Fenton-reaction-triggered metabolism of acetaminophen for enhanced cancer therapy
-
* Corresponding author.
E-mail address: tcai@cpu.edu.cn (T. Cai).
1 The authors contributed equally to this work.
Citation:
Fanwen Sun, Yayun Peng, Yanping Li, Menghan Xu, Ting Cai. Fenton-reaction-triggered metabolism of acetaminophen for enhanced cancer therapy[J]. Chinese Chemical Letters,
;2023, 34(2): 107507.
doi:
10.1016/j.cclet.2022.05.021
R.T. Stravitz, W.M. Lee, The Lancet 394 (2019) 869–881.
doi: 10.1016/S0140-6736(19)31894-X
W. Bernal, J. Wendon, N. Engl. J. Med. 369 (2013) 2525–2534.
doi: 10.1056/NEJMra1208937
M.R. Mcgill, C.D. Williams, Y. Xie, et al., Toxicol. Appl. Pharmacol. 264 (2012) 387–394.
doi: 10.1016/j.taap.2012.08.015
M.R. Mcgill, H. Yan, A. Ramachandran, et al., Hepatology 53 (2011) 974–982.
doi: 10.1002/hep.24132
M.R. Mcgill, H. Jaeschke, Pharm. Res. 30 (2013) 2174–2187.
doi: 10.1007/s11095-013-1007-6
W. Bernal, A. Hyyrylainen, A. Gera, et al., J. Hepatol. 59 (2013) 74–80.
doi: 10.1016/j.jhep.2013.02.010
X. Wang, Q. Wu, A. Liu, et al., Drug Metab. Rev. 49 (2017) 395–437.
doi: 10.1080/03602532.2017.1354014
P. Zhang, S. Chen, H. Tang, et al., Toxicol. Appl. Pharmacol. 410 (2021) 115355.
doi: 10.1016/j.taap.2020.115355
Q. Wang, S. Wei, H. Zhou, et al., Cell Death Discov. 5 (2019) 119-119.
doi: 10.1038/s41420-019-0198-y
M.P. Murphy, Biochem. J. 417 (2008) 1–13.
S. Zhai, X. Hu, Y. Hu, et al., Biomaterials 121 (2017) 41–54.
doi: 10.1016/j.biomaterials.2017.01.002
D. Jia, X. Ma, Y. Lu, et al., Chin. Chem. Lett. 32 (2021) 162–167.
doi: 10.1016/j.cclet.2020.11.052
N.M. Vad, G. Yount, D. Moore, et al., J. Pharm. Sci. 98 (2009) 1409–1425.
doi: 10.1002/jps.21505
N.M. Vad, S.K. Kudugunti, D. Graber, et al., Int. J. Oncol. 35 (2009) 193–204.
X. Lian, Y. Huang, Y. Zhu, et al., Angew. Chem. Int. Ed. 57 (2018) 5725–5730.
doi: 10.1002/anie.201801378
A.K. Sahoo, M.P. Sk, S.S. Ghosh, A. Chattopadhyay, Nanoscale 3 (2011) 4226–4233.
doi: 10.1039/c1nr10389j
A.K. Sahoo, S. Sharma, A. Chattopadhyay, S.S. Ghosh, Nanoscale 4 (2012) 1688–1694.
doi: 10.1039/c2nr11837h
S. Das, A.K. Sahoo, S.S. Ghosh, A. Chattopadhyay, Langmuir 26 (2010) 15714–15717.
doi: 10.1021/la1034867
Y. Zhou, S. Fan, L. Feng, et al., Adv. Mater. 33 (2021) 2104223.
doi: 10.1002/adma.202104223
X. Wang, X. Zhong, Z. Liu, L. Cheng, Nano Today 35 (2020) 100946.
doi: 10.1016/j.nantod.2020.100946
T. Zhou, Y. Xu, L. Xing, et al., Adv. Mater. 33 (2021) 2100114.
doi: 10.1002/adma.202100114
D. Wang, H. Wu, G. Yang, et al., ACS Nano 14 (2020) 13500–13511.
doi: 10.1021/acsnano.0c05499
J. Chen, X. Wang, Y. Zhang, et al., Biomaterials 266 (2021) 120457.
doi: 10.1016/j.biomaterials.2020.120457
Z. Tang, Y. Liu, M. He, W. Bu, Angew. Chem. Int. Ed. 58 (2019) 946–956.
doi: 10.1002/anie.201805664
P. Ji, H. Huang, S. Yuan, et al., Adv. Healthc. Mater. 8 (2019) 1900911.
doi: 10.1002/adhm.201900911
M. Liu, B. Liu, Q. Liu, et al., Coord. Chem. Rev. 382 (2019) 160–180.
doi: 10.1016/j.ccr.2018.12.015
D. Wang, J. Zhou, R. Chen, et al., Chem. Mater. 29 (2017) 3477–3489.
doi: 10.1021/acs.chemmater.6b05215
Y. Liu, W. Zhen, L. Jin, et al., ACS Nano 12 (2018) 4886–4893.
doi: 10.1021/acsnano.8b01893
S. Sheng, F. Liu, L. Lin, et al., J. Control. Release 328 (2020) 631–639.
doi: 10.1016/j.jconrel.2020.09.029
R. Xu, J. Yang, Y. Qian, et al., Nanoscale Horiz. 6 (2021) 348–356.
doi: 10.1039/D0NH00674B
J. Della Rocca, D. Liu, W. Lin, Acc. Chem. Res. 44 (2011) 957–968.
doi: 10.1021/ar200028a
Z. Zhou, J. Song, R. Tian, et al., Angew. Chem. Int. Ed. 56 (2017) 6492–6496.
doi: 10.1002/anie.201701181
W. Wang, Y. Jin, Z. Xu, et al., WIREs Nanomed. Nanobiotechnol. 12 (2020) e1614.
M. Wu, Y. Yang, Adv. Mater. 29 (2017) 1606134.
doi: 10.1002/adma.201606134
Q. Xia, H. Wang, B. Huang, et al., Small 15 (2019) 1803088.
Y. Wang, J. Yan, N. Wen, et al., Biomaterials 230 (2020) 119619.
doi: 10.1016/j.biomaterials.2019.119619
Y. Sun, L. Zheng, Y. Yang, et al., Nano-Micro Lett. 12 (2020) 103.
doi: 10.1007/s40820-020-00423-3
P. Horcajada, T. Chalati, C. Serre, et al., Nat. Mater. 9 (2010) 172–178.
doi: 10.1038/nmat2608
Y. Gu, L. Miao, Y. Yin, et al., Chin. Chem. Lett. 32 (2021) 1491–1496.
doi: 10.1016/j.cclet.2020.09.029
B. Yang, J. Shi, J. Am. Chem. Soc. 142 (2020) 21775–21785.
doi: 10.1021/jacs.0c09984
X. Wan, L. Song, W. Pan, et al., ACS Nano 14 (2020) 11017–11028.
doi: 10.1021/acsnano.9b07789
X. Meng, D. Li, L. Chen, et al., ACS Nano 15 (2021) 5735–5751.
doi: 10.1021/acsnano.1c01248
X. Shan, S. Li, B. Sun, et al., J. Control. Release 319 (2020) 322–332.
doi: 10.1016/j.jconrel.2020.01.008
S. Zhan, H. Zhang, X. Mi, et al., Environ. Sci. Technol. 54 (2020) 8333–8343.
doi: 10.1021/acs.est.9b07245
N. Wang, W. Ma, Y. Du, et al., ACS Appl. Mater. Interfaces 11 (2019) 1174–1184.
doi: 10.1021/acsami.8b14987
P. Zhang, J. Guo, C. Wang, J. Mater. Chem. 22 (2012) 21426–21433.
doi: 10.1039/c2jm34725c
M.J. Yin, P. Cui, Z. Hu, et al., Adv. Mater. Res. 393-395 (2011) 1173–1176.
A.K. Sahoo, U. Goswami, D. Dutta, et al., ACS Biomater. Sci. Eng. 2 (2016) 1395–1402.
doi: 10.1021/acsbiomaterials.6b00334
C. Qiao, R. Zhang, Y. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 16982–16988.
doi: 10.1002/anie.202007474
E. Bellido, T. Hidalgo, M.V. Lozano, et al., Adv. Healthc. Mater. 4 (2015) 1246–1257.
doi: 10.1002/adhm.201400755
M. Socha, A. Lamprecht, F. El Ghazouani, et al., J. Nanosci. Nanotechno. 8 (2008) 2369–2376.
doi: 10.1166/jnn.2008.081
M. Socha, P. Bartecki, C. Passirani, et al., J. Drug Target. 17 (2009) 575–585.
doi: 10.1080/10611860903112909
H. Ranji-Burachaloo, F. Karimi, K. Xie, et al., ACS Appl. Mater. Interfaces 9 (2017) 33599–33608.
doi: 10.1021/acsami.7b07981
H. Ranji-Burachaloo, P.A. Gurr, D.E. Dunstan, G.G. Qiao, ACS Nano 12 (2018) 11819–11837.
doi: 10.1021/acsnano.8b07635
Z. Shen, J. Song, B.C. Yung, et al., Adv. Mater. 30 (2018) 1704007.
doi: 10.1002/adma.201704007
Y. Hu, T. Lv, Y. Ma, et al., Nano Lett. 19 (2019) 2731–2738.
doi: 10.1021/acs.nanolett.9b01093
Shengyi Gong , Guoqiang Feng . Visible light-triggered NIR ratiometric fluorescent metal-free CO-releasing molecule for self-monitoring of CO delivery and effective cancer therapy. Chinese Chemical Letters, 2025, 36(7): 110409-. doi: 10.1016/j.cclet.2024.110409
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
Ziqin Li , Kai Hao , Longwei Xiang , Huayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943
Zhaoyong Kang , Shen Li , Yan Li , Jingfeng Song , Yangrui Peng , Yihua Chen . Small molecular inhibitors and degraders targeting STAT3 for cancer therapy: An updated review (from 2022 to 2024). Chinese Chemical Letters, 2025, 36(7): 110447-. doi: 10.1016/j.cclet.2024.110447
Hao Hu , Jiacheng Wang , Si Zhang , Ben Zhang , Cuinan Jiang , Hong Tian , Xunxin Gu , Yang Sheng , Zhenghuan Zhao , Meng Li , Lu Zheng , Jing Li . Hierarchical and flexible electrode with precise H2-production for in vivo liver cancer therapy. Chinese Chemical Letters, 2025, 36(12): 110866-. doi: 10.1016/j.cclet.2025.110866
Xiangshuai Li , Jian Zhao , Li Luo , Zhuohao Jiao , Ying Shi , Shengli Hou , Bin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Le-Tian Zhang , Bin Xia , Nan Lu , Quan-Wen Li , Xia Zhang , Na Li , Xian-He Bu . A novel naphthalenediimide-based metal-organic framework for inkless erasable printing with ultra-long cycling performance. Chinese Chemical Letters, 2025, 36(12): 110534-. doi: 10.1016/j.cclet.2024.110534
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Ning Zhang , Mengjie Qin , Jiawen Zhu , Xuejing Lou , Xiao Tian , Wende Ma , Youmei Wang , Minghua Lu , Zongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Xuying Yu , Jiarong Mi , Yulan Han , Cai Sun , Mingsheng Wang , Guocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233
Zhuan Chen , Bo Yang , Jun Li , Kun Du , Jiangchen Fu , Xiao Wu , Jiazhen Cao , Mingyang Xing . Environmentally safe storage and sustained release of hydrogen peroxide utilizing commercial hydrogel. Chinese Chemical Letters, 2025, 36(6): 110320-. doi: 10.1016/j.cclet.2024.110320
Xia Sun , Zixian Liang , Jiahao Zhang , Boxiang Peng , Bing Yu , Pei Liu , Biao Xiong , Jizhuang Wang , Yin Ning . Controlling the extent of nanoparticle occlusion within calcite crystals via surface chemistry engineering. Chinese Chemical Letters, 2025, 36(9): 111205-. doi: 10.1016/j.cclet.2025.111205
Ran Gao , Qian Zou , Qian-Qian Su , Xiu-Fang Ma , Ye-Hui Qin , Rui Liao , Song-Song Bao , Li-Min Zheng . Photoresponsive lanthanide-dianthracene framework: Introduction of photoactive anthracene pairs by controlling the synthesis temperature. Chinese Chemical Letters, 2025, 36(10): 110404-. doi: 10.1016/j.cclet.2024.110404
Yixin Sun , Keke Yu , Xiuchun Guo , Lanlan Zong , Zhonggui He , Xiaohui Pu . Three-in-one reduction and acid-ignited micelles amplify antitumor efficacy via precise synergistic delivery of paclitaxel and naringenin. Chinese Chemical Letters, 2025, 36(6): 110393-. doi: 10.1016/j.cclet.2024.110393
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Pingping Wang , Huixian Miao , Kechuan Sheng , Bin Wang , Fan Feng , Xuankun Cai , Wei Huang , Dayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600