Aggregation of graphene oxide and its environmental implications in the aquatic environment
-
* Corresponding authors.
E-mail addresses: liyang_bnu@bnu.edu.cn (Y. Li), xiaxh@bnu.edu.cn (X. Xia).
Citation:
Jawad Ali, Yang Li, Enxiang Shang, Xinjie Wang, Jian Zhao, Muhammad Mohiuddin, Xinghui Xia. Aggregation of graphene oxide and its environmental implications in the aquatic environment[J]. Chinese Chemical Letters,
;2023, 34(2): 107327.
doi:
10.1016/j.cclet.2022.03.050
T. Malina, E. Maršálková, K. Holá, R. Zbořil, B. Maršálek, J. Hazard. Mater. 399 (2020) 123027.
doi: 10.1016/j.jhazmat.2020.123027
F. Mouhat, F.X. Coudert, M.L. Bocquet, Nat. Commun. 11 (2020) 1566.
doi: 10.1038/s41467-020-15381-y
S.H. Dave, C. Gong, A.W. Robertson, J.H. Warner, J.C. Grossman, ACS Nano 10 (2016) 7515–7522.
doi: 10.1021/acsnano.6b02391
L.C. Chen, S. Lei, M.Z. Wang, J. Yang, X.W. Ge, Chin. Chem. Lett. 27 (2016) 511–517.
doi: 10.1016/j.cclet.2016.01.057
G. Reina, J.M. González-Domínguez, A. Criado, et al., Chem. Soc. Rev. 46 (2017) 4400–4416.
doi: 10.1039/C7CS00363C
Y. Zhao, Y. Liu, X. Zhang, W. Liao, Chemosphere 262 (2021) 127885.
doi: 10.1016/j.chemosphere.2020.127885
G. Eda, M. Chhowalla, Adv. Mater. 22 (2010) 2392–2415.
doi: 10.1002/adma.200903689
A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Nano Mater. Sci. 1 (2019) 31–47.
doi: 10.1016/j.nanoms.2019.02.004
L. Saghatforoush, M. Hasanzadeh, N. Shadjou, Chin. Chem. Lett. 25 (2014) 655–658.
doi: 10.1016/j.cclet.2014.01.014
X. Hu, S. You, F. Li, Y. Liu, Front. Environ. Sci. Eng. 16 (2022) 48.
doi: 10.1007/s11783-021-1482-7
Y. Gao, X. Zeng, W. Zhang, et al., Sci. Total Environ. 806 (2022) 150942.
doi: 10.1016/j.scitotenv.2021.150942
Y. Zhu, H. Ji, H.M. Cheng, R.S. Ruoff, Natl. Sci. Rev. 5 (2018) 90–101.
doi: 10.1093/nsr/nwx055
Y. Yang, Z. Yu, T. Nosaka, et al., Front. Environ. Sci. Eng. 9 (2015) 823–831.
doi: 10.1007/s11783-015-0787-9
K. Ko, M.J. Kim, J.Y. Lee, W. Kim, H.J. Chung, Sci. Total Environ. 651 (2019) 1087–1095.
doi: 10.1016/j.scitotenv.2018.09.124
P. Kumar, P. Huo, R. Zhang, B. Liu, Nanomaterials 9 (2019) 737.
doi: 10.3390/nano9050737
S. Azizighannad, S. Mitra, Sci. Rep. 8 (2018) 10083.
doi: 10.1038/s41598-018-28353-6
J. Zhao, Z. Wang, J.C. White, B. Xing, Environ. Sci. Technol. 48 (2014) 9995–10009.
doi: 10.1021/es5022679
B. Sun, Y. Zhang, R. Li, et al., Water Res. 200 (2021) 117213.
doi: 10.1016/j.watres.2021.117213
Y. Gao, X. Zeng, W. Zhang, et al., Sci. Total Environ. 806 (2022) 150942.
doi: 10.1016/j.scitotenv.2021.150942
J.L. Suter, R.C. Sinclair, P.V. Coveney, Adv. Mater. 32 (2020) 2003213.
Q. Abbas, B. Yousaf, Amina, et al., Environ. Int. 138 (2020) 105646.
doi: 10.1016/j.envint.2020.105646
O. Akhavan, E. Ghaderi, ACS Nano 4 (2010) 5731–5736.
doi: 10.1021/nn101390x
M.C. Duch, G.S. Budinger, Y.T. Liang, et al., Nano Lett. 11 (2011) 5201–5207.
doi: 10.1021/nl202515a
X. Hu, Q. Zhou, Chem. Rev. 113 (2013) 3815–3835.
doi: 10.1021/cr300045n
S. Ouyang, X. Hu, Q. Zhou, ACS Appl. Mater. Interfaces 7 (2015) 18104–18112.
doi: 10.1021/acsami.5b05328
N. Malhotra, O.B. Villaflores, G. Audira, et al., Molecules 25 (2020) 3618.
doi: 10.3390/molecules25163618
S. Yu, X. Wang, R. Zhang, et al., Sci. Rep. 7 (2017) 39625.
doi: 10.1038/srep39625
M. Bayati, M. Fidalgo de Cortalezzi, J. Environ. Eng. 145 (2019) 04019050.
doi: 10.1061/(ASCE)EE.1943-7870.0001561
M. Shams, L.M. Guiney, L. Huang, et al., Environ. Sci. Nano 6 (2019) 2203–2214.
doi: 10.1039/C9EN00355J
J.D. Lanphere, B. Rogers, C. Luth, C.H. Bolster, S.L. Walker, Environ. Eng. Sci. 31 (2014) 350–359.
doi: 10.1089/ees.2013.0392
M. Shen, X. Hai, Y. Shang, et al., Sci. Total Environ. 656 (2019) 843–851.
doi: 10.1016/j.scitotenv.2018.11.387
J. Ali, Y. Li, X. Wang, et al., Sci. Total Environ. 721 (2020) 137682.
doi: 10.1016/j.scitotenv.2020.137682
X. Huangfu, Y. Xu, C. Liu, et al., Chemosphere 219 (2019) 766–783.
doi: 10.1016/j.chemosphere.2018.12.044
M. Wang, B. Gao, D. Tang, et al., Colloid Surf. A Physicochem. Eng. Asp. 538 (2018) 63–72.
doi: 10.1016/j.colsurfa.2017.10.061
W.C. Hou, I. Chowdhury, D.G. Goodwin, et al., Environ. Sci. Technol. 49 (2015) 3435–3443.
doi: 10.1021/es5047155
A. Ramos-Corona, R. Rangel, J. Espino, et al., Catal. Today 392-393 (2022) 81–92.
R. Ma, Y. Zhou, H. Bi, et al., Prog. Mater. Sci. 113 (2020) 100665.
doi: 10.1016/j.pmatsci.2020.100665
Z. Teng, B. Wang, Y. Hu, D. Xu, Chin. Chem. Lett. 30 (2019) 717–720.
doi: 10.1016/j.cclet.2018.08.017
P. Sun, K. Wang, H. Zhu, Adv. Mater. 28 (2016) 2287–2310.
doi: 10.1002/adma.201502595
K.Y. Yoon, S.J. An, Y. Chen, et al., J. Colloid Interface Sci. 403 (2013) 1–6.
doi: 10.1016/j.jcis.2013.03.012
B.W. Pratama, W.S.B. Dwandaru, Nano Express 1 (2020) 010023.
doi: 10.1088/2632-959X/ab8685
F.T. Johra, W.G. Jung, Appl. Surf. Sci. 357 (2015) 1911–1914.
doi: 10.1016/j.apsusc.2015.09.128
L. Silipigni, G. Salvato, B. Fazio, et al., J. Mater. Sci. Mater. Electron. 31 (2020) 11847–11854.
doi: 10.1007/s10854-020-03738-4
K.A. Mkhoyan, A.W. Contryman, J. Silcox, et al., Nano Lett. 9 (2009) 1058–1063.
doi: 10.1021/nl8034256
K. Erickson, R. Erni, Z. Lee, et al., Adv. Mater. 22 (2010) 4467–4472.
doi: 10.1002/adma.201000732
K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2 (2010) 1015–1024.
doi: 10.1038/nchem.907
S. Ghazizadeh, P. Duffour, N.T. Skipper, M. Billing, Y. Bai, Cem. Concr. Res. 99 (2017) 116–128.
doi: 10.1016/j.cemconres.2017.05.011
F. Rubbi, L. Das, K. Habib, et al., J. Mol. Liq. 338 (2021) 116771.
doi: 10.1016/j.molliq.2021.116771
J. Li, Y. Cheng, X. Chen, S. Zheng, Int. J. Pharm. X 1 (2019) 100002.
M.M. Gudarzi, Langmuir 32 (2016) 5058–5068.
doi: 10.1021/acs.langmuir.6b01012
G. Trefalt, S.H. Behrens, M. Borkovec, Langmuir 32 (2016) 380–400.
doi: 10.1021/acs.langmuir.5b03611
Q. Pan, E. Shim, B. Pourdeyhimi, W. Gao, Langmuir 33 (2017) 7452–7458.
doi: 10.1021/acs.langmuir.7b01508
K. He, G. Chen, G. Zeng, et al., Nanoscale 9 (2017) 5370–5388.
doi: 10.1039/C6NR09931A
J. Luo, L.J. Cote, V.C. Tung, et al., J. Am. Chem. Soc. 132 (2010) 17667–17669.
doi: 10.1021/ja1078943
B.J. Hong, O.C. Compton, Z. An, I. Eryazici, S.T. Nguyen, ACS Nano 6 (2012) 63–73.
doi: 10.1021/nn202355p
Y. Feng, X. Liu, K.A. Huynh, et al., Environ. Sci. Technol. 51 (2017) 6821–6828.
doi: 10.1021/acs.est.7b00132
X. Hu, Y. Yu, W. Hou, J. Zhou, L. Song, Appl. Surf. Sci. 273 (2013) 118–121.
doi: 10.1016/j.apsusc.2013.01.201
Z. Zeng, Y. Wang, Q. Zhou, K. Yang, D. Lin, Environ. Pollut. 250 (2019) 366–374.
doi: 10.1016/j.envpol.2019.03.112
D. Shevlin, N. O'Brien, E. Cummins, Sci. Total Environ. 621 (2018) 1033–1046.
doi: 10.1016/j.scitotenv.2017.10.123
T.Y. Sun, F. Gottschalk, K. Hungerbühler, B. Nowack, Environ. Pollut. 185 (2014) 69–76.
doi: 10.1016/j.envpol.2013.10.004
B. Zhu, X. Xia, S. Zhang, Y. Tang, Environ. Pollut. 234 (2018) 581–589.
doi: 10.1016/j.envpol.2017.11.086
S. Wagner, A. Gondikas, E. Neubauer, T. Hofmann, F. von der Kammer, Angew. Chem. Int. Ed. 53 (2014) 12398–12419.
B.M. Smith, D.J. Pike, M.O. Kelly, J.A. Nason, Environ. Sci. Technol. 49 (2015) 12789–12797.
doi: 10.1021/acs.est.5b03486
L. Jiang, Y. Liu, G. Zeng, et al., Chem. Eng. J. 343 (2018) 371–378.
doi: 10.1016/j.cej.2018.03.026
N.P. Sotirelis, C.V. Chrysikopoulos, Environ. Sci. Technol. 49 (2015) 13413–13421.
doi: 10.1021/acs.est.5b03496
J. Wang, S. Yu, Y. Zhao, et al., Sep. Purif. Technol. 184 (2017) 88–96.
doi: 10.1016/j.seppur.2017.03.058
J. Zhao, F. Liu, Z. Wang, X. Cao, B. Xing, Environ. Sci. Technol. 49 (2015) 2849–2857.
doi: 10.1021/es505605w
X. Ren, J. Li, X. Tan, et al., Environ. Sci. Technol. 48 (2014) 5493–5500.
doi: 10.1021/es404996b
N.P. Sotirelis, C.V. Chrysikopoulos, Sci. Total Environ. 579 (2017) 736–744.
doi: 10.1016/j.scitotenv.2016.11.034
J. Amaro-Gahete, A. Benítez, R. Otero, et al., Nanomaterials 9 (2019) 152.
doi: 10.3390/nano9020152
G. Ding, N. Zhang, C. Wang, et al., J. Nanopart. Res. 20 (2018) 313.
doi: 10.1007/s11051-018-4421-1
T. Szabo, P. Maroni, I. Szilagyi, Carbon 160 (2020) 145–155.
doi: 10.1016/j.carbon.2020.01.022
L. Wu, L. Liu, B. Gao, et al., Langmuir 29 (2013) 15174–15181.
doi: 10.1021/la404134x
Y. He, Y. Liu, F. Guo, et al., Chin. Chem. Lett. 31 (2020) 1625–1629.
doi: 10.1016/j.cclet.2019.10.010
B. Sun, Y. Zhang, Q. Liu, et al., Environ. Sci. Nano 7 (2020) 634–644.
doi: 10.1039/C9EN01040H
A. Bagri, C. Mattevi, M. Acik, et al., Nat. Chem. 2 (2010) 581–587.
doi: 10.1038/nchem.686
J. Luo, H.D. Jang, T. Sun, et al., ACS Nano 5 (2011) 8943–8949.
doi: 10.1021/nn203115u
Y. Jiang, Q. Zeng, P. Biswas, J.D. Fortner, J. Membr. Sci. 581 (2019) 453–461.
doi: 10.1016/j.memsci.2019.03.056
C. Liao, X.R. Zhao, X.Y. Jiang, J. Teng, J.G. Yu, Microchem. J. 152 (2020) 104288.
doi: 10.1016/j.microc.2019.104288
X. Ren, J. Li, C. Chen, et al., Environ. Sci. Nano 5 (2018) 1298–1340.
doi: 10.1039/C7EN01258F
Y. Tang, H. Liu, X. Wang, et al., J. Mol. Struct. 1224 (2021) 129196.
doi: 10.1016/j.molstruc.2020.129196
Y. Si, E.T. Samulski, Nano Lett. 8 (2008) 1679–1682.
doi: 10.1021/nl080604h
H. Wang, Y.H. Hu, J. Colloid Interface Sci. 391 (2013) 21–27.
doi: 10.1016/j.jcis.2012.09.056
M. Wang, Y. Niu, J. Zhou, et al., Nanoscale 8 (2016) 14587–14592.
doi: 10.1039/C6NR03503E
M. Li, M. Kobayashi, Colloid Surf, A Physicochem. Eng. Asp. 626 (2021) 127021.
doi: 10.1016/j.colsurfa.2021.127021
J. Zhao, Y. Li, X. Wang, et al., Environ. Pollut. 279 (2021) 116926.
doi: 10.1016/j.envpol.2021.116926
K.L. Chen, M. Elimelech, J. Colloid Interface Sci. 309 (2007) 126–134.
doi: 10.1016/j.jcis.2007.01.074
I. Chowdhury, M.C. Duch, N.D. Mansukhani, M.C. Hersam, D. Bouchard, Environ. Sci. Technol. 47 (2013) 6288–6296.
doi: 10.1021/es400483k
A. Griffith, S.M. Notley, J. Colloid Interface Sci. 369 (2012) 210–215.
doi: 10.1016/j.jcis.2011.11.081
T. Szabó, E. Tombácz, E. Illés, I. Dékány, Carbon 44 (2006) 537–545.
doi: 10.1016/j.carbon.2005.08.005
C.J. Shih, S. Lin, R. Sharma, M.S. Strano, D. Blankschtein, Langmuir 28 (2012) 235–241.
doi: 10.1021/la203607w
X. Li, X. Tang, Y. Fang, J. Mol. Liq. 199 (2014) 237–243.
doi: 10.1016/j.molliq.2014.09.020
V. Sabna, S.G. Thampi, S. Chandrakaran, Water Sci. Technol. 78 (2018) 732–742.
doi: 10.2166/wst.2018.311
H. Tang, S. Zhang, T. Huang, F. Cui, B. Xing, Environ. Sci. Nano 7 (2020) 984–995.
doi: 10.1039/C9EN01365B
W. Wu, Y. Hu, Q. Guo, et al., J. Hazard. Mater. 297 (2015) 59–65.
doi: 10.1016/j.jhazmat.2015.04.078
T.P.D. Shareena, D. McShan, A.K. Dasmahapatra, P.B. Tchounwou, Nano Micro Lett. 10 (2018) 53.
doi: 10.1007/s40820-018-0206-4
I. Chowdhury, W.C. Hou, D. Goodwin, et al., Water Res. 78 (2015) 37–46.
doi: 10.1016/j.watres.2015.04.001
H. Bai, W. Jiang, G.P. Kotchey, et al., J. Phys. Chem. C 118 (2014) 10519–10529.
doi: 10.1021/jp503413s
G. Gündüz, Chemistry, Materials, and Properties of Surface Coatings: Traditional and Evolving Technologies, DEStech Publications, Inc, 2015.
R.C. Neuman, Organic Chemistry, in Organic Molecules and Chemical Bonding, California (US): University of California, 1999, pp. 1–55.
M. Mohandoss, S.S. Gupta, A. Nelleri, T. Pradeep, S.M. Maliyekkal, RSC Adv. 7 (2017) 957–963.
doi: 10.1039/C6RA24696F
M.P. Fasnacht, N.V. Blough, Environ. Sci. Technol. 36 (2002) 4364–4369.
doi: 10.1021/es025603k
T. Mill, W. Mabey, B. Lan, A. Baraze, Chemosphere 10 (1981) 1281–1290.
doi: 10.1016/0045-6535(81)90045-X
N.S. Andryushina, O.L. Stroyuk, I.B. Yanchuk, A.V. Yefanov, Colloid Polym. Sci. 292 (2014) 539–546.
doi: 10.1007/s00396-013-3134-3
Y. Gao, X. Ren, G. Song, et al., J. Hazard. Mater. 382 (2020) 121097.
doi: 10.1016/j.jhazmat.2019.121097
W.R. Gallegos-Pérez, A.C. Reynosa-Martínez, C. Soto-Ortiz, et al., Chemosphere 249 (2020) 126160.
doi: 10.1016/j.chemosphere.2020.126160
T. Du, A.S. Adeleye, T. Zhang, et al., Environ. Sci. Nano 5 (2018) 2590–2603.
doi: 10.1039/C8EN00593A
K. Spilarewicz-Stanek, A. Jakimińska, A. Kisielewska, M. Dudek, I. Piwoński, Mater. Sci. Semicond. Process 123 (2021) 105525.
doi: 10.1016/j.mssp.2020.105525
Z. Qi, T. Du, P. Ma, F. Liu, W. Chen, Sci. Total Environ. 657 (2019) 1450–1459.
doi: 10.1016/j.scitotenv.2018.12.143
S. Bele, V. Samanidou, E. Deliyanni, Chem. Eng. Res. Des. 109 (2016) 573–585.
doi: 10.1016/j.cherd.2016.03.002
N. Cai, D. Peak, P. Larese-Casanova, Chem. Eng. J. 273 (2015) 568–579.
doi: 10.1016/j.cej.2015.03.108
I. Chowdhury, M.C. Duch, N.D. Mansukhani, M.C. Hersam, D. Bouchard, Environ. Sci. Technol. 48 (2014) 9382–9390.
doi: 10.1021/es5020828
W. Chen, J. Song, S. Jiang, et al., Front. Environ. Sci. Eng. 16 (2022) 16.
M.A. Islam, D.W. Morton, B.B. Johnson, M.J. Angove, Sep. Purif. Technol. 247 (2020) 116949.
doi: 10.1016/j.seppur.2020.116949
Y. Luo, Y. Zhang, M. Lang, et al., Front. Environ. Sci. Eng. 15 (2021) 96.
doi: 10.1007/s11783-020-1340-z
M. Pham, E.A. Mintz, T.H. Nguyen, J. Colloid Interface Sci. 338 (2009) 1–9.
doi: 10.1016/j.jcis.2009.06.025
Y. Li, J. Niu, E. Shang, J.C. Crittenden, Environ. Sci. Technol. 49 (2015) 965–973.
doi: 10.1021/es505089e
E. Shang, Y. Li, J. Niu, et al., Water Res. 124 (2017) 595–604.
doi: 10.1016/j.watres.2017.08.001
Y. Sun, B. Gao, S.A. Bradford, et al., Water Res. 68 (2015) 24–33.
doi: 10.1016/j.watres.2014.09.025
S. Gurunathan, J. Han, J.H. Park, J.H. Kim, Int. J. Nanomed. 9 (2014) 1783–1797.
J.T.K. Quik, I. Velzeboer, M. Wouterse, A.A. Koelmans, D. van de Meent, Water Res. 48 (2014) 269–279.
doi: 10.1016/j.watres.2013.09.036
A. Beryani, M.R. Alavi Moghaddam, T. Tosco, et al., Sci. Total Environ. 698 (2020) 134224.
doi: 10.1016/j.scitotenv.2019.134224
F. Zou, H. Zhou, D.Y. Jeong, et al., ACS Appl. Mater. Interfaces 9 (2017) 1343–1351.
doi: 10.1021/acsami.6b15085
S. Liu, T.H. Zeng, M. Hofmann, et al., ACS Nano 5 (2011) 6971–6980.
doi: 10.1021/nn202451x
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Xin Lu , Haoran Sun , Xiaomeng Li , Chunrui Li , Jinfeng Wang , Dandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Shuo Li , Qianfa Liu , Lijun Mao , Xin Zhang , Chunju Li , Da Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791
Yuqing Ding , Zhiying Yi , Zhihui Wang , Hongyu Chen , Yan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918
Panpan Wang , Hongbao Fang , Mengmeng Wang , Guandong Zhang , Na Xu , Yan Su , Hongke Liu , Zhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099
Min Liu , Bin Feng , Feiyi Chu , Duoyang Fan , Fan Zheng , Fei Chen , Wenbin Zeng . An ESIPT-boosted NIR nanoprobe for ratiometric sensing of carbon monoxide via activatable aggregation-induced dual-color fluorescence. Chinese Chemical Letters, 2025, 36(5): 110043-. doi: 10.1016/j.cclet.2024.110043
Jiakun Bai , Junhui Jia , Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
Jun-Jie Fang , Zheng Liu , Yun-Peng Xie , Xing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345
Ze Wang , Hao Liang , Annan Liu , Xingchen Li , Lin Guan , Lei Li , Liang He , Andrew K. Whittaker , Bai Yang , Quan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765
Yunli Xu , Xuwen Da , Lei Wang , Yatong Peng , Wanpeng Zhou , Xiulian Liu , Yao Wu , Wentao Wang , Xuesong Wang , Qianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168
Yuan Liu , Boyang Wang , Yaxin Li , Weidong Li , Siyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426
Jie Wu , Xiaoqing Yu , Guoxing Li , Su Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234