (1891) 3108–3126.
doi: 10.1002/cber.189102402151
O. Sereda, S. Tabassum, R. Wilhelm, Top. Curr. Chem. 291 (2010) 349–393.
H. Yamamoto, Lewis Acids in Organic Synthesis, Wiley-VCH, Weinheim, 2000.
J.J. Koenig, M. Breugst, Catalysis by Molecular Iodine, in: S. Huber (Ed.), Halogen Bonding in Solution, Wiley-VCH, Weinheim, 2021, pp. 237–268.
L. Capaldo, L.L. Quadri, D. Ravelli, Angew. Chem. Int. Ed. 58 (2019) 17508–17510.
doi: 10.1002/anie.201910348
L. Mei, T. Gianetti, Synlett 32 (2021) 337–343.
doi: 10.1055/s-0040-1705942
V.R. Naidu, S.J. Ni, J. Franzen, ChemCatChem 7 (2015) 1896–1905.
doi: 10.1002/cctc.201500225
J. Bah, J. Franzen, Chem. Eur. J. 20 (2014) 1066–1072.
doi: 10.1002/chem.201304160
W. Xiao, J. Wu, Chin. Chem. Lett. 32 (2021) 2751–2755.
doi: 10.1016/j.cclet.2021.03.033
D.J.M. Lyons, R.D. Crocker, D. Enders, T.V. Nguyen, Green Chem. 19 (2017) 3993–3996.
doi: 10.1039/C7GC01519D
P. Pommerening, J. Mohr, J. Friebel, M. Oestreich, Eur. J. Org. Chem. 2017 (2017) 2312–2316.
doi: 10.1002/ejoc.201700239
Q.C. Zhang, J. Lv, S.J. Li, S.Z. Luo, Org. Lett. 20 (2018) 2269–2272.
doi: 10.1021/acs.orglett.8b00619
Q. Zhang, J. Lv, S. Luo, Beilstein J. Org. Chem. 15 (2019) 1304–1312.
doi: 10.3762/bjoc.15.129
U.P.N. Tran, G. Oss, D.P. Pace, J. Ho, T.V. Nguyen, Chem. Sci. 9 (2018) 5145–5151.
doi: 10.1039/C8SC00907D
S.J. Ni, J. Franzen, Chem. Commun. 54 (2018) 12982–12985.
doi: 10.1039/C8CC06734A
S.J. Ni, M. El Remaily, J. Franzen, Adv. Synth. Catal. 360 (2018) 4197–4204.
doi: 10.1002/adsc.201800788
M.A. Hussein, V.T. Huynh, R. Hommelsheim, R.M. Koenigs, T.V. Nguyen, Chem. Commun. 54 (2018) 12970–12973.
doi: 10.1039/C8CC07329E
W.S. Shang, D.P. Duan, Y.J. Liu, J. Lv, Org. Lett. 21 (2019) 8013–8017.
doi: 10.1021/acs.orglett.9b03005
S.H. Doan, M.A. Hussein, T.V. Nguyen, Chem. Commun. 57 (2021) 8901–8904.
doi: 10.1039/D1CC02947A
P.K. Ranga, F. Ahmad, P. Nager, et al., J. Org. Chem. 86 (2021) 4994–5010.
doi: 10.1021/acs.joc.0c02940
M. Rezazadeh Khalkhali, M.M.D. Wilde, M. Gravel, Org. Lett. 23 (2021) 155–159.
doi: 10.1021/acs.orglett.0c03879
S. Sharma Rekha, G. Singh, R. Vijaya Anand, ACS Org. Inorg. Au 2 (2022) 186–196.
doi: 10.1021/acsorginorgau.1c00033
J.J. Liu, J.X. Xu, Z.J. Li, et al., Eur. J. Org. Chem. 2017 (2017) 3996–4003.
doi: 10.1002/ejoc.201700634
W.J. Patterson, K. Lucas, V.A. Jones, et al., Eur. J. Org. Chem. 2021 (2021) 6737–6742.
doi: 10.1002/ejoc.202100946
W.G. Zhu, Q. Sun, Y.R. Wang, D. Yuan, Y.M. Yao, Org. Lett. 20 (2018) 3101–3104.
doi: 10.1021/acs.orglett.8b01158
G. Oss, J. Ho, N. Thanh Vinh, Eur. J. Org. Chem. 2018 (2018) 3974–3981.
doi: 10.1002/ejoc.201800579
P. Goswami, S. Sharma, G. Singh, et al., J. Org. Chem. 83 (2018) 4213–4220.
doi: 10.1021/acs.joc.8b00225
H.M. Jin, M. Rudolph, F. Rominger, A.S.K. Hashmi, ACS Catal. 9 (2019) 11663–11668.
doi: 10.1021/acscatal.9b03911
Y.A. Rulev, Z.T. Gugkaeva, A.V. Lokutova, et al., ChemSusChem 10 (2017) 1152–1159.
doi: 10.1002/cssc.201601246
K. Omoregbee, K.N.H. Luc, A.H. Dinh, T.V. Nguyen, J. Flow Chem. 10 (2020) 161–166.
doi: 10.1007/s41981-020-00082-w
J. Xu, Y. Gao, Z. Li, et al., Eur. J. Org. Chem. 2020 (2020) 311–315.
doi: 10.1002/ejoc.201901537
H. Huang, Z.M. Strater, M. Rauch, et al., Angew. Chem. Int. Ed. 58 (2019) 13318–13322.
doi: 10.1002/anie.201906381
H. Huang, Z.M. Strater, T.H. Lambert, J. Am. Chem. Soc. 142 (2020) 1698–1703.
doi: 10.1021/jacs.9b11472
T. Shen, T.H. Lambert, Science 371 (2021) 620–626.
doi: 10.1126/science.abf2798
T. Shen, T.H. Lambert, J. Am. Chem. Soc. 143 (2021) 8597–8602.
doi: 10.1021/jacs.1c03718
H. Huang, T.H. Lambert, J. Am. Chem. Soc. 143 (2021) 7247–7252.
doi: 10.1021/jacs.1c01967
W. Xiao, X. Wang, R. Liu, J. Wu, Chin. Chem. Lett. 32 (2021) 1847–1856.
doi: 10.1016/j.cclet.2021.02.009
W. Xiao, J. Wu, Chin. Chem. Lett. 31 (2020) 3083–3094.
doi: 10.1016/j.cclet.2020.07.035
L. Mei, J.M. Veleta, T.L. Gianetti, J. Am. Chem. Soc. 142 (2020) 12056–12061.
doi: 10.1021/jacs.0c05507
L. Mei, J. Moutet, S.M. Stull, T.L. Gianetti, J. Org. Chem. 86 (2021) 10640–10653.
doi: 10.1021/acs.joc.1c01313
S.M. Stull, L. Mei, T.L. Gianetti, Synlett 33 (2022) 1194–1198.
doi: 10.1055/a-1665-9220
R. Mir, T. Dudding, J. Org. Chem. 82 (2017) 709–714.
doi: 10.1021/acs.joc.6b02733
K. Dempsey, R. Mir, I. Smajlagic, et al., Tetrahedron 74 (2018) 3507–3511.
doi: 10.1016/j.tet.2018.04.083
T. Courant, M. Lombard, D.V. Boyarskaya, L. Neuville, G. Masson, Org. Bio. Chem. 18 (2020) 6502–6508.
doi: 10.1039/D0OB01502D
N.N.H. Ton, B.K. Mai, T.V. Nguyen, J. Org. Chem. 86 (2021) 9117–9133.
doi: 10.1021/acs.joc.1c01208
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866
Chen Li , Ziyuan Zhao , Shouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128
Minjun Yin , Yuhui Lin , Manli Zhuang , Wei Xiao , Jie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926
Liangfeng Yang , Liang Zeng , Yanping Zhu , Qiuan Wang , Jinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Yinghui Xia , Yixi Lin , Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448
Shuai Qiu , Jia He , Xiao Hu , Hongxia Yan , Zhao Gao , Wei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057
Hong-Jin Liao , Zhu Zhuo , Qing Li , Yoshihito Shiota , Jonathan P. Hill , Katsuhiko Ariga , Zi-Xiu Lu , Lu-Yao Liu , Zi-Ang Nan , Wei Wang , You-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052
Pu Zhang , Xiang Mao , Xuehua Dong , Ling Huang , Liling Cao , Daojiang Gao , Guohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Lin Zhang , Chaoran Li , Thongthai Witoon , Xingda An , Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Mianfeng Li , Haozhi Wang , Zijun Yang , Zexiang Yin , Yuan Liu , Yingmei Bian , Yang Wang , Xuerong Zheng , Yida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Yunqiang Li , Yongxian Huang , Sinuo Li , He Huang , Zhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051