A fan-shaped synthetic chiral nanographene
-
* Corresponding author.
E-mail address: wangjb5@mail.sysu.edu.cn (J. Wang).
1 These two authors contributed equally to this work.
Citation:
Haonan Shi, Bangyuan Xiong, Ying Chen, Chaojun Lin, Jiajian Gu, Yanpeng Zhu, Jiaobing Wang. A fan-shaped synthetic chiral nanographene[J]. Chinese Chemical Letters,
;2023, 34(2): 107520.
doi:
10.1016/j.cclet.2022.05.034
A. Stabel, P. Herwig, K. Müllen, J.P. Rabe, Angew. Chem. Int. Ed. 34 (1995) 1609–1611.
doi: 10.1002/anie.199516091
F. Dötz, J.D. Brand, S. Ito, L. Gherghel, K. Müllen, J. Am. Chem. Soc. 122 (2000) 7707–7717.
doi: 10.1021/ja000832x
A. Narita, X.Y. Wang, X.L. Feng, K. Müllen, Chem. Soc. Rev. 44 (2015) 6616–6643.
doi: 10.1039/C5CS00183H
J.Y. Wang, J. Pei, Chin. Chem. Lett. 27 (2016) 1139–1146.
doi: 10.1016/j.cclet.2016.06.014
X.Q. Hou, Y.T. Sun, L. Liu, et al., Chin. Chem. Lett. 27 (2016) 1166–1174.
doi: 10.1016/j.cclet.2016.06.028
C. Li, Y. Yang, Q. Miao, Chem. Asian J. 13 (2018) 884–894.
doi: 10.1002/asia.201800073
W.B. Lin, M. Li, L. Fang, C.F. Chen, Chin. Chem. Lett. 29 (2018) 40–46.
doi: 10.1016/j.cclet.2017.08.039
X.Y. Wang, X.L. Yao, K. Müllen, Sci. China Chem. 62 (2019) 1099–1144.
doi: 10.1007/s11426-019-9491-2
K. Kato, Y. Segawa, K. Itami, Synlett 30 (2019) 370–377.
doi: 10.1055/s-0037-1610283
X.Y. Chen, J.K. Li, X.Y. Wang, Chin. J. Org. Chem. 41 (2021) 4105–4137.
doi: 10.6023/cjoc202107063
S.X. Xiao, S.J. Kang, Y. Wu, et al., Chem. Sci. 4 (2013) 2018–2023.
doi: 10.1039/c3sc50374g
T. Fujikawa, Y. Segawa, K. Itami, J. Am. Chem. Soc. 137 (2015) 7763–7768.
doi: 10.1021/jacs.5b03118
Y.J. Li, Z.Y. Jia, S.Q. Xiao, H.B. Liu, Y.L. Li, Nat. Commun. 7 (2016) 11637.
doi: 10.1038/ncomms11637
T. Fujikawa, Y. Segawa, K. Itami, J. Am. Chem. Soc. 138 (2016) 3587–3595.
doi: 10.1021/jacs.6b01303
V. Berezhnaia, M. Roy, N. Vanthuyne, et al., J. Am. Chem. Soc. 139 (2017) 18508–18511.
doi: 10.1021/jacs.7b07622
T. Hosokawa, Y. Takahashi, T. Matsushima, et al., J. Am. Chem. Soc. 139 (2017) 18512–18521.
doi: 10.1021/jacs.7b07113
Y.B. Hu, X.Y. Wang, P.X. Peng, et al., Angew. Chem. Int. Ed. 56 (2017) 3374–3378.
doi: 10.1002/anie.201610434
Y. Nakakuki, T. Hirose, H. Sotome, H. Miyasaka, K. Matsuda, J. Am. Chem. Soc. 140 (2018) 4317–4326.
doi: 10.1021/jacs.7b13412
Y.B. Hu, G.M. Paternò, X.Y. Wang, et al., J. Am. Chem. Soc. 141 (2019) 12797–12803.
doi: 10.1021/jacs.9b05610
M. Roy, V. Berezhnaia, M. Villa, et al., Angew. Chem. Int. Ed. 59 (2020) 3264–3271.
doi: 10.1002/anie.201913200
X.L. Yao, W.H. Zheng, S. Osella, et al., J. Am. Chem. Soc. 143 (2021) 5654–5658.
doi: 10.1021/jacs.1c01882
K. Kawasumi, Q.Y. Zhang, Y. Segawa, L.T. Scott, K. Itami, Nat. Chem. 5 (2013) 739–744.
doi: 10.1038/nchem.1704
R. Chen, R.Q. Lu, P.C. Shi, X.Y. Cao, Chin. Chem. Lett. 27 (2016) 1175–1183.
doi: 10.1016/j.cclet.2016.06.033
K. Kato, Y. Segawa, L.T. Scott, K. Itami, Angew. Chem. Int. Ed. 57 (2018) 1337–1341.
doi: 10.1002/anie.201711985
J.M. Fernández-García, P.J. Evans, S.M. Rivero, et al., J. Am. Chem. Soc. 140 (2018) 17188–17196.
doi: 10.1021/jacs.8b09992
K.Y. Cheung, Q. Miao, Chin. Chem. Lett. 30 (2019) 1506–1508.
doi: 10.1016/j.cclet.2019.04.013
T. Kirschbaum, F. Rominger, M. Mastalerz, Angew. Chem. Int. Ed. 59 (2020) 270–274.
doi: 10.1002/anie.201912213
N. Ogawa, Y. Yamaoka, H. Takikawa, K. Yamada, K. Takasu, J. Am. Chem. Soc. 142 (2020) 13322–13327.
doi: 10.1021/jacs.0c06156
Z.J. Qiu, S. Asako, Y.B. Hu, et al., J. Am. Chem. Soc. 142 (2020) 14814–14819.
doi: 10.1021/jacs.0c05504
M.A. Medel, R. Tapia, V. Blanco, et al., Angew. Chem. Int. Ed. 60 (2021) 6094–6100.
doi: 10.1002/anie.202015368
B. Ejlli, Pascal Nußbaum, F. Rominger, et al., Angew. Chem. Int. Ed. 60 (2021) 20220–20224.
doi: 10.1002/anie.202106233
M.A. Medel, C.M. Cruz, D. Miguel, et al., Angew. Chem. Int. Ed. 60 (2021) 22051–22056.
doi: 10.1002/anie.202109310
T.J. Guo, A. Li, J. Xu, K.K. Baldridge, J. Siegel, Angew. Chem. Int. Ed. 60 (2021) 25809–25814.
doi: 10.1002/anie.202109946
J.S. Wu, M.D. Watson, N. Tchebotareva, Z.H. Wang, K. Müllen, J. Org. Chem. 69 (2004) 8194–8204.
doi: 10.1021/jo0490301
D. Reger, P. Haines, F.W. Heinemann, D.M. Guldi, N. Jux, Angew. Chem. Int. Ed. 57 (2018) 5938–5942.
doi: 10.1002/anie.201800585
P.J. Evans, J.K. Ouyang, L. Favereau, et al., Angew. Chem. Int. Ed. 57 (2018) 6774–6779.
doi: 10.1002/anie.201800798
C.M. Cruz, S. Castro-Fernández, E. Maçôas, J.M. Cuerva, A.G. Campaña, Angew. Chem. Int. Ed. 57 (2018) 14782–14786.
doi: 10.1002/anie.201808178
C.M. Cruz, I.R. Márquez, S. Castro-Fernández, et al., Angew. Chem. Int. Ed. 58 (2019) 8068–8072.
doi: 10.1002/anie.201902529
J. Urieta-Mora, M. Krug, W. Alex, et al., J. Am. Chem. Soc. 142 (2020) 4162–4172.
doi: 10.1021/jacs.9b10203
S. Castro-Fernández, C.M. Cruz, I.F.A. Mariz, et al., Angew. Chem. Int. Ed. 59 (2020) 7139–7145.
doi: 10.1002/anie.202000105
D. Reger, Philipp Haines, K.Y. Amsharov, et al., Angew. Chem. Int. Ed. 60 (2021) 18073–18081.
doi: 10.1002/anie.202103253
P. Izquierdo-García, J.M. Fernández-García, I. Fernández, J. Perles, N. Martín, J. Am. Chem. Soc. 143 (2021) 11864–11870.
doi: 10.1021/jacs.1c05977
Z.F. Duan, Z.G. Yang, D.J. Liu, et al., Chin. Chem. Lett. 22 (2011) 819–822.
doi: 10.1016/j.cclet.2010.12.054
Y.Z. Tan, B. Yang, K. Parvez, et al., Nat. Commun. 4 (2013) 2646.
doi: 10.1038/ncomms3646
C. Zhan, Y.Y. Jiang, L.H. Lu M.Y. Yang, S.Q. Xiao, Chin. Chem. Lett. 25 (2014) 65–68.
doi: 10.1016/j.cclet.2013.09.006
X.L. Leng, L.L. Song, Y. Lu, X.Q. Liu, L. Wang, Chin. Chem. Lett. 28 (2017) 24–28.
doi: 10.1016/j.cclet.2016.06.036
G.X. Zhai, C.T. Wei, S.L. Chen, et al., Chin. Chem. Lett. 29 (2018) 293–296.
doi: 10.1016/j.cclet.2017.10.035
P.F. Zhang, J.Q. Wang, H. Chen, et al., J. Am. Chem. Soc. 140 (2018) 14980–14989.
doi: 10.1021/jacs.8b09396
X.J. Zhao, H. Huo, X.T. Fan, et al., Nat. Commun. 10 (2019) 3057.
doi: 10.1038/s41467-019-11098-9
L.N. Li, Y. Gao, C.D. Dou, J. Liu, Chin. Chem. Lett. 31 (2020) 1193–1196.
doi: 10.1016/j.cclet.2019.11.018
S.S. Chen, D. Meng, Z.H. Wang, CCS Chem. 3 (2021) 78–84.
doi: 10.31635/ccschem.021.202000538
Y.J. Liu, Z.H. Wang, Chin. J. Org. Chem. 41 (2021) 4844–4845.
doi: 10.6023/cjoc202100096
Y.P. Zhu, Z.M. Xia, Z.Y. Cai, et al., J. Am. Chem. Soc. 141 (2018) 4222–4226.
doi: 10.1021/jacs.8b01447
Y.G. Wang, Z.B. Yin, Y.P. Zhu, et al., Angew. Chem. Int. Ed. 58 (2019) 587–591.
doi: 10.1002/anie.201811706
X.Y. Guo, Z.Y. Yuan, Y.P. Zhu, et al., Angew. Chem. Int. Ed. 58 (2019) 16966–16972.
doi: 10.1002/anie.201907972
Y.P. Zhu, X.Y. Guo, Y. Li, J.B. Wang, J. Am. Chem. Soc. 141 (2019) 5511–5517.
doi: 10.1021/jacs.9b01266
S. Ma, J.J. Gu, C.J. Lin, et al., J. Am. Chem. Soc. 142 (2020) 16887–16893.
doi: 10.1021/jacs.0c08555
S. Ma, Y.P. Zhu, W.T. Dou, et al., Sci. China Chem. 64 (2021) 576–580.
doi: 10.1007/s11426-020-9916-7
Y. Chen, C.J. Lin, Z.X. Luo, et al., Angew. Chem. Int. Ed. 60 (2021) 7796–7801.
doi: 10.1002/anie.202014621
X. Luo, J. Li, J. Zhao, et al., Chin. Chem. Lett. 30 (2019) 839–846.
doi: 10.1016/j.cclet.2019.03.012
Z. Chang, F. Liu, L. Wang, et al., Chin. Chem. Lett. 30 (2019) 1856–1882.
doi: 10.1016/j.cclet.2019.08.034
Wenying Cui , Zhetong Jin , Wentao Fu , Chengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667
Jian-Rong Li , Jieying Hu , Lai-Hon Chung , Jilong Zhou , Parijat Borah , Zhiqing Lin , Yuan-Hui Zhong , Hua-Qun Zhou , Xianghua Yang , Zhengtao Xu , Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380
Tingting Huang , Zhuanlong Ding , Hao Liu , Ping-An Chen , Longfeng Zhao , Yuanyuan Hu , Yifan Yao , Kun Yang , Zebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117
Qianyun Ye , Yuanyuan Liang , Yuhe Yuan , Xiaohuan Sun , Liqi Zhu , Xuan Wu , Jie Han , Rong Guo . pH-responsive chiral supramolecular cysteine-Zn2+-indocyanine green assemblies for triple-level chirality-specific anti-tumor efficacy. Chinese Chemical Letters, 2025, 36(5): 110432-. doi: 10.1016/j.cclet.2024.110432
Bo Yu , Pengchen Du , Jianwen Guo , Hanshen Xin , Jianhua Zhang . Nonalternant isomer of pentacene fusing two azulene units. Chinese Chemical Letters, 2024, 35(5): 109321-. doi: 10.1016/j.cclet.2023.109321
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Genlin Sun , Yachun Luo , Zhihong Yan , Hongdeng Qiu , Weiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787
Teng-Yu Huang , Junliang Sun , De-Xian Wang , Qi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
Yiming Yang , Lichao Sun , Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467
Fengying Ye , Ming Hu , Jun Luo , Wei Yu , Zhirong Xu , Jinjin Fu , Yansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724
Yunjia Jiang , Lingyao Wang , Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
Yanwei Duan , Qing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232