Microenvironment-responsive chemotherapeutic nanogels for enhancing tumor therapy via DNA damage and glutathione consumption
-
*Corresponding author.
E-mail address: zgxu@swu.edu.cn (Z. Xu).
Citation:
Mengjie Ye, Yuan Gao, Mengyun Liang, Wei Qiu, Xianbin Ma, Jiming Xu, Junfeng Hu, Peng Xue, Yuejun Kang, Zhigang Xu. Microenvironment-responsive chemotherapeutic nanogels for enhancing tumor therapy via DNA damage and glutathione consumption[J]. Chinese Chemical Letters,
;2022, 33(9): 4197-4202.
doi:
10.1016/j.cclet.2022.01.086
S. Quader, K. Kataoka, Mol. Ther. 25 (2017) 1501–1513.
doi: 10.1016/j.ymthe.2017.04.026
K. Cheng, M. Sano, C.H. Jenkins, et al., ACS Nano 12 (2018) 4946–4958.
doi: 10.1021/acsnano.8b02038
S. Goel, D. Ni, W.B. Cai, et al., ACS Nano 11 (2017) 5233–5237.
doi: 10.1021/acsnano.7b03675
M.A. Knoll, R. Jagsi, K. Rosenzweig, JAMA Oncol. 5 (2019) 442.
doi: 10.1001/jamaoncol.2018.5868
K. Li, C.C. Lin, Y. He, et al., ACS Nano 14 (2020) 14164–14180.
doi: 10.1021/acsnano.0c07071
S. Bai, L.L. Yang, Y.J. Wang, et al., Small 16 (2020) 2000214.
doi: 10.1002/smll.202000214
W. Ma, Q. Chen, W. Xu, et al., Nano Res. 14 (2020) 846–857.
doi: 10.1109/ei250167.2020.9347325
G. Chen, Y. Yang, Q. Xu, et al., Nano Lett. 20 (2020) 8141–8150.
doi: 10.1021/acs.nanolett.0c03127
M. He, L. Yu, Y. Yang, et al., Chin. Chem. Lett. 31 (2020) 3178–3182.
doi: 10.1016/j.cclet.2020.05.034
L. Yu, Z. Wang, Z. Mo, et al., Acta Pharm. Sin. B 11 (2021) 2004–2015.
doi: 10.1016/j.apsb.2021.02.001
Y.Y. Yang, X. Liu, W. Ma, et al., Biomaterials 265 (2021) 120456.
doi: 10.1016/j.biomaterials.2020.120456
F. Ding, X.H. Gao, X.G. Huang, et al., Biomaterials 245 (2020) 119976.
doi: 10.1016/j.biomaterials.2020.119976
W. Tao, J.Q. Wang, W.J. Parak, et al., ACS Nano 13 (2019) 4876–4882.
doi: 10.1021/acsnano.9b01696
Q.W. Tian, Y.P. Li, S.S. Jiang, et al., Small 15 (2019) 1902926.
doi: 10.1002/smll.201902926
W. Wu, L. Luo, Y. Wang, et al., Theranostics 8 (2018) 3038–3058.
doi: 10.7150/thno.23459
S.L. Li, P.E. Saw, C.H. Lin, et al., Biomaterials 234 (2020) 119760.
doi: 10.1016/j.biomaterials.2020.119760
B. Fejerskov, M.T.J. Olesen, A.N. Zelikin, Adv. Drug Deliv. Rev. 118 (2017) 24–34.
doi: 10.1016/j.addr.2017.04.013
R. Mooney, A.A. Majid, J. Batalla, et al., Adv. Drug Deliv. Rev. 118 (2017) 35–51.
doi: 10.1016/j.addr.2017.09.003
W.B. Hu, P.N. Prasad, W. Huang, Acc. Chem. Res. 54 (2021) 697–706.
doi: 10.1021/acs.accounts.0c00688
C.N. Xu, Y.B. Wang, E.L. Wang, et al., Adv. Funct. Mater. 31 (2020) 2009314.
H. Zhao, J.B. Xua, J.S. Wan, et al., Nano Today 36 (2021) 101058.
doi: 10.1016/j.nantod.2020.101058
G. Canavese, A. Ancona, L. Racca, et al., Chem. Eng. J. 340 (2018) 155–172.
doi: 10.1016/j.cej.2018.01.060
Y. Yoon, W. Tang, X.Y. Chen, Small Methods 1 (2017) 1700173.
doi: 10.1002/smtd.201700173
Y.E. Gao, S.X. Hou, J.Q. Cheng, et al., ACS Sustain. Chem. Eng. 9 (2021) 3213–3222.
doi: 10.1021/acssuschemeng.0c08326
S.X. Hou, Y.E. Gao, X.B. Ma, et al., Chem. Eng. J. 416 (2021) 129037.
doi: 10.1016/j.cej.2021.129037
D. Jia, X.B. Ma, Y. Lu, et al., Chin. Chem. Lett. 32 (2021) 162–167.
doi: 10.1016/j.cclet.2020.11.052
H. Guo, F.P. Li, W.G. Xu, et al., Adv. Sci. 5 (2018) 1800004.
doi: 10.1002/advs.201800004
K. Zhang, Y. Zhang, X. Meng, et al., Biomaterials 185 (2018) 301–309.
doi: 10.1016/j.biomaterials.2018.09.033
L. Feng, M. Gao, D. Tao, et al., Adv. Funct. Mater. 26 (2016) 2207–2217.
doi: 10.1002/adfm.201504899
B. Cao, F. Xiao, D. Xing, et al., Small 14 (2018) 1802008.
doi: 10.1002/smll.201802008
P. Zheng, Y. Liu, J. Chen, et al., Chin. Chem. Lett. 31 (2020) 1178–1182.
doi: 10.1016/j.cclet.2019.12.001
H. Huang, L. Mao, Z.H. Li, et al., J. Bioresour. Bioprod. 4 (2019) 231–241.
X. Hu, S. Zhai, G. Liu, et al., Adv. Mater. 30 (2018) 1706307.
doi: 10.1002/adma.201706307
M. Jiang, J. Mu, O. Jacobson, et al., ACS Nano 14 (2020) 16875–16886.
doi: 10.1021/acsnano.0c05722
W. Shen, W. Liu, H. Yang, et al., Biomaterials 178 (2018) 706–719.
doi: 10.1016/j.biomaterials.2018.02.011
J.N. Li, W.G. Xu, D. Li, et al., ACS Nano 12 (2018) 6685–6699.
doi: 10.1021/acsnano.8b01729
L.J. Zhang, X. Zhang, G.H. Lu, et al., Small 15 (2019) 1805544.
doi: 10.1002/smll.201805544
W. Jiang, Q. Li, L. Xiao, et al., ACS Nano 12 (2018) 5684–5698.
doi: 10.1021/acsnano.8b01508
K. Duskova, P. Lejault, É. . Benchimol, et al., J. Am. Chem. Soc. 142 (2020) 424–435.
doi: 10.1021/jacs.9b11150
U.S. Srinivas, B. Tan, B.A. Vellayappan, et al., Redox Biology 25 (2019) 101084.
doi: 10.1016/j.redox.2018.101084
G. Barouti, C.G. Jaffredo, S.M. Guillaume, Prog. Polym. Sci. 73 (2017) 1–31.
doi: 10.1016/j.progpolymsci.2017.05.002
W.W. Mu, Q.H. Chu, Y.J. Liu, et al., Nano-micro Lett. 12 (2020) 142.
doi: 10.1007/s40820-020-00482-6
J.S. Lan, L. Liu, R.F. Zeng, et al., Chem. Eng. J. 407 (2021) 127212.
doi: 10.1016/j.cej.2020.127212
X.Y. Zhong, X.W. Wang, L. Cheng, et al., Adv. Funct. Mater. 30 (2019) 1907954.
Y. Lu, D. Jia, X.B. Ma, et al., ACS Appl. Mater. Interfaces 13 (2021) 8940–8951.
doi: 10.1021/acsami.0c21710
X.B. Ma, S.C. Yang, T. Zhang, et al., Acta Pharm. Sin. B 12 (2022) 451–466.
doi: 10.1016/j.apsb.2021.05.016
Y.J. Wang, M.H. Zu, X.B. Ma, et al., ACS Appl. Mater. Interfaces 12 (2020) 50896–50908.
doi: 10.1021/acsami.0c15781
H.G. Xiong, X.B. Ma, X.L. Wang, et al., Adv. Funct. Mater. 31 (2021) 2100007.
doi: 10.1002/adfm.202100007
R. Liu, M.N. Yu, X.T. Yang, et al., Adv. Funct. Mater. 29 (2019) 1808462.
doi: 10.1002/adfm.201808462
S. Wang, P. Huang, X.Y. Chen, Adv. Mater. 28 (2016) 7340–7364.
doi: 10.1002/adma.201601498
P. Zheng, Y. Liu, J.X. Ding, et al., Chin. Chem. Lett. 31 (2020) 1178–1182.
doi: 10.1016/j.cclet.2019.12.001
X.X. Shi, Y. Zhang, Y. Tian, et al., Small Methods 5 (2020) 2000416.
doi: 10.1002/smtd.202000416
Q.W. Zhu, M. Saeed, H.J. Yu, et al., Chin. Chem. Lett. 31 (2020) 1051–1059.
doi: 10.1016/j.cclet.2019.12.002
Tianxu Zhang , Dexuan Xiao , Mi Zhou , Yunfeng Lin , Tao Zhang , Xiaoxiao Cai . Protective effect of osteogenic growth peptide functionalized tetrahedral DNA nanostructure on bone marrow and bone formation ability in chemotherapy-induced myelosuppressive mice. Chinese Chemical Letters, 2025, 36(8): 110594-. doi: 10.1016/j.cclet.2024.110594
Haotian Shi , Yuchao Luo , Song Zhang , Meijun Zhao , Chaoyong Liu , Qing Pei , Helei Wang , Qiong Dai , Zhigang Xie , Bin Xu , Wenjing Tian . Dual-responsive nanogels with high drug loading for enhanced tumor targeting and treatment. Chinese Chemical Letters, 2025, 36(10): 110775-. doi: 10.1016/j.cclet.2024.110775
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Wenbin Zhou , Yafei Gao , Xinyu Feng , Yanqing Zhang , Cong Yang , Lanxi He , Fenghe Zhang , Xiaoguang Li , Qing Li . Biomimetic nanoplatform integrates FRET-enhanced photodynamic therapy and chemotherapy for cascaded revitalization of the tumor immune microenvironment in OSCC. Chinese Chemical Letters, 2025, 36(1): 109763-. doi: 10.1016/j.cclet.2024.109763
Cheng-Zhe Gao , Hao-Ran Jia , Tian-Yu Wang , Xiao-Yu Zhu , Xiaofeng Han , Fu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840
Tingting Hu , Chao Shen , Xueyan Wang , Fengbo Wu , Zhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562
Chuyu Huang , Zhishan Liu , Linping Zhao , Zuxiao Chen , Rongrong Zheng , Xiaona Rao , Yuxuan Wei , Xin Chen , Shiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696
Zhi Li , Shuya Pan , Yuan Tian , Shaowei Liu , Weifeng Wei , Jinlin Wang , Tianfeng Chen , Ling Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018
Du Liu , Yuyan Li , Hankun Zhang , Benhua Wang , Chaoyi Yao , Minhuan Lan , Zhanhong Yang , Xiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910
Lintao Wu , Yujia Meng , Xumei Zheng , Yiqiao Bai , Chun Han , Zhijun Wang , Jie Yang , Xiaobi Jing , Yong Yao . Pillar[5]arene based prodrug as a GSH-responsive SO2 nanogenerator for effective gas cancer therapy. Chinese Chemical Letters, 2025, 36(9): 110808-. doi: 10.1016/j.cclet.2024.110808
Lin Li , Bingjun Sun , Jin Sun , Lin Chen , Zhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
Shupeng Han , Caiting Deng , Meichen Zheng , Linwei Yang , Hancun Kong , Yongchao He , Yinuo Zheng , Guowei Deng , Yu Ren , Feifei An . A GSH-responsive NIR-BODIPY fluorophore with large Stokes-shift for tumor specific fluorescence imaging and surgical guidance. Chinese Chemical Letters, 2025, 36(7): 110459-. doi: 10.1016/j.cclet.2024.110459
Jinyu Guo , Yandai Lin , Shaohua He , Yueqing Chen , Fenglu Li , Renjie Ruan , Gaoxing Pan , Hexin Nan , Jibin Song , Jin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537
Li Fu , Ziye Su , Shuyang Wu , Yanfen Cheng , Chuan Hu , Jinming Zhang . Redox-responsive hyaluronic acid-celastrol prodrug micelles with glycyrrhetinic acid co-delivery for tumor combination therapy. Chinese Chemical Letters, 2025, 36(5): 110227-. doi: 10.1016/j.cclet.2024.110227
Yong-Dan Zhao , Yidan Wang , Rongrong Wang , Lina Chen , Hengtong Zuo , Xi Wang , Jihong Qiang , Geng Wang , Qingxia Li , Canqi Ping , Shuqiu Zhang , Hao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929
Di ZHANG , Tianxiang XIE , Xu HE , Wanyu WEI , Qi FAN , Jie QIAO , Gang JIN , Ningbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329
Xinran Xi , Xiyu Wang , Ziyue Xi , Chuanyong Fan , Yingying Jiang , Zhenhua Li , Lu Xu . Facile GSH responsive glycyrrhetinic acid conjunction for liver targeting therapy. Chinese Chemical Letters, 2025, 36(10): 110773-. doi: 10.1016/j.cclet.2024.110773
Yuanzheng Wang , Chen Zhang , Shuyan Han , Xiaoli Kong , Changyun Quan , Jun Wu , Wei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578
Huipeng Li , Xue Yang , Minjie Sun . Self-strengthened cascade-explosive nanogel using host-guest interaction strategy for synergistic tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110651-. doi: 10.1016/j.cclet.2024.110651